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ABSTRACT. We present public-key cryptographic protocols for key exchange,
digital signatures, and encryption whose security is based on the presumed in-
tractability of solving the principal ideal problem, or equivalently, the distance
problem, in the real model of a hyperelliptic curve. Our protocols represent a
significant improvement over existing protocols using real hyperelliptic curves.
Theoretical analysis and numerical experiments indicate that they are com-
parable to the imaginary model in terms of efficiency, and hold much more
promise for practical applications than previously believed.

1. INTRODUCTION AND MOTIVATION

Cryptographic key exchange a la Diffie-Hellman has been proposed with a vari-
ety of different underlying group and group-like structures. Finite fields and elliptic
curves have found their way into commercial applications, but in recent years, hy-
perelliptic curves of low genus have also become an increasingly popular choice. In
1989, Koblitz [T6] first proposed the Jacobian of the conventional, i.e. imaginary,
model of a hyperelliptic curve for key exchange. Several years later, an analogous
key exchange protocol was presented for the real model of a hyperelliptic curve
[23]. Tts underlying key space was the set of reduced principal ideals in the coor-
dinate ring of the curve, together with its group-like infrastructure. Unfortunately,
the protocol [23] was significantly slower and more complicated than its imaginary
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cousin [I6], while offering no additional security; the same was true for subsequent
modifications presented in [22].

In this paper, we present improved public-key protocols for key exchange, digital
signatures, and encryption. These schemes are based on the presumed intractabil-
ity of computing the distance of a reduced principal divisor of a real hyperelliptic
curve. Our protocols make use of two new scalar multiplication primitives that
lead to significant improvements over the key exchange protocols in [23, 22]. These
primitives make use of the fact that the infrastructure of a real hyperelliptic curve
admits two operations. This is in contrast to the Jacobian of an imaginary hy-
perelliptic curve which admits only the “giant step” operation, i.e. divisor addition
with subsequent reduction. In addition to giant steps, the infrastructure supports
a much faster “baby step” operation that is analogous to a Gaussian reduction step
as used in the imaginary setting, and can be used to jump from one reduced divisor
to the next. We show, for example, how on average one eighth of the giant steps
in the original key exchange protocol [23] can be replaced by baby steps, with an
additional minor expense of just a few more baby steps. Since baby steps require
linear time in the genus of the curve, whereas giant steps take quadratic time in
general, we would expect that this speeds up the protocol by almost twelve percent
over the procedures given in [23]. We show that similar results hold in most cases
for the other protocols, the most significant improvement occurring for our digi-
tal signature protocol based on DSA, in which generating signatures is especially
efficient.

Our protocols work for any real hyperelliptic curve and any genus and do not
require any precomputed divisors. Assuming that giant steps in the real and imag-
inary models cost the same, a similar speed-up of the real setting as compared
to the imaginary setting can be proved theoretically, even for genus as low as 2.
Preliminary numerical data, using an optimized generic version of Cantor’s algo-
rithm for divisor arithmetic and a basic version of non-adjacent form (NAF) based
scalar multiplication, indicate that the performance of our improved real protocols
is comparable to those using the imaginary model.

However, there are issues that need to be addressed before a rigorous performance
comparison between the real and imaginary settings can be obtained. There has
been a lot of work in algorithmic improvement to the imaginary protocols that has
not yet been generalized to the real mode. For example, in the low genus case, it
needs to be seen how optimized explicit formulas for the real case compare to the
explicit formulas in the imaginary case [I7, 29, 21]. We expect that the explicit
formulas for the giant step operation in the real case are comparable to those in the
imaginary case and that, as in [26, 27], baby steps will be much faster than giant
steps. If so, our new protocols would perform almost as well as the corresponding
protocols in the imaginary case, even using explicit formulas for the small genus
cases. The first results in this direction [6], in which explicit formulas for genus two
arithmetic over prime fields using affine representation is presented, bear this out.
It also remains to be seen how special constructions such as the one given in [§] carry
over to the real setting. Finally, our protocols do not require any precomputations
based on the base divisor, so we compare with imaginary protocols using NAF-based
scalar multiplication. We expect that various well-known improvements to scalar
multiplication involving precomputations such as window methods and joint-sparse
forms, especially those that take advantage of a fixed divisor, can be generalized
to the real case, but the development and comparison of these variations is beyond
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the scope of this paper. Our goal is not to argue that protocols in the real model
are faster than those in the imaginary model at this point, but rather that their
performance is comparable and that further investigation is warranted.

We begin with a description of the set of divisors that represents the basic math-
ematical structure underlying several major cryptographic protocols using both
imaginary and real hyperelliptic curves in Section @ We provide only the very
basics of the infrastructure in the real setting; a full and detailed divisor theoretic
treatment of this phenomenon was provided in [I3]. We describe our improved
scalar multiplication primitives for real hyperelliptic curves in Section Bl Crypto-
graphic protocols based on these primitives are presented in Section Bl including a
discussion of their efficiency as compared to previous versions in the real case as
well as protocols in the imaginary case. Security issues are touched on in Section [,
and numerical data, generated using generic algorithms for divisor arithmetic as
described in Appendix [Al are presented in Section B As some of this is still work
in progress, we offer conclusions and some open problems in Section [

2. HYPERELLIPTIC CURVES

A considerable amount of literature has been devoted to hyperelliptic curves
and their cryptographic applications. We therefore simply refer the reader to the
elementary introduction [I§], the survey article [I2], and the description of both
imaginary and real models in [I3], and review only the basics and notation here.

Throughout this paper, let C' be a hyperelliptic curve of genus g over a finite
field IF,. That is, C' is an absolutely irreducible non-singular curve of the form

(2.1) C:y* +h(z)y = f(z) ,
where f,h € Fy[z] and h = 0 if ¢ is odd. We distinguish two scenariod] (see [T2,
Section 2.9], [B], and [13]):
e Imaginary model/form. f is monic, deg(f) = 2¢g + 1, and deg(h) < g if ¢ is
even;
e Real model/form. If ¢ is odd, then f is monic and deg(f) = 2g+2.If ¢ is even,
then h is monic, deg(h) = g+1, and either deg(f) < 2g+1, or deg(f) = 2g+2
and the leading coefficient of f is of the form e? + e for some e € F;.

We denote by F,[C] = Fg4[z,y] the coordinate ring and by F,(C) = Fy(x,y) the
function field of C.

It is easy to convert an imaginary hyperelliptic curve to a real model over the
same base field and, if the curve has an [F,-rational point, vice versa. Explicit
formulas for relating divisor arithmetic in the two models were given in [20] for the
case of odd characteristic; for ¢ even, analogous variable transformations apply.

2.1. IMAGINARY SETTING. If C as given in (1)) is imaginary, then the Jacobian
of C over F; has been widely used for cryptographic applications. Here, the pole
oo of z is totally ramified in F,(C), and every degree zero divisor D defined over
F, can be uniquely written in the form D = D, — deg(D,)oo where D, is a divisor
not supported at co. A degree zero divisor D defined over F, is semi-reduced if D,
is an effective divisor that is not divisible by the conorm of any divisor in F4(z),
and reduced if in addition deg(D,) < g¢. The finite divisors D,, and hence the

IThe conditions for the cases where deg(f) = 2g+2 given here and in [ are slightly different
from those given in [5], but the two can easily be shown to be equivalent by simply multiplying
the curve by a suitable scalar in Fy.
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degree zero divisors D, are in one-to-one correspondence with the fractional ideals of
F,[C], with effective divisors corresponding to integral ideals, semi-reduced divisors
to principal ideals, and reduced divisors to reduced ideals. Every non-trivial semi-
reduced divisor D has an explicit representation as a pair a, b € F,4[z] of polynomials
where a is unique and b is unique modulo a. Here, a is monic and divides f -+bh —b2.
If b is chosen so that deg(b) < deg(a), then the pair (a,b) is called the Mumford
representation of D. We write D = div(a,b) and point out that in this fashion,
divisor arithmetic can be reduced to simple polynomial arithmetic over F,.

It is well-known that every degree zero divisor class has a unique reduced rep-
resentative. If R denotes the set of these reduced representatives, then we have
an operation “@®” on R via (D,D’) — D@® D’ where D@ D’ is the unique re-
duced representative in the divisor class of D + D’. R is a group under this op-
eration, where the inverse of a divisor D = div(a,b) € R is the conjugate (or
opposite) divisor D = div(a, —b — h), i.e. the image of D under the natural invo-
lution (z,y) — (z,—y — h(x)) on C; note that deg(D,) = deg(D,) = deg(a). We
remark that —b — h is reduced modulo « if necessary, so that the conjugate divisor
is also in Mumford representation.

For reasons that will become evident later on, we refer to the operation @ as a
giant step. The conventional method for performing giant steps is divisor addition
with subsequent Gaussian reduction (Cantor’s algorithm [3]), although other more
efficient methods such as NUCOMP [I4] and explicit formulas for low genus curves
[0, 29, 2] exist. For definitions of the terminology used above as well as other
details, we refer the reader to [3] and [I6], or to the sources [IR], [12] and [I3]
mentioned earlier.

2.2. REAL SETTING. Details on the arithmetic on the real model of a hyperelliptic
curve can be found for example in [28], [22], or [T2], but all these sources employ
only the terminology of ideals in the coordinate ring F,[C] of C. Instead, we relate
their descriptions to a divisor theoretic framework as given in [I3]. We let C as
given in () be real, and denote by co; and ooy the two poles of  with respective
normalized additive valuations 11 and v5. The class of the divisor co; —oo2 has degree
zero and finite order R, the z-regulator of Fy(C)/F4(x). The divisor R;(co1 — 002)
is thus principal and is the divisor of a fundamental unit of Fo(C), i.e. a generator
of the infinite cyclic group F,[C]*/F}.

The completion of F,(C) with respect to both oo; and ocog is the field Fy(z ') of
Puiseux series in 7! over F,, so there are two embeddings of F,(C) into Fy(z~1),
given by the respective Puiseux expansions of y and ¥ = —y — h. We choose an
embedding v so that v(y) = —g — 1 and number the two poles of x so that v = v;.

In a similar manner to the imaginary case, every degree zero divisor of C' can be
uniquely written in the form

D = D, — deg(Dg)ooz + v1(D) (001 — 002)

where D, is a divisor that is coprime to both co; and cos. Reducedness and semi-
reducedness of degree zero divisors D defined over F, can be defined via D, exactly
as in the imaginary case. Analogous to the imaginary setting, every semi-reduced
divisor D can be described by a pair of polynomials a, b as described in Section 2],
together with the value v1 (D). As a point of interest, we mention that by Proposition
4.1 of |20], every degree zero divisor class has exactly one reduced representative D
with 0 < 11 (D) < g — deg(D,). However, cryptographic protocols using arithmetic
on these reduced representatives are less efficient than their imaginary counterparts.
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Once again, we have the same bijective correspondence between finite divisors
and fractional F[C]-ideals. Rather than performing arithmetic in the Jacobian via
unique representatives as in the imaginary case, we focus instead on one ideal class
— usually the principal ideal class — and consider a certain set of pairwise non-
equivalent reduced divisors arising from all the reduced ideals in this ideal class. Fix
any reduced ideal a of Fy[C], and define R4 to be the finite set of reduced divisors
D = D, — deg(D,)oos such that D, corresponds to a reduced ideal b equivalent to
a and v1(D) = 0; write D = Dy. Let a € F,(C) with b = («)a. Then Dy = Dy,
or equivalently, b = a, if and only if v;(a) = 0 (mod R,) (see for example [23]).
It follows that the set R4 can be ordered by distance §(Dy) = —v1(a) where « is
chosen so that 0 < —v;(a) < R,. Hence, if we set r = |R4|, we can write

Ra ={D1,Da,...,D;}

with D1 = Dy, and set 6; = 6(D;) for 1 < i < r. Then §; = 0, and §; strictly
increases in the interval [0, R, [ as 4 increases from 1 to r.

Since each D € R, is uniquely determined by its corresponding ideal, i.e. by its
finite part D, D can be solely described by two polynomials a, b € Fy[x] as explained
above for the imaginary scenario, and we are justified in writing D = div(a,b).
Each D € R, is also uniquely determined by its distance §(D), but in practice, it
is infeasible to actually determine §(D) from a and b; in fact, the security of our
cryptographic schemes is based on that very fact.

An operation similar to Gaussian reduction steps as used for divisor reduction
on imaginary hyperelliptic curves can be applied to divisors in R, except here,
such a step moves from D; to D;y1 (1 < i < r) and is referred to as a baby step.
More exactly, if D; = div(a;_1,b;—1) € Ra, then a baby step produces the divisor
Di+1 = div(ai, bi), where

bi—
(22) 1= { 1ty

;-1
Here, |6] denotes the polynomial part of € F,(x~'). The baby step D; — D41
corresponds to one step in the simple continued fraction expansion of the Puiseux
series of (by + y)/ag € Fy(z~1). More efficient formulas for computing a baby step
are presented in Appendix [l Using those formulas, the running time of a baby
step is linear, i.e. O(g) field operations in F,,.

Writing Dj = Dy, for 1 < j < r = |Rq|, we have bj;1 = (8;)b; where 3; =

—b;/(a; —y —h) = (b; +y)/a;—1 (see again [23]). Therefore,

(23) 5i+1 — 51 = —Vl(ﬂi) =49 +1-— deg(ai,l) = deg(qifl) .

So even if §;11 and d; are unknown, their difference can be found at virtually no
extra cost with the baby step D; — D;11. Note that if D; = 0 = div(1,0), then
gi—1 = |y], so d;+1 = g + 1; in all other cases, we have deg(g;—1) < g and hence
dit1 < 0 + g.

Note that r — 1 iterations of ([Z2), applied to any divisor in R4, generates all of
R.. Baby steps can also be performed on semi-reduced divisors D, in which case
at most [(deg(D,) — g)/2] baby steps produce a reduced divisor equivalent to D.
We can now define giant steps (D,D’) — D& D’ on R, using almost the same
arithmetic as in the imaginary case. The standard way of implementing a giant
step is to compute the sum F = D + D’ using, for example, Cantor’s algorithm [3],
and then applying baby steps ([Z2) to E until the first reduced divisor is reached;
this divisor is D @ D’. Just as in the imaginary case, D @ D’ is reached after at most

_ f+ hb; — b7

J , bi=q1ai1—bii+h, a
i—1
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[(deg(Ey) —g)/2] < [g/2] steps of [Z2) because deg(E,) = deg(D,) + deg(D%) <
2g. The running time of a giant step is quadratic, i.e. O(g?) operations in F, (see
[26] for a more exact complexity analysis of both baby steps and giant steps).

The structure underlying all our real hyperelliptic curve cryptographic protocols
is the set R = R4 of reduced divisors Dy where b is a reduced principal ideal; here,
we choose a = (1) = F,[C] to be the trivial ideal, so D1 = 0 = div(1,0) is the
trivial divisor. Note that R is closed under conjugation, since the conjugate ideal
of a principal ideal is again principal, and under giant steps, since the product of
two principal ideals is again principal and baby steps preserve ideal equivalence.

In order to be able to conduct cryptography in R securely, we need to ensure
that R has large cardinality. A baby step applied to the last divisor D\R| generates
a divisor D with 14 (D) = —R,. Since 6 =0, 02 =g+ 1, and 1 < §;41 — §; < g for
2 <i<|R|—1, we have

g+i—1<§<(i—1)g+1for2<i<|R|,

and hence g+ |R| < R, < |Rlg+1 as 0/R+1 = fa- The Hasse-Weil bounds imply
that the order h of the Jacobian of the curve C' over F, is of order ¢, and R, is
a divisor of h. Most of the time, the ratio h/R,, which is the ideal class number
of F,[C], is very small by the Friedman-Washington-Achter theorems; heuristics on
these class numbers were formulated by Friedman and Washington [7] and recently
proved by Achter [I]. In fact, the curve C can be chosen so that R, is large
with high probability, see [I2]. It follows that R,, and hence the cardinality of
R, is of magnitude ¢Y, i.e. exponentially large in the size of the curve C over Iy,
and comparable to the cardinality of the set R of reduced divisors defined for the
imaginary setting.

It will be important to understand how distances behave under the operations
on R. We already saw that each baby step advances the distance by at least 1 and
at most g, except for the first baby step which jumps from distance 0 to g + 1.
To see what happens to the distance under conjugation, consider any divisor Dy =
div(a,b) € R with corresponding ideal b. Then b = (a)b™?, so

d(Dg) = —v1(a) — 6(Dyp) = deg(a) — 06(Dy) (mod Ry) .

Note that Dy is not actually the conjugate divisor of Dy; rather, Dy = Dy +
deg(a) (001 — 002), so v1(Dy) # 0. For simplicity, we henceforth abuse the overline
notation and identify Dy = div(a, —b — h) with Ds.

Finally, while R is closed under giant steps, it is not associative, i.e. it is not
necessarily the case that (D@ D’")® D" = D@ (D' @ D”) for D, D', D" € R. How-
ever, R is “almost” associative in the sense that the operation @ is almost distance
preserving. More exactly, we have

(2.4) S(DeD")=46(D)+86(D")—d where 0<d<2g,

and d can be efficiently computed (see, for example, Theorem 3.7 of [28]). Since
distances tend to be of order of magnitude R,, i.e. of magnitude ¢9 by our previous
remarks, they are exponentially large compared to the “error” d in ([Z4)) arising from
the reduction steps. It follows that the distance of the divisor D @ D’ is extremely
close to, and just below, the sum of the distances of the divisors D and D’ with a
“shortfall” d of at most 2¢. This behavior is referred to as the infrastructure of R.
In addition, the use of the terms “baby step” and “giant step” is now justified: the
former yields a very small advance in distance, namely at most linear in g, whereas
the latter generally results in an exponentially large distance jump.
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Finally, we define for any integer m with 0 < m < R, the divisor in R below m
to be the unique divisor D; € R with §; < m < §;. Given two divisors D, D’ € R,
the divisor E € R below §(D) + §(D’) can now be found by computing the giant
step B/ = D@ D’ and the error d = §(D) + 6(D’) — §(E’), and then applying at
most d baby steps to E’, increasing d by the appropriate advance in distance in
each baby step, until d changes sign from negative or zero to positive. This can be
done without knowledge of the distances 6(D) and §(D’), and requires one giant
step and at most 2g baby steps by 4.

3. SCALAR MULTIPLICATION

Most exponentiation/scalar multiplication based cryptographic schemes employ
three types of algorithms. In the first scenario, a user performs exponentiation/scalar
multiplication using some fixed known scalar. In the second case, each participant
performs exponentiation/scalar multiplication on the same fixed group element, but
with different exponents/scalars. Finally, in the third type of algorithm, all par-
ties perform exponentiation/scalar multiplication on different group elements. For
example, the fixed and variable group element scenarios are used in the first and
second round of Diffie-Hellman key exchange, respectively, and the fixed scalar sit-
uation occurs in the decryption procedures of the IES and PSEC protocols (see pp.
189-191 of [T11).

Arithmetic using fixed exponents/scalars can be optimized using addition chains,
at the expense of precomputation. Arithmetic using a fixed base can also be im-
proved if precomputations involving the base are permitted, for example, using
windowing methods. A thorough analysis of these scenarios, and generalization to
the real case, is beyond the scope of this paper. Our primary focus is on arithmetic
not requiring any precomputation, so we will henceforth only consider the variable
and fixed base cases without precomputation.

In the setting of imaginary hyperelliptic curves, both the fixed and the variable
group element scenarios require the computation of the reduced divisor in the class
of nD, given a reduced divisor D and an integer n. For real hyperelliptic curves, the
fixed base scenario corresponds to finding the divisor in R below a given distance
(fized distance case), while the variable base algorithm corresponds to the situation
of generating from an integer n and a divisor D € R of unknown distance §(D) the
divisor in R below nd(D) (variable distance case).

To perform these operations on both real and imaginary hyperelliptic curves, we
make use of the non-adjacent form (NAF) representation of the scalar in question.
Every positive integer n has a unique representation

l
n = Z bi2l7i )
=0

where by # 0, b; € {—1,0,1}, and no two consecutive digits b; are non-zero. The
NAF of n can be computed using, for example, Algorithm 3.30, p. 98, of [I1]. Since
n > 0, we have by = 1. Note also that 21 < 3n < 212, so the length of the NAF
representation of n is at most one more than that of the binary representation of
n. If n is randomly chosen, then one third of all the digits in the NAF of n are
expected to be non-zero, as opposed to one half of the bits for the usual binary
representation of n (see p. 98 of [I]).

We make use of the fact that in both the real and the imaginary case, “inversion”
of reduced divisors is essentially free: given any divisor D € R, the divisor D again
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belongs to R and can be computed from D in constant time. This fact allows us to
use NAF for all our scalar multiplication algorithms.

3.1. IMAGINARY CASE. For completeness, we review scalar multiplication in the
Jacobian of an imaginary hyperelliptic curve. The following algorithm SCALAR-
MULT computes the reduced divisor in the class of nD, given a reduced divisor D,
using the NAF representation of n via a generalization of the binary double and add
method in which a coefficient of —1 indicates an addition by the conjugate of D.

SCALAR-MULT(D, n)
Input: D € R, n = Zli:o b;2!=% € N given in NAF.
Output: The reduced divisor in the class of nD.
Algorithm:
1. set £ =D;
2. fori=1tol do
2.1. replace E by F @ F;
2.2. if b; = 1 then replace F by E® D;
2.3. if b; = —1 then replace E by E @ D;
3. output E.

This algorithm requires I doubles and on average /3 adds. We use the terms
“double” and “add” for our operation counts, bearing in mind that the underlying
operation is not an actual doubling or addition of divisors, but a giant step, i.e.
divisor addition followed by reduction. Basically, this corresponds to doubling,
respectively, adding of divisor classes and enforcing a unique representation of each
group element via reduction.

3.2. REAL CASE. We begin with the “variable distance” scenario: given a positive
integer n and a divisor D € R of unknown distance 6(D), find the divisor in R below
nd(D). Algorithm VAR-DIST1 accomplishes this using a natural generalization of
Algorithm SCALAR-MULT. The idea is that the distance of nD will be close to
nd(D) as long as, after each giant step, we apply a small number of baby steps
in order to compensate for the distance lost after reduction. This algorithm is
essentially the same as POWERDIST in [23] and R-EXP in [22].

VAR-DIST1(D, n)
Input: D € R, n = 22:0 b;2!=% € N given in NAF.
Output: The divisor in R below nd(D).
Algorithm:
1. set £ = D;
2. fori=1tol do
2.1. compute £/ = E® F;
2.2. apply baby steps to E’ to compute the divisor in R below 2§(F) and call
the result E;
2.3. if b; # 0 then
2.3.1. if b; = 1 then set D' = D;
2.3.2. if b; = —1 then set D' = D;
2.3.3. compute ' = E® D’;
2.3.4. apply baby steps to E’ to compute the divisor in R below 6(E)+46(D")
and call the result E;
3. output E.
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We see that this algorithm is very similar to scalar multiplication on imaginary
hyperelliptic curves; the main difference being the “adjustment” baby steps in steps
2.2 and 2.3.4. Let A be an upper bound on d, the giant step distance “errors” caused
by reduction, i.e. an upper bound on the number of baby steps that need to be
performed in each of these steps. We see that VAR-DIST1 requires I doubles and
/3 adds, plus an additional 4Al/3 baby steps, where A > d = 2§(F) — §(E’) in
step 2.2 and A > d = 6(F) +46(D') — §(E') in step 2.3.4. By [Z4) we have A < 2g.
Note that in order to find the divisors below 2§(E) and §(E) + §(D’) in steps 2.2
and 2.3.4, respectively, it is necessary to explicitly compute d in order to know how
many “adjustment” baby steps to apply. These facts make Algorithm VAR-DIST1
slower than the corresponding algorithm SCALAR-MULT from the imaginary case.

A simple modification of this algorithm handles the “fixed distance” scenario:
given an integer n, find the divisor in R below n. Here, we recall the fact that the
divisor Ds € R has distance 63 = g + 1. We first need to apply a division with
remainder to obtain the quantity s = |n/(g+1)] in order to convert s to NAF. The
procedure below is essentially algorithm R-BELOW in [22].

FIXED-DIST1(n)

Input: n € N, s = [n/(g+1)] given in NAF.

Output: The divisor in R below n.

Algorithm:
1. compute E' = VAR-DIST1(D3,s) //E' € R is the divisor below s(g + 1);
2. apply at most n — s(g + 1) baby steps to E’ to compute the divisor £ € R

below n;

3. output E.

Since 0 < n — s(g + 1) < g, this algorithm performs roughly log,(g + 1) fewer
doubles and adds than Algorithm VAR-DIST1, but one additional division with
remainder and at most g baby steps. Once again, this makes this algorithm generally
significantly slower than scalar multiplication of divisors on imaginary hyperelliptic
curves.

3.3. IMPROVEMENTS TO THE REAL CASE. We now outline our improvements to
the real case. For the variable distance situation, we eliminate all adjustment baby
steps by performing only a few baby steps at the beginning of the algorithm; this
number of baby steps is independent of the size of the scalar and only depends on g.
As a result, the number of doubles and adds is the same as for scalar multiplication
on imaginary hyperelliptic curves, and the number of additional baby steps required
is reduced significantly. For the fixed distance case, we replace the giant steps in
step 2.3.3 of VAR-DIST1 by baby steps and eliminate all the adjustment baby
steps. This results in a significant reduction in the number of adds compared to
both FIXED-DIST1 and the imaginary scenario, i.e. SCALAR-MULT.

The key to our improvements is the following heuristics, which allow us to predict
with high probability the relative distance between two divisors. We henceforth
write D for the divisor obtained by applying one baby step to the divisor D € R
and D_ for the divisor obtained by applying a baby step backwards from D, i.e.
(D-)+ = (D4)-=D.

Heuristics (H): For sufficiently large g, the following properties hold with proba-
bility 1 — O(¢™1) :
(H1) 6(D4) — (D) =1forall D € R\ {0}.
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(H2) The quantity d in 4 is always equal to [¢g/2]. That is, for all D, D" € R\{0},
we have (D& D) = §(D) + 6(D’) — [g/2].

There is overwhelming numerical evidence as well as plausible theoretical consider-
ations that support the above heuristics, especially for large ¢. In fact, for elliptic
curves, i.e. the case ¢ = 1, H1 is a provable fact. To justify Heuristic H1, observe
that by @3), 6(D4+)—4(D) is equal to the degree of a partial quotient in the contin-
ued fraction expansion of y € F,(x '), and such partial quotients are conjectured
to have degree 1 with probability 1 — O(g~!). We point out that again by (Z3),
Heuristic H1 is equivalent to the assumption that for D = div(a,b) € R\ {0},
deg(a) = g with probability 1 — O(¢™1).

To justify Heuristic H2, consider the following. If we write D = div(a, b) and D’ =
div(a’,b’), then at most ¢t = [(deg(a) + deg(a’) — g)/2] baby steps are required to
obtain a reduced divisor when starting at D & D’. If we assume deg(a) = deg(a’) = ¢
according to Heuristic H1, then t = [¢/2]. Since each baby step yields an advance
in distance of exactly 1, we should have d = [¢/2] in (Z4)).

Under the assumption of these heuristics, we can pin down distances exactly; in
particular, we derive from ([Z3)) that §; = g+ i — 1 as long as no degenerate divisor,
i.e. adivisor D = div(a,b) € R\ {0} with deg(a) < g, is encountered. Furthermore,
under this assumption, we no longer need to compute any relative distances during
our computations. In particular, H2 states that a giant step produces a divisor in R
of distance exactly [g/2] short of the target distance, i.e. the sum of the distances
of the input divisors, and H1 states that precisely [¢g/2] baby steps are required to
effect the adjustment, again assuming that no degenerate divisor is encountered.

Our first algorithm, VAR-DIST2, represents the improved variable distance situa-
tion. Put d = [¢g/2]. The idea is to compute the divisor D’ € R of distance d from D
and apply scalar multiplication using NAF to D’ instead of to D directly. The result
is that after any giant step, we will end up with a reduced divisor of distance pre-
cisely d more than the target without having to do any adjustments with baby steps.
For example, assuming Heuristic H2, we know that the distance to the reduced divi-
sor of a giant step is precisely d, so we have §(D' & D’) = 2(6(D)+d)—d = 26(D)+d;
similarly, 6((D' @ D')® D') = (20(D’") +d) + (6(D') +d) —d = 36(D") + d, etc. In
Proposition Bl, we formally prove, assuming Heuristics H1 and H2, that the re-
duced divisor output at the end of Algorithm VAR-DIST2 has distance precisely
né(D) +d.

VAR-DIST2(D, n)
Input: D € R, n = 22:0 b;2!=% € N given in NAF.
Output: The divisor in R of distance nd(D) + d.
Algorithm:
1. fori=1tod—1do
1.1. replace D by Dy;
2.set D'=D, D"=D,, E=Dy;
3. fori=1tol do
3.1. replace F by E® F;
3.2. if b; = 1 then replace E by E® D”;
3.3. if b; = —1 and ¢ is even then replace E by E @& D",
3.4. if b; = —1 and ¢ is odd then replace E by E & D’;
4. output E.
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Proposition 3.1. Assuming Heuristics H1 and H2, VAR-DIST2(D,n) outputs the
divisor E € R of distance 6(E) =nd(D) +d

Proof. By Heuristic H1, we have §(D’') = 6(D)+d—1 and §(D") = 6(F) = §(D)+d
in step 2. Set Ey = F, let F; be the divisor obtained after the i-th iteration of the
for loop in step 3, and set d; = §(E;). Then dy = 6(D) +d, and for 1 < i <[ and
b; € {0,1}, d; satisfies the recursion

(31) dl = (Qdi_l — d) + bz(é(DH) — d) = 2di_1 —d+ blé(D) (mod Rm)
by ) and Heuristic H2.
If b = —1 and g is even, then g = 2d, so the recursion for d; is

d; = (2d;_1 —d)+8(D") —d
(2d;—1 — )+g—5(D”)—d
(2di—1 —d)+g— (8(D)+d) —
= (2di—1 —d)+g—06(D)—2d

= (2di-1 —d) - 0(D)
=2d;_1 —d+b;0(D) (mod R;) .

Finally, if b; = —1 and g is odd, then g = 2d — 1, so the recursion becomes
di = (2d;1 —d)+6(D") —d
=(2di-1—d)+g—46(D")—d
(2di1 —d)+g—(6(D)+d—-1)—d
=(2di-1—d)+9g—46(D)—(2d—1)

= (2di—1 —d) — 0(D)
2d;_y — d+ b;5(D) (mod Ry) .

So in all cases, d; satisfies the recursion BII). It follows that
d; = 2'dy — (2 = 1)d + (n — 21)é(D)
=2'(6(D) +d) — (2" = 1)d+ (n — 213(D)
=nd(D)+d (mod R,) ,

which proves our claim. o

For the fixed distance scenario, the goal is to compute the divisor in R whose
distance is some known and easily computable function of the input scalar n using
an analog of scalar multiplication with the NAF of n in which we perform the
doublings as usual, but replace each add by a baby step. Roughly speaking, the
resulting algorithm would trade 1/3 adds on average for 1/3 baby steps, which are
significantly faster. The trick is to apply this method in such a way that the output
is indeed the divisor in R of our desired distance for any positive integer n.

We again assume that we know d = [¢/2] and that the fixed base is the divisor
Dy 3 obtained by applying d + 2 baby steps to D1 = 0. This divisor has distance
dd+3 = g + d + 2 by Heuristic H1 and will be included in the domain parameters of
all our cryptographic protocols. The following algorithm computes the divisor in R
of distance 2!(g+1)+n-+d, where [+ 1 is the NAF length of our scalar, by applying
the double and baby step strategy outlined above to Dg43. Under Heuristics H1
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and H2, we prove in Proposition that the output is indeed the divisor in R of
distance 2!(g + 1) +n + d.

FIXED-DIST2(n)
Input: n = 22:0 b;2!=% € N given in NAF.
Output: The divisor in R of distance 2!(g + 1) +n + d.
Algorithm:
1. set E = Dgy3;
2. fori=1tol do
2.1. replace E by E® E;
2.2. if b; = 1 then replace F by E;
2.3. if b; = —1 then replace E by E_;
3. output E.

Proposition 3.2. Assuming Heuristics H1 and H2, FIXED-DIST2(n) outputs the
divisor E € R of distance §(E) =2 (g + 1) +n +d.

Proof. Set Eg = Dg43, let E; be the divisor obtained after the i-th iteration of the
for loop in step 2, and set d; = §(F;). Then dy =d+ g+ 2, d; = 2d;—1 —d + b; for
1 <4 <lIby ), and therefore

dy=2'dy — (2" = 1)d + (n — 2V
=2 (g+d+2)— 2 —1)d+ (n—2
=2 (g+1)+n+d,
which proves our claim. O

As we will see in the next section, FIXED-DIST2 is sufficient for cryptographic
purposes; we only require a divisor of some randomly produced but known distance
as opposed to a divisor precisely of distance n. Nevertheless, as a point of interest,
we show how to use the above algorithm on input n to compute the actual divisor
in R of distance n. Since this requires another more costly precomputation, we will
not use this method in any of our cryptographic protocols, except for computing
domain parameters such as public keys as, for example, in the digital signature
protocol described in the next section. However, the technique might be useful
for number theoretic applications such as finding the regulator R, or the divisor
class number of the curve C. For this procedure, we precompute another divisor
D* of distance 2'(g + 1) + g. Assuming Heuristics H1 and H2, D* can be found as
follows. Initialize Ey = Dgy2 (the divisor of distance g + 1 + d), and for 1 < i </,
let E; = E;_1® E;_;. Then 6(E;) = 2'(g + 1) + d by @) and Heuristic H2, so
applying g — d baby steps to E; yields D* by Heuristic H1. The total cost of this
precomputation is therefore [ doubles plus (d + 1) + (¢ — d) = g + 1 baby steps;
the d + 1 baby steps can be replaced by one backward baby step if we compute
Dgio from Dgi3. To find a divisor in R of distance n, we simply call the previous
algorithm and add the conjugate D" of D* to the result.

FIXED-DIST3(n)

Precomputation: D* € R with 6(D*) =2!(g+1) +g.
Input: n = 22:0 b;2!=% € N given in NAF.

Output: The divisor in R of distance n.

Algorithm:
1. compute E’ = FIXED-DIST2(n);
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2. compute E = E'®& D",
3. output E.

Proposition 3.3. Assuming Heuristics H1 and H2, FIXED-DISTS(n) outputs the
divisor E € R of distance 6(E) = n.

Proof. By Proposition B2 6(E’) = 2'(g + 1) +n +d. Now §(D") = g — §(D*) =
—2!(g+1) (mod R,), so by &4l and Heuristic H2, the output divisor £ of Algo-
rithm FIXED-DIST3 satisfies

S(E)=8(E")+6(D") —d
=2 g+ 1) +n+d) —2(g+1)—d
=n (mod R;)

as claimed. O

3.4. COMPARISON OF REAL AND IMAGINARY MODELS. In Table [l we compare
the expected computational effort of all the algorithms presented in this section.
The imaginary setting does not distinguish between the fixed and variable divisor
scenarios at the level of counting giant steps. We assume here that the NAF repre-
sentations of the scalars have length [+ 1, with a proportion of one third of the digits
non-zero in the NAF setting. For the real scenario, we assume Heuristics H1 and
H2, and, as before, that A is an upper bound on the giant step distance “errors”
caused by reduction. By ([Z4)), A < 2g, but as argued above, on average we would
expect A = g/2 because of Heuristics H1 and H2.

TABLE 1. Operation counts for scalar multiplication in R

Doubles Adds Baby Steps
Imaginary l 1/3 -
Real, VAR-DIST1 ] 1/3 AA1/3
Real, FIXED-DIST1 | I —logo(g+ 1) | (I —logs(g+1))/3 g
Real, VAR-DIST?2 l 1/3 d
Real, FIXED-DIST2 l 0 /3
Real, FIXED-DIST3 l 1 /3

Note that our improved algorithm for the variable distance scenario, VAR-DIST?2,
requires d more baby steps than imaginary scalar multiplication, whereas the im-
proved fixed distance algorithm, FIXED-DIST2, replaces I/3 adds in the imaginary
case by (/3 baby steps in the real situation. Also, our new algorithm VAR-DIST?2
requires significantly fewer baby steps than VAR-DIST1, and FIXED-DIST2 and
FIXED-DIST3 trade roughly 1/3 adds for as many baby steps.

4. CRYPTOGRAPHIC PROTOCOLS USING REAL HYPERELLIPTIC CURVES

We now present real hyperelliptic curve variants of the most common discrete
logarithm based protocols and compare them with their imaginary counterparts
as described for elliptic curves in Sections 4.4-4.6, pp. 183-196, of [I1], see also pp.
570f. of ] for a version of the digital signature algorithm on imaginary hyperelliptic
curves. The domain parameters for both situations include a prime power ¢, a
hyperelliptic curve C over F, of genus g, and an integer R that is equal to the
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regulator R, in the real case and to the order of the subgroup of the Jacobian of C
in which we conduct our arithmetic in the imaginary case. The last component of
the domain parameters is a divisor D. In the imaginary scenario, we only consider
the most general situation where D is a randomly generated reduced divisor of order
R; note that if D were chosen to be a degenerate divisor (see for instance [IH]), this
would speed up the fixed divisor scenario in the imaginary case. In the real scenario,
we set D = Dgy3 where Dgi3 is the divisor in R described in Section Thus,
the domain parameters are very similar in both cases.

In essence, we can convert any protocol using the imaginary model to the real
model by replacing scalar multiplications of divisors by calls to either FIXED-
DIST2(n) or VAR-DIST2(D, n). Any scalar multiplication in the imaginary scenario
using a fixed divisor included in the domain parameters corresponds to a call to
FIXED-DIST2. A scalar multiplication of a randomly produced divisor in the
imaginary case corresponds to a call to VAR-DIST2 on the appropriate input.

To illustrate this idea, we first present a real hyperelliptic curve version of basic
Diffie-Hellman key exchange.

Diffie-Hellman Key Exchange for Real Hyperelliptic Curves
Domain parameters: q, C, R=R,, D = Dgyys3.
Round 1:

1. Alice generates random n, € [1, R — 1], computes D4 = FIXED-DIST2(n,,)
and sends D 4 to Bob;

2. Bob generates random ny € [1, R — 1], computes Dp = FIXED-DIST2(ny),
and sends Dp to Alice;

Round 2:

1. Alice computes K = VAR-DIST2(Dp,2 (g + 1) + ny +d (mod R));
2. Bob computes K = VAR-DIST2(D 4, 2! (g + 1) + ny +d (mod R)).

By Propositions Bl and B2, at the end of this protocol Alice and Bob share the
common key K which is the divisor in R of distance

S(K)=(2(g+ 1) +na +d)(2(g+1) +np +d) +d (mod R) .

Note that there is a very small probability that Alice and Bob do not end up with
the same key, as the proofs of the propositions assume the Heuristics H1 and H2, but
the probability of this happening is negligible for sufficiently large ¢, particularly
for the sizes of ¢ required to ensure the intractability of breaking the protocol (see
Section H).

We point out that the above protocol can still be executed if R is not known;
this was the case in our implementation, see Section [l In this case, we simply omit
the reduction modulo R of the scalar inputs to VAR-DIST2 in Round 2. Omitting
this reduction does result in a slight degradation in efficiency for Round 2, as the
scalar input to VAR-DIST2 will have roughly log,(g + 2) additional bits — this is
discussed in more detail at the end of this section.

We next present a generalization of the digital signature algorithm (see Algo-
rithms 4.29 and 4.30, p. 184, of [I1]) to the real model. We assume that each user
has a private key that is an integer n € [1, R — 1] and a public key E where F
is the reduced divisor in the class of nD in the imaginary setting and the divi-
sor in R of distance n in the real setting; in the latter case, F can be computed
by invoking FIXED-DIST3(n). Also, all participants have agreed on a public hash
function H that maps messages to integers in [1, R — 1]. Recall that every divisor

ADVANCES IN MATHEMATICS OF COMMUNICATIONS VOLUME 1, No. 2 (2007), 197-221



PROTOCOLS ON REAL HYPERELLIPTIC CURVES 211

in R is uniquely represented by a pair of polynomials a,b € F,[z] with deg(a) < g.
Therefore, it is easy to convert a divisor div(a,b) to an integer by applying a key
derivation function or an extractor as described in, for example, [T}, p.189].

Digital Signature Algorithm for Real Hyperelliptic Curves
Domain parameters: q, C, R = Ry, D = Dgys.
Public key: a divisor E € R;
Private key: n = 0(E);
Signature Generation: To sign a message m, the signer:
1. generates random k € [1, R — 1] with ged(k, R) = 1,
2. computes Dy, = FIXED-DIST2(k) and converts Dy, to an integer N
3. sets r = N (mod R); if r = 0, returns to step 1;
4. computes s = k~Y(H(m) + nr) (mod R); if s = 0, returns to step 1;
5. signs m with signature (r, s).
Signature Verification: Upon receiving (m,r, s), the verifier:

1. verifies that 1 < r, s < R; if not, rejects the signature;
2. computes w = s, u; = H(m)w, uz = rw (mod R);
3. computes E; = FIXED-DIST2(u1) and E; = VAR-DIST2(E, us);
4. computes F3 = FEy @ Fs; if E5 = 0, rejects the signature, else converts E3 to
an integer NV;
5. accepts the signature if r = N (mod R) and rejects it otherwise.
Note that if the signature is valid, then F3 has distance

0(E3) =0(Ey) +0(FE2) —d
=249+ 1) +ur+d)+ (uen+d)—d
=2 g+ 1) +s Y (H(m)+rn)+d
=2(g+1)+k+d
= §(Dy) (mod R) ,

so F3 = Dy, and hence r = N (mod R).

Given these examples, it is straightforward to adapt other protocols such as the
station-to-station and MQV key agreement protocols, integrated encryption system
(IES), and the provably secure elliptic curve (PSEC) encryption scheme to the real
case. In the interest of space, we will not describe these protocols explicitly here,
but refer instead to pp. 184-191 of [[1] where the elliptic curve versions, which are
analogous to the imaginary hyperelliptic curve versions, are described.

In Table &l we compare the real and imaginary variants of five cryptographic pro-
tocols: the Station to Station Diffie-Hellman and MQV key agreement procedures,
the DSA, and the IES and PSEC cryptosystems. We ignore any task that is iden-
tical for both scenarios, such as hashing, key derivation, x-or, MACs, and the like,
and compare only the effort of scalar multiplication. Furthermore, we only consider
scalars in NAF, since this is the most efficient scenario that does not require any
precomputation. We assume that all scalars have the same NAF length [+ 1 as R.

Column 2 of the table indicates whether the fixed (F) or the variable (V) di-
visor/distance scenario is used. Column 3 gives the number of doubles for each
task specified in Column 1, which is the same for the real and the imaginary sce-
nario. Columns 4-6 given the number of adds for the imaginary case, the number
of adds for the real setting, and the number of baby steps used in the real setting,
respectively.
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TABLE 2. Expected number of operations for various crypto-
graphic protocols

Protocol Fand V || Dbls | Adds Adds | Baby Steps

Imag Real Real

STS F+V 21 21/3 /3 1/3+d

MQV F+2v 3l [+1 20/3+1 1/3+2d
DSA | Sig. Gen. F l /3 0 /3

Sig. Ver. F+V 20 | 20/34+1|1/3+1 l/3+d

1ES Encr. F+V 21 21/3 /3 1/3+d

Decr. A% l /3 /3 d
PSEC Encr. F+V 21 21/3 /3 l/3+d
Decr. F+V 21 21/3 /3 1/3+d

We see that in almost all cases, the real scenario uses fewer adds than its imagi-
nary counterpart, at the expense of additional baby steps. The notable exception is
IES decryption, where both scenarios use an equal number of adds. As an example,
we see that for plain Diffie-Hellman, the number of adds plus doubles required is
reduced from 8//3 in the imaginary case to 71/3 in the real case, i.e. 1/8 of the
required giant steps are replaced by baby steps. Assuming that giant steps in the
imaginary and real cases have roughly the same cost and that baby steps have negli-
gible cost, and omitting the distinction between doubles and adds in both scenarios,
our version in the real setting would run in 7/8 the time of that in the imaginary
setting, yielding a speed-up of approximately 12%. The most dramatic difference
between the two settings occurs for DSA signature generation, where the imaginary
setting requires [/3 adds, whereas the real case only needs [/3 baby steps. In that
case, we would expect a speed up of approximately 25%. We again point out that
these figures only apply to the most general case where the divisor D included in
the domain parameters for an imaginary curve is non-degenerate. If we assume a
degenerate divisor and allow procomputation involving the base divisor, we expect
the difference in performance between the real and imaginary settings to be less
dramatic. A more exact comparison is warranted and will be investigated in the
future.

Just like Diffie-Hellman, the STS protocol can be performed without knowledge
of the regulator R,. In this case, the runtime in the real scenario is slightly worse.
The analysis of the call to FIXED-DIST2 in Round 1 remains the same as above,
assuming an NAF length of [ + 1 for Alice’s and Bob’s respective scalars. However,
the call to VAR-DIST?2 in Round 2 is performed on a scalar input of NAF length
I’ +1 where 2" ~ 2!(g 4+ 1) + 2 + d by Proposition Neglecting the summand
d, we see that I’ = I + ¢ where ¢ &~ logy(g + 2). Thus, under the assumption that
R is unknown — which was the case for our implementation described in Section
— STS performs slightly worse in the real case, requiring 2! + ¢ doubles, (I + ¢)/3
adds, and as before {/3 + d baby steps.

5. SECURITY

The security of Diffie-Hellman key exchange using the imaginary model of a
hyperelliptic curve has been studied extensively; see [I2] for a survey. Being able to
solve the discrete logarithm problem (DLP) in the degree zero divisor class group,

ADVANCES IN MATHEMATICS OF COMMUNICATIONS VOLUME 1, No. 2 (2007), 197-221



PROTOCOLS ON REAL HYPERELLIPTIC CURVES 213

i.e. computing the integer n given divisors nD and D, allows one to break the
protocol. For sufficiently small genus, the best known algorithm for solving the DLP
requires O(qg/ 2) operations. For g > 3, asymptotically faster algorithms exist [9].

Our version of Diffie-Hellman key exchange using the real model is just a more
computationally efficient version of those in [23],[22], so the same well-known security
considerations apply (see [23]). In order to break this protocol, an eavesdropper has
the following problem: given D4 (or Dp), find either the unknown distance §(D4)
(or 6(Dp)), or equivalently, find one of the scalars n, or n,. As discussed in [23],
this means that the eavesdropper has to solve the infrastructure DLP. This problem
is closely related to the DLP in the imaginary setting (see, for example, [12]), and
as most of the known algorithms for solving the DLP in the imaginary scenario can
be modified to solve the infrastructure DLP, the same security considerations as in
the imaginary setting apply to the real setting.

As in the imaginary case, one should compute the size of the key space to be
used for the real protocols, i.e., the regulator. This is required for some protocols
such as the DSA analogue, because scalar multipliers must be reduced modulo the
regulator. Although it is not known how to take advantage of a smooth regulator to
solve the infrastructure DLP via some analogue of the Pohlig-Hellman algorithm,
such an algorithm can be obtained by transforming the problem to an instance of
the DLP in a subgroup of order R, of the Jacobian of the curve. Thus, as with the
order of the base element in the imaginary case, the regulator should be prime or
at least have a large prime divisor.

Computing the regulator for curves and finite fields of cryptographic size is an
open problem. One possibility is to first compute an imaginary curve and transform
it to a related real curve. The regulator of the resulting real curve will be a divisor
of the order of the Jacobian of the curve, so by using, for example, imaginary curves
of special forms that admit easy computation of the order of the Jacobian, one can
obtain real curves whose regulators are known.

As pointed out earlier, heuristics and numerical experiments indicate that degen-
erate divisors occur very rarely for ¢ sufficiently large. In [2], it was shown how a
differential power analysis attack on elliptic curves originally due to Goubin [T0] can
make hyperelliptic curve protocols potentially susceptible to such an attack, due to
the occasional encounter of a degenerate divisor during execution of the protocol.
It is currently not known how to take advantage of this situation in the protocols
in the real model.

The imaginary versions of the other protocols, DSA, Station-to-Station, MQV,
IES, and PSEC, are all provably secure against adaptive chosen ciphertext or cho-
sen message attacks in the random oracle model assuming the intractability of the
discrete logarithm problem [I1]. Our real versions of these protocols are straight-
forward generalizations in which the usual discrete logarithm problem is replaced
by the infrastructure discrete logarithm problem. Although we do not have secu-
rity proofs for our protocols, it seems reasonable that the same or similar security
proofs should hold, since the infrastructure DLP and the DLP in the Jacobian of a
hyperelliptic curve are closely related (see [20]).

6. IMPLEMENTATION AND NUMERICAL RESULTS

In order to test the efficiency of our protocols, we implemented NAF-based
scalar multiplication in the Jacobian of an imaginary hyperelliptic curve (Algo-
rithm SCALAR-MULT) and the two new scalar multiplication algorithms for the
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infrastructure of a real hyperelliptic curve (Algorithm FIXED-DIST2 and Algo-
rithm VAR-DIST2). For comparison purposes, we also implemented Algorithms
FIXED-DIST1 and VAR-DIST1, which are based on previous work [23]. We used
the computer algebra library NTL [25] for finite field and polynomial arithmetic
and the GNU C++ compiler version 3.4.3. The computations described below were
performed on a Pentium IV 2.8 GHz computer running Linux. All five algorithms
were implemented using curves defined over prime finite fields IF, and characteristic
2 finite fields Fan.

We used the formulation of Cantor’s algorithm described in [26] for the giant step
operation in both the imaginary and real case for curves over IF,, and the obvious
generalizations for curves over Fon . For reference, the precise formulas for curves over
[, we used are presented in Appendix [AF the formulas for even characteristic are
almost identical (see, for example, [16], [T2], or [I3]). We chose Cantor’s algorithm
for our experiments because it is the fastest known algorithm that can be used
in both the imaginary and real settings. There are much faster algorithms using
explicit formulas for the imaginary model [I7, 29, 2], but to date these have only
begun to be generalized to the real setting [6]. Developing new algorithms for
divisor arithmetic is beyond the scope of this paper. Hence, in order to provide
a fair comparison illustrating the relative advantages of using the real model as
opposed to the imaginary model, Cantor’s algorithm was the obvious choice.

We expect that the explicit formulas for the real model will be comparable in
speed to their imaginary counterparts, and that the speed ratio between the real
and imaginary scenarios will be roughly the same when using explicit formulas
instead of Cantor’s algorithm. However, it must be emphasized that the goal of our
experiments was to demonstrate that the real model is competitive in efficiency and
to stimulate work on the explicit formulas that are required to conduct a conclusive
and rigorous comparison.

We ran numerous examples of the five scalar multiplication algorithms using
curves with genus ranging from 2 to 6 and with the underlying finite field chosen
so that the size of the set R, which is approximately ¢ where the finite field has ¢
elements, was sufficiently large that the best-known attack on the DLP [9] requires
roughly 280, 2112 2128 9192 "o 9256 gherations, corresponding to the five security
levels for key establishment in U.S. Government applications recommended by NIST
[19]. TableBllists the bit-lengths for ¢ required to achieve these security levels. For

TABLE 3. Required Finite Field Sizes (bits)

Security level || 2 3 4 5 6
80 80 | 60 | 54 | 50 | 48
112 112 | 84 | 75 | 70 | 68
128 128 | 96 | 86 | 80 | 77
192 192 | 144 | 128 | 120 | 116
256 256 | 192 | 171 | 160 | 154

g = 2, the best-known attack uses Pollard-rho to solve the DLP, and has asymptotic
complexity \/q_2 = q. For g > 3, the algorithm in [9] is asymptotically faster, so the
estimates in Table B were derived from the runtime complexities listed in Table 1 of
[9]. As these complexities only hold asymptotically, it is unclear how accurate our
estimates are for practical applications — further work is required to extrapolate
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expected runtimes for the algorithm in [9] to parameters of cryptographic sizes in
order to derive more accurate field sizes. Although the use of curves with genus 3 and
larger for cryptographic purposes is questionable, we nevertheless included times for
higher genus as they may still be of use for certain cryptographic applications (see
for example [Z1]) as well as other number theoretic problems such as regulator and
clas number computation.

For curves defined over FF),, we chose a random prime p of appropriate bit length
from TableBl and for curves over Fan, the entries in TableBlare precisely the required
values of n. For each genus and finite field, we randomly selected 200 imaginary
curves and 200 real curves, and executed Diffie-Hellman key exchange 10 times for
each curve. For the real curves, we performed the key exchange protocol using
both the original version (Algorithms FIXED-DIST1 and VAR-DIST1) and our
improved version (Algorithms FIXED-DIST2 and VAR-DIST2). Thus, we ran 8000
instances of Algorithm SCALAR-MULT (two instances for each participant during
each run of the protocol) and 4000 instances each of Algorithm FIXED-DISTI,
VAR-DIST1, FIXED-DIST2, and VAR-DIST2 (one instance of each algorithm per
participant during each run of the protocol). The random exponents used had either
160, 224, 256, 384, or 512 bits, ensuring that the number of bits of security provided
corresponds to the five levels recommended by NIST. We did not assume that the
regulator is known, so the scalar inputs to VAR-DIST?2 have log, (g + 2) additional
bits. In order to provide a fair comparison, the same sequence of random exponents
was used for each run of the key exchange protocol. We note that although there is a
negligible probability that the protocol in the real model fails due to the assumptions
of Heuristics H1 and H2, in all cases both parties computed the same key.

Tables Hl and Bl contain the average CPU time in seconds for each of the five
scalar multiplication algorithms using curves over F, and Fa», respectively. The
times required to generate domain parameters are not included in these timings, as
domain parameter generation is a one-time computation. The times obtained bear
out our predictions. The new versions of the real scalar multiplication algorithms
are faster than their predecessors. Our improved algorithm for fixed-base scalar
multiplication in the real case (FIXED-DIST?2) is faster than SCALAR-MULT, and
VAR-DIST?2 is slightly slower.

In Table B we give the ratios of the average time spent on divisor arithmetic for
Diffie-Hellman key exchange using our improved version in the real model compared
to its predecessor, denoted by “New/Old”, and the ratios of our improved version
as compared to that using the imaginary model, denoted by “New/Imag”. As men-
tioned earlier, we do not assume that the regulators are known for these examples,
so the exponents used for VAR-DIST?2 are log,(g + 2) bits longer than those used
for the other algorithms.

Our results show that, using generic divisor arithmetic and no precomputation,
our improved version of key exchange in the real model requires roughly 60% of
the time required without our modifications. In addition, it is competitive with key
exchange using the imaginary model in this scenario, and in fact faster in most cases.
In addition, the improvements appear to be approaching the predicted (Table BI)
values as both the genus and security level increase. Also as predicted, computing
signatures (which is essentially algorithm FIXED-DIST2) is especially efficient when
using the real model.
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TABLE 4. Scalar multiplication timings over F,,.

Security level Running Times (in seconds)
(in bits) g || SMULT | F-DIST1 | V-DIST1 | F-DIST2 | V-DIST2
2 0.0129 0.0227 0.0227 0.0116 0.0144
3| 0.0182 0.0305 0.0309 0.0161 0.0208
80 4| 0.0282 0.0476 0.0485 0.0248 0.0320
5) 0.0453 0.0733 0.0747 0.0392 0.0512
6 0.0629 0.1042 0.1057 0.0538 0.0690
2| 0.0223 0.0378 0.0384 0.0198 0.0240
3| 0.0331 0.0540 0.0548 0.0292 0.0372
112 41 0.0512 0.0845 0.0859 0.0443 0.0569
5) 0.0813 0.1309 0.1334 0.0710 0.0910
6 0.1239 0.2014 0.2038 0.1052 0.1348
2 || 0.0264 0.0443 0.0449 0.0232 0.0285
3 0.0397 0.0646 0.0652 0.0348 0.0441
128 41 0.0610 0.1000 0.1014 0.0525 0.0671
5) 0.0934 0.1499 0.1513 0.0799 0.1037
6 0.1344 0.2163 0.2194 0.1140 0.1460
2 0.0556 0.0895 0.0901 0.0476 0.0581
3| 0.0818 0.1283 0.1287 0.0713 0.0894
192 41 0.1131 0.1825 0.1843 0.0970 0.1222
5) 0.1788 0.2776 0.2786 0.1510 0.1924
6 0.2561 0.4123 0.4122 0.2139 0.2723
2 0.0981 0.1531 0.1546 0.0839 0.1015
3 0.1364 0.2138 0.2143 0.1152 0.1447
256 41 0.2384 0.3574 0.3588 0.1983 0.2514
5) 0.2916 0.4452 0.4459 0.2436 0.3090
6 0.4209 0.6598 0.6609 0.3488 0.4437

7. CONCLUSIONS AND FUTURE WORK

Our results show that using the real model of a hyperelliptic curve as opposed
to the usual imaginary model holds much more promise for practical applications
than previously believed. In fact, when using Cantor’s algorithm as described in
[26] for the giant-step divisor arithmetic, our improvements to the real model yield
significant speed-ups over previous work and obtain comparable performance to
the imaginary model for curves of genus as small as 2 over finite fields of crypto-
graphically relevant size; this holds for both prime fields and fields of characteristic
2.

As discussed in Section B4l the performance improvements clearly depend on
how much faster one can perform a baby step as opposed to a giant step in practice
and how optimized formulas for giant steps in the real case compare to those in the
imaginary case. Thus, it is necessary to investigate more closely the performance
of our protocols using more efficient explicit formulas for giant steps on low-genus
curves. However, such formulas have only begun to be generalized to the real case
recently. To date, only formulas using affine coordinates for genus two curves over
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TABLE 5. Scalar multiplication timings over Fan.

Security level Running Times (in seconds)
(in bits) g || SSMULT | F-DIST1 | V-DIST1 | F-DIST2 | V-DIST?2
2 0.0137 0.0234 0.0231 0.0114 0.0143
3| 0.0166 0.0277 0.0278 0.0140 0.0183
80 41 0.0266 0.0442 0.0444 0.0222 0.0291
5| 0.0437 0.0701 0.0708 0.0364 0.0475
6 0.0579 0.0944 0.0943 0.0470 0.0613
2 0.0256 0.0406 0.0403 0.0202 0.0251
3| 0.0343 0.0542 0.0540 0.0272 0.0360
112 41 0.0553 0.0848 0.0848 0.0444 0.0578
5| 0.0844 0.1260 0.1260 0.0669 0.0887
6 0.1186 0.1790 0.1791 0.0935 0.1236
2 0.0303 0.0475 0.0472 0.0237 0.0294
3 0.0409 0.0643 0.0641 0.0323 0.0428
128 4 0.0644 0.0989 0.0985 0.0513 0.0668
5| 0.0994 0.1480 0.1491 0.0794 0.1041
6 0.1381 0.2086 0.2095 0.1087 0.1420
2 0.0704 0.1020 0.1016 0.0535 0.0678
3 0.1055 0.1505 0.1507 0.0833 0.1070
192 41 0.1316 0.1939 0.1934 0.1034 0.1329
5| 0.2048 0.2966 0.2971 0.1614 0.2098
6 0.2908 0.4247 0.4243 0.2254 0.2937
2 0.1325 0.1857 0.1848 0.0992 0.1215
3 0.1725 0.2359 0.2356 0.1329 0.1687
256 41 0.2678 0.3741 0.3736 0.2059 0.2650
5| 0.3686 0.5109 0.5104 0.2865 0.3728
6 || 0.5064 0.7104 0.7090 0.3882 0.5066

prime fields have been developed [G]. More work is required in this area before the
best arithmetic in imaginary and real curves can be compared.

Our improvements in efficiency come from the use of FIXED-DIST2(n), where
we replaced the adds in the usual double and add scalar multiplication algorithm
by baby steps. Thus, we expect that protocols in which we can replace scalar mul-
tiplication of a fixed divisor with a call to FIXED-DIST2(n) will benefit the most,
in terms of efficiency, from this replacement. In particular, signature computation
for our version of the digital signature algorithm requires only one call to FIXED-
DIST2(n), so we expect especially significant improvements in this case, potentially
yielding a speed-up of as much as 25%. Our numerical results clearly support this
conclusion.

It remains to be seen how the fixed distance scenario in the real case compares
to using a degenerate divisor, rather than a random fixed divisor, in the imaginary
setting, as suggested in [I5]. For such a divisor D, the degree of D, is less than the
genus, and can be as low as one, i.e. D = P —oo with P an F,-rational point on the
curve. We point out that the idea of using a degenerate instead of a random divisor
in the domain parameters for imaginary hyperelliptic curve protocols can be used
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TABLE 6. Ratios of key exchange runtimes.

Security level F, Fon
(in bits) g || New/Old | New/Imag || New/Old | New/Imag
2 0.5734 1.0062 0.5536 0.9390
3 0.6012 1.0156 0.5826 0.9727
80 4 0.5904 1.0053 0.5790 0.9638
5 0.6112 0.9985 0.5953 0.9599
6 0.5848 0.9752 0.5742 0.9352
2 0.5749 0.9821 0.5598 0.8850
3 0.6099 1.0023 0.5839 0.9207
112 4 0.5939 0.9885 0.6027 0.9243
5 0.6131 0.9958 0.6173 0.9212
6 0.5925 0.9688 0.6062 0.9148
2 0.5802 0.9810 0.5602 0.8763
3 0.6075 0.9925 0.5851 0.9178
128 4 0.5938 0.9809 0.5986 0.9169
5 0.6095 0.9824 0.6176 0.9226
6 0.5968 0.9671 0.5995 0.9074
2 0.5887 0.9502 0.5958 0.8614
3 0.6255 0.9822 0.6319 0.9023
192 4 0.5977 0.9689 0.6102 0.8981
5 0.6174 0.9604 0.6251 0.9062
6 0.5898 0.9493 0.6115 0.8926
2 0.6028 0.9454 0.5956 0.8327
3 0.6070 0.9526 0.6396 0.8740
256 4 0.6279 0.9432 0.6299 0.8794
5 0.6201 0.9474 0.6456 0.8945
6 0.6000 0.9413 0.6305 0.8835

for imaginary quadratic number field based cryptography; this scenario amounts to
using a base ideal of small norm.

It is possible to improve the fixed-base scalar multiplication algorithms in general
at the cost of storing some precomputed values involving the fixed base, for example,
using window methods or joint sparse form scalar expansions [T1]. These methods
effectively reduce the expected density of non-zero values in the corresponding bi-
nary expansion of the scalar by precomputing a number of small multiples of the
base. Similarly, signature verification can be improved using multi-exponentiation
techniques [II]. It should be relatively straightforward to generalize these methods
to the real model as well, at which point more extensive comparisons between the
imaginary and real versions of these improvements can be obtained.

Our second scalar multiplication primitive, VAR-DIST2(D, n), does not offer any
improvements in efficiency to the imaginary case, but by minimizing the number
of necessary adjustment baby steps, this algorithm requires only [¢/2] baby steps
more, regardless of the size of the scalar. It is an open problem to take advantage
of the existence of the faster baby step operation to improve this algorithm further.

Special classes of curves, or curves with certain properties, frequently allow for
faster arithmetic than generic curves. For example, Gaudry [8] developed fast scalar
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multiplication formulas on the Kummer surface of a genus 2 imaginary hyperelliptic
curve. It is of interest to investigate if and how such constructions can be extended
to real hyperelliptic curves.

As mentioned in Section Bl there are some open problems related to the security
of our protocols. It is not known whether differential power analysis attacks as in
2] can be adapted to exploit situations where our heuristics fail and degenerate
divisors arise. Pohlig-Hellman type attacks that exploit the situation where the
regulator is smooth have also not been investigated. In fact, as pointed out in
[12], although the infrastructure DLP is very closely related to the DLP in the
Jacobian, very little work on it was been published. The authors are unaware of
any implementations and numerical work on this problem at all. An investigation
of methods for constructing real curves of cryptographic size for which we can easily
compute the regulator is also required.

Finally, it would be very interesting to see how the ideas of our improvements
can be applied to real quadratic number fields. We believe that this is possible to
some extent, but this generalization is far from trivial due to the fact that distances
in the infrastructure are real numbers as opposed to integers. For an excellent
exposition on the infrastructure in real quadratic number fields with an explanation
via Arakelov class groups we refer to [24].
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APPENDIX A. FORMULAS FOR DIVISOR ARITHMETIC

In this appendix, we give the precise formulas for divisor arithmetic used in the
implementation described in Section [l These formulas are for curves defined over
odd characteristic finite fields — the analog for the even characteristic case can be
derived easily based on the arithmetic descriptions in [I2] and [I3]. The formulas
are essentially taken directly from [26] with the following exceptions:

e We represent the divisor D as div(a, b, ¢) with ¢ = (b — f)/a, where the curve
is given by y? = f. The formulas we used compute ¢ for free as part of the
reduction algorithm, and having it available simplifies the doubling (adding a
divisor to itself) and baby step computations.

e We assume Heuristics H1 and H2. This simplifies the giant step formulas in
that we can assume that the output of any gcd computations will be 1.

Throughout, lc(a) denotes the leading coefficient of a € Fy[z]. In the real setting,
we assume that s, the polynomial part of v/f, is precomputed.

REDUCE_IMAG (div(a, b, ¢))
// outputs the reduced divisor equivalent to div(a, b, c)
while (deg(a) > g)
a =c
qg=—b/c,r=—bmod ¢
c=a+qb-—r),b=r,a=d
output div(a/lc(a),b, cx lc(a))

REDUCE_REAL(div(a, b, —c))
// outputs a reduced divisor equivalent to div(a,b, —c)
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while (deg(a) > g)
g=(s+b)/a,r=(s+b)moda
V=s—r
a =c+qlb-V)
b=V,c=a,a=d

output div(a/lc(a), b, c x (=lc(a)))

ADD(diV(al, bl, Cl), diV(CLQ, b2, 02))
// outputs the reduced divisor div(as, b3, c3) = div(ay, b1, c1) B div(ag, b2, c2)
Solve ged(az,a1) = G = Xag + Yay for G, X € F,lz]
U = X(bl — bg) mod aq
as = arag, by = by + asU, c5 = (b3 — f)/as
(c3 = (f — b%)/as in the real case)
output REDUCE(le(ag, bg, Cg))
(using either REDUCE_IMAG or REDUCE_REAL)

DOUBLE(div(a, b, ¢))
// outputs the reduced divisor div(as, b, c2) = div(a, b, ¢) ® div(a, b, c)
Solve ged(2b,a) = G = X (2b) + Ya for G, X € Fy[z]
U = —cX mod a;
as = a3, by =b+al, coa = (b3 — f)/asz
(c2 = (f — b3)/az in the real case)
output REDUCE(div(ag, b2, ¢2))
(using either REDUCE_IMAG or REDUCE_REAL)

BABY(div(a, b, c))
// performs one baby step on div(a, b, ¢)
g=(s+b)/a, r=(s+b)moda
V=s—r
a=qb-V)—c
b=V, c=a,a=d
output div(a/lc(a), b, c x (=lc(a)))
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