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Abstract. We show how the theory of real quadratic congruence function fields can be used to produce a secure 
key distribution protocol. The technique is similar to that advocated by Diffie and Hellman in 1976, but instead 
of making use of a group for its underlying structure, makes use of a structure which is "almost" a group. The 
method is an extension of the recent ideas of Scheidler, Buchmann and Williams, but, because it is implemented 
in these function fields, several of the difficulties with their protocol can be eliminated. A detailed description of 
the protocol is provided, together with a discussion of the algorithms needed to effect it. 

1. Introduct ion 

Conventional or one-key cryptosystems are still the secure cominunication schemes of 
choice for many installations. This is because they are both fast and sufficiently secure 
for most applications. The real difficulty in employing such cryptosystems is the problem 
of securely transmitting the key between communicants. In 1976, Diffie and Hellman [8] 
described a possible solution to this problem by making use of the multiplicative group 
Fp* of integers relatively prime to a large prime p. More generally, we can let G be any 
group such that I GI (=  n) is large. Consider two communicants, Alice and Bob, who first 
select publicly an element g of large order in G. Alice selects at random a positive integer 
y (<  n) and Bob selects at random a positive integer z (< n). (y and z are kept secret.) 
Alice then transmits hi ---- gy to Bob and Bob transmits h2 = gZ to Alice. At this point, 
Alice evaluates k = h y = gZy and Bob evaluates k = h~ = gyz. Because there is no fast 
method known for determining k, given only hi and ha, Alice and Bob can now use some 
same aspects of k to produce their secret communication key. The security of this scheme 
is based on the presumed difficulty of the discrete logarithm problem (DLP) in G; that is, 
given some g and some h = gY, find y. A fast algorithm for solving the DLP will lead to 
the discovery of the key k; unfortunately, it is unknown whether it is really necessary to 
solve an instance of the DLP in order to break the system. The Diffie-Hellman technique 
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and all of its extensions make use of this idea, only the choice of G varies. Of course, G 
here should be selected such that the DLP in this structure is a hard problem. 

Recently, Scheidler, Buchmann and Williams [12] were able, for the first time, to exhibit 
a secure key exchange protocol, similar in concept to that of Diffie-Hellman, which does 
not make use of a group as the underlying structure. This scheme is based on the infrastruc- 
ture [15] of the principal ideal class of a real quadratic number field. Unfortunately, this 
technique possesses a number of disadvantages not shared by the standard Diffie-Hellman 
protocol: increased bandwidth, a need to deal with high precision approximations to certain 
algebraic numbers, and an ambiguity problem which necessitates a short, second round of 
communication. In this paper we show how to eliminate all of these disadvantages, and yet 
maintain the same type of (non-group) structure, by implementing the basic idea of [12] in 
a real quadratic congruence function field over a finite field ]Fq of constants, where q is odd, 
instead of in a real quadratic number field. This appears to be the first time that the theory 
of algebraic function fields has been applied to cryptography. 

Stein [16] has shown that Shanks' infrastructure idea also applies to the set of reduced 
principal ideals in a real quadratic congruence function field. Thus, many of the techniques 
needed to produce the scheme in [12] can also be used in these function fields. Furthermore, 
because the distances between reduced principal ideals in real quadratic congruence function 
fields are rational integers instead of logarithms of algebraic numbers, as they are in the real 
quadratic number field case, we are able to eliminate the difficulties mentioned earlier. It 
may even be that the security of this new system is better than that of [12]. At the moment 
the only methods known for solving the problem analogous to the DLP in the set of reduced 
ideals in a real quadratic congruence function field are of exponential complexity, whereas 
techniques of subexponential complexity are known for solving the same problem in real 
quadratic number fields. 

In Sections 2 and 3 of this paper, we outline the basic properties of real quadratic con- 
gruence function fields and, in particular, describe the arithmetic of reduced ideals. In 
Section 4, we make use of these ideals to develop the algorithms that we require and an- 
alyze their complexity. The overall protocol is presented in Section 5 and security issues 
are discussed in Section 6. The paper concludes with a brief mention of some computer 
implementation issues and some timings for a certain set of examples. 

2. Real Quadratic Congruence Function Fields 

2.1. Basic Definitions 

In this section, we present the situation as described in [18], [16] and [19]. Basic references 
for this subject are [3], [7] and [20]. 

Let K/Fq be a quadratic congruence function field over a finite field Fq of constants of odd 
characteristic with q elements. Then K is a quadratic extension of the rational function field 
IFq (x) with a transcendental element x e K. We say that K is a real quadratic congruence 

function field (of odd characteristic) if K is of the form K = Fq(X)(~r-D) = Fq(X) + 
Fq(X)~/-D, where D e Fq[X] is a squarefree polynomial of even degree whose leading 
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coefficient is a square in Fq* = Fq \ {0}. (This is in analogy to the case of  a real quadratic 

number field Q(~/-A), where A is a positive, squarefree integer). The ring of integers of K 
is O = Fq[X][~/-D] = ~q[X] -~- ~q[X]~'D. For ot = u + v ~  ~ K(u, v ~ Fq(X)), denote 

by N = u - v ~ / ~  its conjugate. 
In contrast to the number field case, there are two places of  K at infinity. We know from 

[19] that the place at infinity q3oo of  Fq(X) with respect to x splits in K as ~oo = gll "gl2- 
Furthermore, the completions of  K with respect to ~1 and gl 2, Kq3 ~ , and Kq32 , respectively, 

are isomorphic to Fq (x)~oo = ~q  ( ( l / x ) ) ,  the field of  power series in 1Ix. By explicitly taking 

square roots of  D, we see that K is a subfield of  Fq((1/x)). Let ~1 be the place which 

corresponds to the case where q q  = 1. Then we consider elements of  K as Laurent series 
at q31 in the variable 1Ix. Let ot ~ IFq((1/x)) be a non-zero element. Then ot = Ei%-oo cixi 
with Cm ~ O. Denote by 

deg(t~) = m the degree of  o~, 

Iod = qm the absolute value of or, 

sgn(ot) ---- Cm the sign of or, 
m 

Lot] = ~ ci Xi the principalpart of or. 
i=O 

I f m  is negative, then [~] = 0. We set deg(0) = - o o  and 101 = 0. 
In analogy to the case of  a real quadratic number field, the unit group E of  K/Fq is of  

the form E = ~'q* x {E), where E E K is a fundamental unit of  K. The positive integer 
R = deg(E) is called the regulator of K/]Fq with respect to (.9. Denoting by h' the ideal 
class number and by h the divisor class number, we know from [13] that h = Rh'. 

2.2. Reduced Ideals and Distances 

A subset a of  O is an (integral) ideal if both a+a and O �9 a are subsets of  a. A principal 
ideal a of  O is an ideal of  the form a = t~ �9 O where ot ~ O. We say that ot generates 
the ideal a and write a = (or). I f  the product of  two principal ideals (t~), (fl) is defined to 
be (otfl), then the set 79 of  non-zero principal ideals is a monoid under multiplication with 
identity O. In our scheme, we will only be considering principal ideals. 

As in the case of  real quadratic number fields, there is a finite subset ~ ofT' ,  the reduced 
(principal) ideals, and a natural ordering tl = (1) < 1:2 < . . .  < t m  of  the ideals in R .  The 
exact definition of  a reduced ideal as well as a procedure for generating the entire sequence 
(~j)l<_j<_m are given in Section 3.1. 

With each reduced ideal ~j = (pj), we associate a distance 

8j = 8(~j) = deg(pj). 

Note that in contrast to the number field case, the distance is a nonnegative integer. 8 is 
unique modulo R, where R is the regulator of  K. Furthermore, if 0 < 8j < R, then 8j is 
uniquely determined and is strictly increasing with j .  
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For any z e [0, oo), there exists a unique index j e N such that 8j < z < 8y+1. If 
8j = 80:j), then ~j is called the reduced ideal closest to the left ofz. 

2.3. Outline of the Protocol 

The key space for our Diffie-Hellman protocol is the set ~ of reduced ideals in a real 
quadratic congruence function field. Assume that two communications partners, Alice and 
Bob, wish to exchange a secret cryptographic key. Then they publicly agree on an odd prime 
power q and a squarefree polynomial D e Fq [x] which defines a real quadratic congruence 

function field K = Fq (x)(~/-O). Furthermore, they publicly determine a reduced ideal r 
with small distance 8 = 8 (c). Now Alice secretly generates an "exponent" a e N and 
computes the reduced ideal a closest to the left of a8 and its distance 8(a). She transmits 
the ideal a to Bob. Similarly, Bob chooses b e N and computes the reduced ideal b closest 
to b8 and its distance 8(b). He sends b to Alice. From 8(a) and the ideal b received from 
Bob, Alice computes the reduced ideal closest to the left of 8(a)8(b). Similarly, Bob uses 
8(b) and the ideal a he got from Alice to compute the reduced ideal closest to the left of 
8(b)8(ct). Then both parties will have computed the same reduced ideal ~ which can be 
used to establish a common cryptographic key. 

Compared to the analogous protocol in real quadratic number fields, this scheme is much 
simpler. Since all distances are integers, no approximations are required. Furthermore, 
both parties obtain the same ideal at the end of their computations. In the number field 
case, the final ideal is one of two possible candidates, and another round (or at least half a 
round) of communicating one bit is necessary to establish a unique key ideal. Finally, we 
will see in Section 4 that we only step in a "forward" direction through the set ~ of reduced 
ideals (i.e. from tj to l:j+l), whereas in the number field situation, it was necessary to step 
"backwards" through ~ in occasional, although rare cases. 

The crucial point here is the ability of both parties to compute for n e N and 1: e ~ with 
distance 8(~) the reduced ideal closest to the left of nS(r). Before we solve this problem in 
Section 4, we present the notion of reduced ideals and their distances. 

3. Arithmetic of  Reduced Ideals 

3.1. Ideals and Continued Fractions 

We now illustrate how ideal arithmetic can be performed in terms of polynomials over the 
finite field Eq. The connection between ideals and the continued fraction expansion of 

P+d-~ elementsoftheformt~ = a ( Q , P  e Fq[X])whereQl(D-P2) , i sshownin[16] .  The 
following base representations go back to Artin [3]. Let a be an (integral) ideal. Then there 
exist polynomials S, P, Q e lFq[x] with QI(D - p2) such that a = [SQ, SP + SvC'D] = 
SQFq[X] + (SP q- SdrD)lFq[x]. The set {SQ, SP + S V ~ }  is called Fq[x]-base of a. S 
and Q are unique up to constant factors. If we set sgn(S) = sgn(Q) = 1, then both are 
unique. Furthermore, S Q is the greatest common divisor of all polynomials in Eq [x] which 
belong to a. 
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An ideal is called primitive if it has no prime divisors in Fq [x], or equivalently, if S in the 
Fq-base can be chosen to be 1. Hence, we associate with each primitive ideal a a pair (Q, P)  
of polynomials in Fq [x]. In particular, for O, we have Q = 1 and P = 0. Throughout our 
computations, we will only be using primitive principal ideals, which will be represented 
by their ~q [x]-bases (Q, P). 

Let a = [ Q , P + ~ / ' - D ]  be a primitive ideal. S e t d  = [q/-D], Qo = Q, Po = P, 

oeo = @ - -  and a0 = [otoJ. We calculate the continued fraction expansion of Oto by using 
the formulas 

Cti - -  a i  = LaiJ (i E N ) .  (3.1)  
Oli_ 1 --  a i _  1 

Then oti is given by ai = @ ,  where 0 ~ Q i ,  e i ,  ai E ~q[X], are polynomials such that 

Qi I (D - P:) .  They can be recursively computed as follows. 

Pi = a i - 1  Q i - I  - e i - i  

D - ~  
1 

ai = (Pi + d) (divQi) 

(i E N). (3.2) 

Setting I11 = a, an d  

.i = [Qi_l, Pi_l -~-%/-O] (i EN), (3.3) 

we see that each ai is a primitive ideal. The iterative steps of obtaining ai from ai-~ for 
i E N are called Baby steps. 

A primitive ideal a is called reduced, if there exists an Fq[x]-base for a of the form 
{Q, P + ~/-D} with polynomials Q, P E Fq[X], QI(D - p2) such that IP - d'-DI < 
I a l  < IP + ~r This reduced base representation is unique up to constant factors of Q. 
Choosing sgn(Q) = 1 makes it unique. From [18] and [16], we know that the polynomials 
in the reduced base can be characterized by the following Lemmata. 

LEMMA 3.1 Let a be a primitive ideal with Fq[x]-base {Q, P -t- ~v/-D}. Then a is reduced 

if  and only /f lal  < IC-DI. 

LEMMA 3.2 Let a be a reduced ideal and {Q, P + ~/-D} be its reduced Fq[x]-base. Then 
the following properties hold: 

a) IPI = Ie + ~/-Ol = IV~-DI : Idl. 

b) sgn(P) = sgn(~/-D). Even the two highest coefficients of P and ~ are equal. 

c) Let a = (P + d) (div Q). Then laQI = IC-DI. In particular, 1 < lal _< Iq/-DI and 
1 _< Ia l  < IC-DI. 
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LEMMA 3.3 Let a = [Q, P + ~'-D] be a primitive ideal, and let al = a, a2, a3 . . . .  be the 
sequence of primitive ideals given by the formulas in (3.3) with the quantities in (3.2). Then 
the following holds: 

a) cti is reduced for i > max{l,  I deg(Q) - ! 4 deg(D) q- 2}. 

b) If  aj is reduced for some j ~ N, then ai is reduced for all i > j,  and the reduced 
Fq[x]-base of a is exactly that given in (3.3). 

Because of  the bounds and reduction criteria given in the three lemmas, it is clear that 
reduced ideals exhibit a periodic behavior. In contrast to the case of  real quadratic number 
fields, we have to investigate the quasi-period of  certain elements and not only the period. 
For an element ot ~ K, we say that the sequence (~i ) i>O defined as in (3.1) is quasi-periodic 
if there are integers m, io > 0, and an element c ~ ]Fq* such that 

Olio+r n = C" Olio. (3.4) 

The smallest positive integer m, for which (3.4) holds, is called the quasi-period of  the 
continued fraction expansion of  or. The smallest m, satisfying (3.4) with c = 1, is called 
the period of (Oli)i> O. 

Let a = [Q, P + ~v/-D] be a primitive ideal, and let al = a, dE, a3 . . . .  be the sequence 
of  primitive ideals given by the formulas in (3.3). As in [16], we conclude from the above 

lemmas that the continued fraction expansion of  ot = P+J-B is quasi-periodic with quasi- Q 
period m. In fact, the corresponding ideal sequence (~ i ) iE  ~ is periodic with period m, i.e. 
there exists a minimal io >_ 0 such that am+i = ai (i > io). 

In the continued fraction expansion of  or, we define 01 = 1, and Oi+l = 1-I~-ll ~ for i > 2. 

Then QoOi, Qo-Oi E 0 and Oi-O i = ( - - 1 )  i - 1  ~ 0  l for i > 1. Furthermore, we have 

(QoOi) tli = ( Q i - 1 )  o.1. (3.5) 

Since deg(oti) = deg(a/), it follows that 

i -1 

deg 0 i  ) = d e g ( a i - l )  - deg(a0)  -b ~ deg(aj) 
j = l  

(i ~ N) .  (3.6) 

If  we set 171 = {~ = [1, VZ-D], then E1 is reduced by Lemma 3.1. If  we compute t2, ~3 . . . .  
by applying repeated Baby steps, starting at El (or any reduced ideal 1:i, i ~ N), then by 
Lemma 3.3 b), we obtain a sequence of  reduced ideals (~i ) i~I~.  By (3.5), we get 1:i = (Oi) 
for i e N. Since we previously observed that this sequence is periodic, we can generate the 
entire sequence (ti)l<i<_m of reduced ideals in this manner. Thus, the set of  reduced ideals 
is ~ = {El . . . . .  ~m} and 17Zl = m ,  where rn denotes the quasi-period of  t~ = ~'-D. 

Let ti ~ 7~ (i e N). We define the distance of "1~ i to be 

t$i = deg(Oi). 

Note that the distance/~i is an integer-valued function which is only defined for reduced 
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ideals and strictly increases as i increases. By Lemma 3.2 a) and (3.6), we have 

i-2 
81 = O, 8i = deg(d) - deg(Q0) + ~ deg(ay) (i > 2). (3.7) 

j=l 

It follows from Lemma 3.2 c) that 

1 < 8i+l - 8i < deg(d) (i e N). (3.8) 

Therefore, 8k+i > 8i + k for all k > 0, i e N. Finally, we get for the regulator: R = 8m+1. 
If D is chosen appropriately (see Section 6.1), then m might be as large as O(IC-DI) = 
O (q 1/2 deg(U)). 

We also define the distance between two reduced ideals ti, ~j (1 _< j _< i) to be 

~(l~i, l~j) = ~i -- ~j. 

Hence t~ i = ~(l~i, O )  for i e N. 
Before we describe the Baby step method in more detail, let us explain how we will analyse 

the performance of all our algorithms. We will give the time complexity of an algorithm in 
terms of polynomial operations over Fq (additions, subtractions, multiplications, divisions 
with remainder, degree comparisons, and assignments). We do not consider the computation 
time each such operations requires. In particular, this means that we will largely ignore the 
dependence of the running times of polynomial arithmetic on q; however, this dependence is 
the same for fixed q, regardless of the polynomial D used for our real quadratic congruence 
function field K = ]Fq(x)(~/-D). The space requirement for an algorithm is given in terms 
of the degrees of the computed polynomials and in terms of the binary length of integers if 
the algorithm uses rational integers. 

The following algorithm computes one Baby step for a reduced principal ideal, and its 
distance. For the continued fraction algorithm, we use an optimized version due to Tenner 
[16]. 

Algorithm BAB YSTEP 

Precomputed: ai-i  -~ (Qi-2, Pi-2) E ~ ,  ai -~ (Qi-I,  Pi-1) E "[~, ri-2 =- (Pi-2 d- d) 
(mod Qi-2), di -~ 8(c~i, tll) (i >_ 2). 

Input: (Qi-2,  Qi-1, P i - l ,  ri-2, di). 

Output: (Qi-1,  Qi, ei ,  ri-1, di+l)- 

Algorithm: 

ai- l  : :  (Pi-1 d-d)  (div Qi-1); 

ri-I  := (Pi-1 q-d)  (mod Qi-l ) ;  

P/ := d - r i _ l ;  

Qi := Q i - E - l - a i - l ( r i - l - r i - 2 ) ;  

d/+l := di d- deg(ai_l). 
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Clearly I:li-i- 1 = (Qi,  Pi) E 7~ and d/+l =-- 8(ai+l, al).  
Note that each iteration of BABYSTEP requires only a fixed number of  polynomial 

operations, and by Lemma 3.2, the degree of all occurring polynomials is bounded by 
deg(D) /2 .  As in the case for real quadratic number fields, deg(ai) will generally be very 
small, mostly 1. 

For our protocol, we need to find for ~ ~ ~ with distance 8(t) and n ~ N the reduced 
ideal s closest to the left of  nS0:). To compute s, we could perform repeated Baby steps, 
starting at rl = O, until we obtain ~j e ~ such that 8j < nS(t) < 8j+1, i.e. ~j = z. 
However, since by (3.8) each Baby step advances us at most deg (D) /2  in distance, this 
requires exponential computation time if n is polynomial in [ D 1. In order to move through 

at a much more rapid pace and thus find s in time polynomial in deg(D),  we make use 
of  Shanks'  infrastructure concept. 

3.2. Giant Steps 

As in the case of  real quadratic number fields [12], we define an operation �9 (multiply & 
reduce) on ~ under which R is closed. For ri, t j e  7~ with respective distances 8i and 8j 
(i, j ~ N), the ideal 1:i * ~j is reduced and satisfies 8(ri * rj)  ~ 8i + 8j, so ~i :# ~j = ~r for 
some k ~ l~l where k ~ i + j .  ti * tj is defined as follows. Compute the ideal product 
(S)c = ~irj as defined in Section 2.2, where S ~ Fq[X] is such that c is primitive, c need 

l deg(D) + 2} Baby not be reduced, but by Lemma 3.3 b), applying max{l,  �89 deg(Q) - 
step operations to the ideal c = (Q,  P)  produces a reduced ideal r~, which we define to be 
r i :# l~j, such that 8k ~--- 8i + 8j + E and 2 - deg(D) < E < 0 (see Theorem 11.5.1 in [16]), so 
in general, ~ is very small compared to 8i and 8i. The computation of l:k from ~i and ~j is 
called a Giant step. ~k may not yet be the ideal t closest to the left of  8i + By, but we will 
see in Section 4 that we can obtain t by applying O(deg(D))  many Baby steps to ~k. 

We can apply the method described above repeatedly to compute for any n ~ N and ~ ~ 
with distance 8 (~) the reduced ideal ~ closest to the left of n8 (~). The number of  iterations 
required is approximately n. By adapting a well-known exponentiation technique based on 
repeated squaring (see for example Algorithm 1.2.3 in [4]), this can be reduced to O(log n). 
We will now describe the ideal multiplication and reduction process in more detail. 

Algorithm M U L T  

Input: a -~ (aa ,  Pa), b = (Qb, Pb) E T~. 

Output: c = (Qc, Pc) E 79, S E Fq[X] such that (S)c = ab. 

Algorithm: 

1. Solve SI = gcd(Qa,  Qb) =- X1 Qa (mod Qb) for  S1, X1 E Fq[X]; 
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2. Solve S = gcd(S1, Pa + Pb) = X2SI + Y2( Pa + Pb) fOr S, X2, Y2 E IFq[X]; 
( I f  $1 = 1, then set X2 := 1, II2 := 0, S := 1); 

3. Set Qc := ~ ' ~ ;  

4. Set Pc := Pa + P#s (X2XI(Pb - Pa) + Y2P-~ e2) (mod ac);  

THEOREM 3.4 The parameters c ~ 7 9 and S ~ ]~q [x] computed by Algorithm M U L T  satisfy 
(S)c = ab. Furthermore, deg(S) < deg(D)/2 and deg(Pc) < deg(Qc) < deg(D), and 
Algorithm M U L T  performs 0 (deg(D)) polynomial arithmetic operations. 

Proof. (S)c = ab follows from Section 11.2 in [16]. Since a and b are reduced, deg(S) < 
deg(Qa), deg(Qb) < deg(D)/2 by Lemma 3.2 c). Furthermore, deg(Pc) < deg(Qc) < 
deg(Qa) + deg(Qb) < deg(D). 

The algorithm performs a fixed number of polynomial operations and two applications of 
the Extended Euclidean Algorithm for polynomials in Fq [x]. The number of polynomial 
operations required by the Extended Euclidean Algorithm is linear in the degree of the 
largest polynomial, i.e. O (deg(D)). �9 

We can now move through the set 7E of reduced ideals in Giant steps. 

. 

2. 

3. 

Algorithm GIANTSTEP 

Input: a = (Qa, Pa) ~ 7E, b = (Qb, Pb) E 7"~. 

Output." r: = (Q,  P)  E 7"~, E E 7,<_0 such that E = 8(r) - 8(a) - 8(b). 

Algorithm: 

(r S) := M U L T ( a ,  b), so (S)c = ab, c = (Qc, Pc) ~ 7"6, S ~ Fq[X]; 

I f  deg(Qc) < il deg(D), then set t = c, �9 = O, and STOP ," 

{ Initial Baby step } Set 

j := 1; a j - i  := ac; 

a~-l := (P]-I + d) (div Q)-1); 

a t ,~, 
P] := j - - l}rs  - -  P;-1;  

dj+l : = - d e g ( Q j _ l ) ;  

P]-I := Pc; 

rj_ 1 := ( e ; _ l + d )  

D -- p.r2 
_____L; 

Q~ := Qj-1 

(mod Q.~-1); 
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4. While deg(Q)) > �89 deg(D) do { Perform Baby steps } 

j := j + l ;  

a~_, := (P]_, + d) (div a )_ , ) ;  rj_, :=  (P]-I  + d) (mod a ) - l ) ;  

Pj : = d -  ' �9 ' ' ' ' " 5-1 '  Qj := Q~-1 + a)-l(r)-I  - 5 -2) '  

dj+l :---- dj q-- deg(a~_l); 

end while 
5. S e t Q : =  Q~; P : = P j ' ;  ~ = ( Q , P ) ;  E : = d j + l - d e g ( S )  q-deg(Q));  

Note that the computation in step 4) is exactly the same as the Baby step arithmetic in 
Algorithm BABYSTEE However, we write Pj_~, Q~-I, etc. rather than Pj_I, Qj_~ to 
indicate that the Baby steps are performed on base polynomials of non-reduced ideals. We 
also point out that the distances 8(a), 8(b), and ~(t) are not explicitly used in the algorithm, 
so knowledge of these quantities is not required. 

THEOREM 3.5 The ideal ~ computed by Algorithm GIANTSTEP is reduced. Furthermore, 
we have 2 - d e g ( D )  < E < 0 and Idj I -< deg(D) throughoutsteps 3) and4). Allpolynomials 
computed in steps 3) and 4) have degrees bounded by deg ( D ), and the number of polynomial 
operations performed by the algorithm is 0 (deg(D)). 

Proof. Let j be the first index such that deg(Q~) < deg(D)/2,  i.e. the value of  the index 
j where the loop in step 4) is exits. Then by Lemma 3.1, r = (Q), Pj) is reduced. Now 

dj+l : - -  deg(Q~) + )--~j_-~ deg(a~). If we set al = c, then t = aj+l w h e r e  (Q~oOj+l)a j+l  --~ 
t a (Qj)  1 by (3.6), so (SQ~)t  = ( a ) ) ab .  Then ~ = dj+l - deg(S) q- deg(Q)) = deg(Q)) - 

deg(Q~) + ~-~.iJ__~ deg(a~) = deg(Oj+l) - deg(S) by (3.6). Therefore by Theorem 11.5.1 in 
[16],E = 8 ( ~ ) - 8 ( a ) - 8 ( b ) a n d 2 - d e g ( D )  < E < 0. Furthermore, fora l l i  e {2, 3 . . . . .  j}: 

- d e g ( D )  < - d e g ( Q ~ )  = d2 < di < dj+l 
1 

= E - deg (a ) )  + deg(S) < deg(S) < ~ deg(D),  

so Id/I < deg(D) for all i ~ {2, 3 . . . . .  j q- 1}. From Theorem 3.4, deg(P~) < deg(Q~) < 
deg(D).  From Theorem II.4.6 of [ 16], we see that for all i e { 1, 2 . . . . .  j - 1 }, I QII/IQ'ol < 
IOi+ll < 1, so deg(Q I) < deg(Q~). Furthermore, from step 3) in the algorithm, P" = 
d - r ~ _  1 where Ir~_~l < I a ~ - l l - - - I a ~ l ,  so deg (e ' )_<  max{deg(Q~),deg(d)}. Finally, 
deg(Q)) < deg(Pj)  = deg(D)/2 ,  since aj+l is reduced. 

Now step 1) requires O(deg(D))  polynomial operations by Theorem 3.4. By Lemma 3.3 
1 a), we must have deg(Q)) < deg(D) /2  after at most max{ 1, 7 deg(Q~) - �88 deg(D) + 2} = 

O(deg(D))  iterations. �9 

Now if ri and ~j are reduced ideals, then Algorithm GIANTSTEP computes a reduced 
ideal ~ such that 8k = 8i + 8j + E where 2 -- deg(D) < ~ < 0, so 8i + 8j - (deg(D) - 2) < 
8k < 8i + 8j, While the ideal l:k is already "considerably close" to the left of ~i "[- ~j, it need 
not be the closest such ideal. Since by (3.8), an advance in distance of at least 1 is gained 
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in each Baby step, it requires no more than O(deg(D))  Baby steps to compute the ideal 
closest to the left of  r -'l- t~j. Repeated application of  this technique to 1: i will then enable 
us to find the ideal closest to the left of  nt$ i for any n ~ N. The details of  this computation 
are given in the next section. 

4. Computing Closest Ideals 

The following algorithm advances from a given reduced ideal r a certain length k > 0 in 
the set 7B of  reduced ideals. 

A lgo r i t hm CLOSESTINT 

Input: r = (Q,  P)  ~ 7B, k e Z_>0 

Output: s ~ ~,  f ~ Z_<o such that 8 (s) <_ 8 (~) + k and f = 8 (~) - ~ (~) - k is maximal. 

Algorithm: 

1. (a) Setd2 :=  � 8 9  

(b) If d2 > k, then set s :=  ~, f :=  - k ,  and STOP ; 

2. { Initial Baby step } Set 

j :=  1; Qj-I :=  Q; Pj-I :=  P;  

a1-I :=  (Pj-l +d)  (div Qj - l ) ;  rj-1 :=  (Pj-1 + d )  
D - p3 

Pj := a j - l Q j - i - P  j-l;  Qj :=  --'-""-2-1; 
Qj-I 

(mod Q j - I ) ;  

3. While dj+s < k do { perform Baby steps } 

j :=  j + l ;  

(Qj-1, Qj, Pj, rj-1, dj+l) :=  BABYSTEP(Qj_2 ,  Qj-1, Pj-1, rj-2, dj); 

end while 

4. Sets :=  (Qj-I,  Pj-x);  f :=  dj - k; 

Note that s is the reduced ideal such that the distance 8(s, e) between s and r is maximal  
and 8(a, r) < k. Furthermore, 8(r) and 8(s) are not explicitly used and thus need not be 
known for this algorithm. 

THEOREM 4.1 The ideal s computed by Algorithm CLOSESTINT is the ideal closest to the 
left of  S(t) + k, i.e. 8(s) < 8(~) + k and 8(s) is maximal Furthermore, - k  < f < 0 and 
0 < dj < k for all j > 2, except for the value ofdj+z computed in the last iteration of 
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step 3) which satisfies 0 < dj-[. 1 ~ k + deg(D)/2.  Finally, the total number o f  polynomial 
operations performed by the Algorithm is 0 (k ). 

Proof. Let al = t, a2 . . . . .  as be the sequence of reduced ideals computed by Algorithm 
CLOSESTINT. Then by (3.7), in steps 2) and 3) we have di = 8(ai, al) (2 < i < s), and the 
algorithm computes the ideal ~ = as where ds < k < ds+l, so ~(as) < 6 ( t ) +  k < 8(as+l). 
Hence, a i s the reduced idea lc loses t to the le f to fd ( t )+k .  Now0 > f = 8(a~, a l ) - - k  > - k  
and 0 < d2 = �89 deg(D) - deg(Q) < di < ds < k for 2 < i < s, ds+l < ds + deg(D) /2  < 
k + deg(D)/2 .  Finally, since 1 < d~ < k and di+l - di > 1 for 2 < i < s, the loop in step 
3) is executed k - 1 times. �9 

We can now compute for a, b e R the ideal closest to the left of  8(a) + 8(b). Note that 
again, this does not explicitly use or require knowledge of  8(a) or 8(b). 

Algorithm CLOSESTSUM 

Input: a, b ~ ~ .  

Output: c ~ ~ ,  f ~ Z_<0 such that S(c) < 8(a) q- 8(b) and f = ~(c) - 8(a) - 8(b) is 
maximal. 

Algorithm: 

1. 0:, E) :=  GIANTSTEP(a, b), so E = ~(t) - 8(a) - 8(b); 

2. (r f )  :=  CLOSESTINT(~, -E) ,  so f = 8(c) - 8(t) q- E = 8(c) - 8(ct) - ~(b) and 
f is maximal ; 

Here, f corresponds to the number of  Baby steps required to obtain the ideal closest to 
the left of  8(a) + 8(b) from the (primitive) product ideal c where (S)c = ctb. 

THEOREM 4.2 The ideal c computed by Algorithm CLOSESTSUM is the reduced ideal 
closest to the left o f  S(a) + 8(b), i.e. 8(c) < 8(a) + ~(b) and 8(c) is maximal. Furthermore, 
2 - deg(D) < E < f < O, and the algorithm performs 0 (deg(D)) polynomial operations. 

Proof. By the previous theorem, f < 0, so 8(r < ~(a) + ~(b), and since f is maximal, 
the algorithm generates the desired ideal. Now 2 - deg(D) < E < 0 by Theorem 3.5 and 

< f < 0 by Theorem 4.1. Finally, step 1) requires O(deg(D))  polynomial operations by 
Theorem 3.5 and step 2) requires O ( - E )  = O (deg(D)) polynomial operations. �9 

Using repeated applications of  Algorithm CLOSESTSUM, we can adapt the repeated 
squaring exponentiation technique mentioned earlier to compute for a e TO, and n e N the 
reduced ideal closest to the left of  nS(a). 

Algorithm BINARY 

Input: i ~ {0, 1}, a,b ~ TO, f ~ Z<_o such that S(b) < sS(a) f o r  some s ~ N and 
f = 8(b) - sS(a) is maximal. 
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Output: c ~ ~ ,  l ~ 7/,<_.0 such that ~(c) < (2s + i)a(a) and I = 8(c) - (2s + i)8(a) is 
maximal. 

Algorithm: 

1. (m, g) :=  CLOSESTSUM(b,  b), so 8(m) _< 28(b) and g = 8(m) - 2~(b) is 
maximal ; 

2. (n, h) :=  CLOSESTINT(m,  - ( g  + 2f ) ) ,  so ~(n) < 8(m) - (g + 2 f )  and h = 
8(n) - 8(m) + g + 2 f is maximal ; 

3. I f  i = O, then set c :=  n, l = h, and STOP ; 

4. { N o w /  = 1 }  

(q, k) :=  CLOSESTSUM(a,  n), so 8(q) < 8(a) + 8(n) a n d k  = 8(q) - / ; ( a )  - 8(n) 
is maximal ; 

5. (c, l)  :-- C L O S E S T I N T ( q , - ( k + h ) ) ,  so 8(c) < 8(q) - ( k + h )  a n d l  = 8(c) - 
8(q) + k + h is maximal ; 

Note that s is not explicitly used in this algorithm. 

THEOREM 4.3 The ideal c computed by Algorithm BINARY is the ideal closest to the left o f  
(2s + i)$(a), i.e. 8(c) < (2s + i ) ~ ( a ) a n d 3 ( c ) i s  maximal. Furthermore, Igl, Ihl, Ikl, Ill = 
O (max{deg(D), [ f I}) and the algorithm performs 0 (max{deg(D), l f I}) polynomial op- 
erations. 

Proof. To prove that c is the desired ideal, it suffices to show that I as defined in steps 3) 
and 5) is equal to d(c) - (2s + i)$(a). 

If  i = 0, then from step 3) we obtain: 

1 = h = 8 ( n ) - S ( m ) + g + 2 f  

= a(n) - a(m) + (a(m) - 28(b)) + 2(8(b) - sa(a)) 

= a ( c )  - 2 s a ( a ) .  

I f /  = 1, 

l =  

the from step 5) we obtain: 

8(c) -- 8(q) + k  + h 

a(c) - 8(q) + (~(q) - ~(a) - ~(n)) + (8(n) - 8(m) + g + 2 f )  

a ( c )  - 8 ( a )  - a ( m )  + ( a ( m )  - 2 a ( b ) )  + 2 ( a ( b )  - s~(a)) 
8(c) - (2s + 1)a(r 

Next, we check whether all quantities satisfy the requirements for the input parameters of 
the algorithms CLOSESTINT and CLOSESTSUM and establish the bounds on g, h, k, 
and I. 

From Theorem 4.2, 2 - deg(D) < g < 0. Now f < 0, so g + 2 f  < 0 and the inputs for 
CLOSESTSUM in step 2) are well-defined. Furthermore, by Theorem 4.1, g + 2 f  < h < O, 
so Ihl < deg(D) - 2 + 2If{. As before, 2 - deg(D) < k < 0, so h + k < 0, and the input 
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parameters for CLOSESTINT in step 5) are again well-defined. Finally, by Theorem 4.1, 
h 4- k < l < 0, so Ill < deg(D) - 2 q- Ihl < 2(deg(D) - 2 q- I f l ) .  

Now steps 1) and 4) of  the algorithm require O (deg(D)) polynomial operations by The- 
orem 4.2. Steps 3) and 5) perform O([g + 2 f l )  and O(Ik -t- hi) operations, respectively. 
By Theorem 4.2, Ig[, Ik[ ----- O(deg(D)) ,  so [g -t- 2 f l  ---- O(max{deg(D),  I f  I}), and since 
Ihl < Ig + 2 f [ ,  also Ik + hi = O(max{deg(D),  I f  I}). �9 

A lgor i thm POWER 

Input: a ~ ~ ,  n ~ N. 

Output: b ~ T~ such that 3(b) < nS(a) and f = 8(b) - nS(a) is maximal. 

Algorithm: 

1. Computethebinaryrepresentat ionn = ~-~ti=obi2t-i o f n w h e r e b  o = 1, bi E {0, 1} 
for  l < i < t; 

2. Set bo := a; s0:---1;  f o : = 0 ;  

3. For i := l to n do 

{ At this point 8 ( h i - l )  _< S i - l t ~ ( a )  and .~-l  = 8 ( h i - l )  - -  S i - l t ~ ( t l )  is maximal } 

(a) si :=  2si-i  -[- bi; 

(b) (hi, f i )  :=  B I N A R Y ( b i ,  a, hi- l ,  f i - l ) ,  so bi c ~ ,  f i  E Z_<0 such that 
S(bi) < siS(a) and j~ = t~(bi) - si~(ct) is maximal ; 

end fo r  

4. Set b :=  bt; 

THEOREM 4.4 The ideal computed by Algorithm POWER is the reduced ideal closest to 
the left o f  nS(a), i.e. 8(b) < nS(a) and d(b) is maximal. Furthermore, 1 < si < n, 
I f i  [ = O (deg(D))  for  0 < i < t, and the algorithm performs 0 (deg(D) log n) polynomial 
operations. 

Proof. 8(b) = 8(bt) < S t S ( t l )  = nS(a) and f t  = f is maximal,  so b is the desired ideal. 
Now si ~--,i h.2t_ i = z_,j=o ~, , so 1 < si- l  < si < n for 1 < i < t. Furthermore, f0 = 0 and by 
Theorem 4.3, I~1 = O(max{deg(D),  [J~-1 [}) = O(deg(D))  for 0 < i < t. 

Now each call of  BINARY in step 3b) uses O(deg(D))  polynomial operations, so the 
entire loop requires O (deg(D)t)  = O (deg(D) log n) polynomial operations. �9 

I f  n is polynomially bounded by [D I, then we can compute the ideal closest to the left of  
nS(a) in O((deg(D))  2 log q) polynomial operations. Hence both communication partners 
must bound their respective "exponents" by a polynomial in [D[, say ID[ r. We consider a 
choice o f r  = 1/4 sufficiently secure if IDI is large, say IDI ~ 10200 (see Section 6.1). 

Finally, in order to exchange a reduced ideal that is to be used as a cryptographic key, the 
two parties require one more algorithm, which is an extension of  the previous algorithm. 
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Algori thm POWERDIST 

Input: a E ~,  n E N, 8a E N where 8 a ~- 8 ( a ) .  

Output: b ~ T~, 8b E N such that 8b = 8(b) < nS(a) and 8b is maximal. 

Algorithm: 

1. b := POWER(a, n), so 8(b) < nS(a) and f = 8(b) - nS(a) is maximal ; 

2. 8/~ := nSa + f ;  

5. The Protocol 

Precomputat ion:  Alice and Bob 

1. generate an odd prime power q 

2. generate a random squarefree polynomial D ~ Yq [x] of even degree whose leading 
coeff• is a square in Fq 

3. compute d = L~/DJ 

4. generate a reduced ideal c = (Q, P)  with small distance 8 = S (c) by applying Algorithm 
BABYSTEP to the ideal O = (1, 0) a few times 

5. publicize (q, D, d, P, Q, 8) 

Protocol: 

1. Alice 

(a) secretly generates a 6 N, a < [D[ 1/4 

(b) computes (a, 8a) := POWERDIST(c, 8, a), a = (Qa, Pa) 

(c) transmits (Qa, Pa) to Bob 

2. Bob 

(a) secretly generates b ~ N, b < ]O[ 1/4 

(b) computes (b, 8b) := POWERDIST(c, 8, b), b = (Qb, Pb) 

(c) transmits (Qb, Pb) to Alice 

3. Alice computes t~ := POWER(b, 8a) 

4. Bob computes t~ := POWER(a, 8b) 

Both partners compute the reduced ideal ~ closest to the left of S(a)8(b). However, their 
respective basis polynomials need not be the same. By multiplying t~ by a suitable element 
in Fq to achieve sgn(Qk) = 1 and then reducing Pk modulo Qk such that deg(Pk) < 
deg(Qk), the base representation (Qk, P~) of the ideal t~ is unique. The coefficients of these 
polynomials (or any substring thereof) can then be used as the key. The protocol requires 
one round of communicating two polynomials of degree at most deg(D)/2 each, hence the 
number of bits that must be transmitted is at most (deg(D) + 2) log q. 
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6. Securi ty 

6.1. Choice of Parameters 

To prevent an exhaustive key-search attack, we need to ensure that the number m of  reduced 
principal ideals in K is large. Since R = 8re+l, we have R < m �9 deg(d) by Lemma 3.2 c) 
and (3.7), or equivalently 

2R 
m > - -  

- deg(D)" 

Thus, to get a lower bound on m, we require a lower bound on R. 
By using standard results on zeta functions for function fields (see Eichler [9], pp. 299-  

307), we can bound the value of  the divisor class number h by 

(~v/'q - 1) 2g < h < (~/'q -1- 1) 2g , 

where, in this case, g = �89 deg(D) - 1. Since h = Rh', we see that for fixed h, R will 
be large as long as h '  is small. We can use a result of  Zhang [21] to ensure that h '  is odd. 
Namely, if D is prime or a product of  two even degree prime polynomials, then 2 }(h'. 

In order to examine the odd part of  the class group G of K, we can apply the same 
heuristic arguments that Cohen and Lenstra [5], [6] used for real quadratic number fields. 
This is possible because of  the complete analogy that exists between the infrastructures of  
the ideal classes in K and in a real quadratic number field. For example, under the same 
heuristic assumptions as those used in [5] and [6], we can derive the following result for 
real quadratic congruence function fields over ~q. Let r be any odd prime and let Gr be 
the r-Sylow subgroup of  the ideal class group of  K. Then, if H is any fixed finite abelian 
r-group, we have 

D 
d~(D)<_2n 

lira Gr-~H 

" ~  ~2 1 
D 

dog(D) _<2,1 

oo  

- -  - [Hl - I  IAu t (H) I -1VI  (1 - r-J). 
j = 2  

This kind of  result can be extended to show that, if G is the odd part of G, then we would 
have 

k ' (6.1) 

where, in the notation of  [5], 

C = (20oo(2)Coo) - l  ~ .754458173 
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and 

w(k) = H (Pa (1 - l /p)  (1 - 1/p 2) ... (1 - 1/p~)) -l  . 
p~ Ilk 

Here, we have assumed that the characteristic of Fq behaves like any other odd prime p 
with respect to the p-component of G. In their investigation of the structure of the divisor 
class group of K, Friedman and Washington [10] excluded this prime because the p-rank 
of the divisor class group for this prime cannot be as large as that for other primes; however, 
there seems to be no a priori reason for excluding it in an investigation of the ideal class 

group. 
From (6.1) it can be shown that 

1 

j 

Thus, we would expect the probability that It~l is small to be very close to 1. Indeed, this is 
what has actually been observed in extensive computations of h' carried out by one of the 
authors (A. Stein). Thus, if D is a randomly selected prime polynomial, it is most likely 
that our scheme will be secure against an exhaustive search attack. 

6.2. The DLP for Real Quadratic Congruence Function Fields 

By analogy to the number field case, we can define the discrete logarithm problem (DLP) 
for real quadratic congruence function fields as follows: For any t e R, find 8(~), 0 < 
8(r) < R. 

Note that we can solve any instance of the DLP by applying O(8(r)) Baby steps to the 
ideal ~1 = (_9. For large distances 800, this is exponential in deg(D). As in the number field 
case, we can conclude that a cryptanalyst can break our scheme, if he is able to solve the 
DLP. We formulate our results in terms of polynomial time solutions, but our conclusions 
are not restricted to polynomial-time algorithms. 

LEMMA 6.1 If  there is a polynomial time solution of the DLP, then the key exchange protocol 
can be broken in polynomial time. 

Proof. Suppose A is a polynomial-time algorithm that solves any instance of the DLE 
Then an eavesdropper intercepting the reduced ideal a sent by Alice can use A to compute 
8(a). Then he intercepts the reduced ideal b sent by Bob and uses Algorithm POWER on 
inputs b and 8(a) to compute the reduced ideal ~ closest to the left of 8(b)8(a). This ideal 
is the secret key. �9 

It is not known whether the DLP is in fact equivalent to the difficulty of breaking the 
protocol in the sense that any fast method for breaking the scheme gives rise to a fast 
algorithm for solving the DLP. 

In [1], Abel shows that the DLP in a real quadratic number field Q ( v ~ )  can be solved 
in time subexponential in log A. Also, any algorithm for solving the DLP can be used to 
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find the regulator of  this field. Knowledge of the regulator together with a technique due to 
Schoof [ 14] can then in turn be used to factor A. Hence the DLP for real quadratic number 
fields is at least as difficult as the problem of factoring the integer A. 

The situation in real quadratic congruence function fields is somewhat different. Here, 
the only known algorithm for solving the DLP is exponential. Just as in the case of  a 
real quadratic number field, Shanks' Baby step-Giant step technique [ 11] can be used to 
compute the distance of  a reduced ideal. This method has complexity O (q t deg(O)). 

In [17], it is shown that the DLP in real quadratic congruence function fields Fq (x)(~/'D) 
where deg(D) = 4, (the simplest non-trivial case, since it is known that R ----- 1 if deg(D) = 
2) is equivalent to the DLP for elliptic curves; that is, given an elliptic curve E/Fq, an 
Fq-rational point P and an Fq-rational point Q such that Q = k �9 P ,  find the integer k. 
Furthermore, the set of  reduced principal ideals forms a group in this special case; that is, 
ts * rt = ts+t for 1:~, l:t e 7Z and s + t < m. We now sketch the main ideas. 

THEOREM 6.2 I f  the DLP for real quadratic congruence function fields can be solved in 
polynomial time, then the DLP for elliptic curves can be solved in polynomial time. 

Proof Let E be the elliptic curve defined by the equation 

E : w 2 = v 3 + A v + B ,  

where A, B 6 Fq and A = - 4 A  3 - 27B 2 # 0. Denote by K = Fq(E)  = Fq(V, w) its 
corresponding function field. Let O be the point at infinity which is the identity in the usual 
group law on E. Let P = (xe, yp) ~ O be any Fq-rational point on E (xe, ye e ]Fq). 
Under a suitable birational transformation (dependent on xe,  ye) we can construct a plane 
quartic model for E, i.e. 

Ee : y2 = D e ( x ) ,  

where De(x)  is a monic squarefree polynomial of  degree 4, E and Ee are birationally 
equivalent and K = Fq(X, y). In fact, Fq(X, y) is a real quadratic congruence function 
field. If  we set el = [1, D~-D-'~p(x)] and apply repeated Baby steps to el using the formulas 
of  (3.2) and (3.3), we obtain a sequence of  reduced ideals ('Ci)i~ N. From Lemma 3.2 
c) and (3.7), we deduce that 8i = 8(ti) = i (i > 2). In [17], it is pointed out that 
there is a one-to-one correspondence between the subgroup of  E generated by P and the 
se t  (ri)i~ N. Let Q = (XQ, yQ) ~ P be an Fq-rational point on E such that Q = kP 
(k ~ N, k > 2). Then the corresponding reduced ideal ~Q can easily be computed from 
XQ and yQ. Furthermore, it is true that tQ = l:k. If  there is a polynomial time method for 
finding 8(tQ), we are able to determine k in polynomial time, because k = 8k = 80:Q). 

This means that the DLP for real quadratic congruence function fields is at least as difficult 
as the DLP for elliptic curves. So far, the only known algorithm for solving the DLP for 
elliptic curves is exponential (except for the supersingular case). I f  it should turn out that 
the subexponential methods of  the number field case can be applied to function fields, then 
the DLP for elliptic curves should be of  subexponential complexity. We also sketch the 
converse direction. 
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THEOREM 6.3 If  the DLP for elliptic curves can be solved in polynomial time, then the DLP 
for real quadratic congruence function fields Fq (x)(dt'D) where deg(D) = 4 can be solved 
in polynomial time. 

Proof. Let Fq (x)(~/-D) be a real quadratic congruence function field, where D ~ Fq [x] is a 
squarefree polynomial of degree 4 and sgn(D) is a square in Fq*. Without loss of generality, 
we can assume that D is monic. By applying the inverse of the birational transformation 
mentioned in the proof of Theorem 6.2, we obtain an elliptic curve E and an Fq-rational 

point P on E. Let el = [1, ~/D] and let (ti)i~l~ be the sequence of reduced ideals defined 
by (3.2) and (3.3). If1: # el is any reduced ideal, then we know that r = tk for some index 
k > 2. Because 8 (~k) = 8k = k, we see that 8 0:) = k. As in the proof of the above theorem, 
we use the result of [17] that there is a one-to-one correspondence between multiples of 
P on E and the sequence (~i)iE ~. The corresponding point on E, Qr, can be determined 
from r, and we know that Qr = kP. Hence, if we are able to solve the DLP for elliptic 
curves in polynomial time, then we can determine k and 80:) = k in polynomial time. 

7. Implementation 

7.1. Implementation Issues 

Our key computations were run on a Silicon Graphics Challenge workstation using the 
Computer Algebra System SIMATH which is based on the programming language C. 
SIMATH was developed by the research group of Prof. H. G. Zimmer at the Universitat des 
Saarlandes in Saarbriicken, Germany. All our computations were done over prime fields 
~'p, i.e. q = p prime. For arithmetic in finite fields Fp, where p < 230 - 1, single precision 
arithmetic was sufficient. For primes p > 230 - 1, we used multiple precision arithmetic. 

Our computations were significantly faster than those for key exchange in real quadratic 
number fields using parameters of the same order of magnitude. This is partially due to 
the fact that our implementation involves rational integers only and requires no rational 
approximations. Furthermore, in our setting, there are two parameters which can be varied, 
namely the prime p and the degree of D (in the number field case, only the size of the 
radicand was variable). In order to achieve optimal performance for a fixed size of the key 
space, the sizes of the two parameters need to be weighed against each other according 
to computation time requirements of polynomial arithmetic vs. arithmetic in finite fields. 
From the table in Section 7.2, one can determine the best choice of the size of q = p and 
deg(D). The case deg(D) = 4, in which we have a direct correspondence to elliptic curves, 
performed best. 

Since our implementation is algorithmic and computes keys for arbitrary parameters q 
and D, it is slower than some implementations of elliptic curve cryptosystems such as [2]. 
However, we believe that a significant speed-up could be achieved by making use of features 
such as special-purpose arithmetic, hardware implementation, and code optimization. 

For our procedures, we used two optimized versions of Algorithm MULT, since our 
computations only require squaring of a reduced ideal and multiplication of an arbitrary 
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reduced  ideal by a given f ixed one.  We also not iced  that in m o s t  cases  the gcd  in the  first 

s tep  o f  M U L T  produces  $1 ---- 1, in which  case  the second  gcd calculat ion need  not  be 

pe r fo rmed .  

7.2. Numerical Examples 

The  table b e l o w  gives some  numerica l  examples  and their  computa t ion  t imes.  As  m e n t i o n e d  

above,  w e  a lways  chose  q = p to be a pr ime.  For  securi ty reasons ,  we  se lec ted  our  

pa ramete r s  so that  p �89 degCD) is o f  order  o f  magn i tude  101~176 a l though we  bel ieve that  smal le r  

Table 1. Common Key Computations 

deg(D) p time 

4 99999999999999999999999999999999999999999999999943 3.76 sec 

6 2154434690031883721759293566519517 6.58 sec 

8 10000000000000000000000013 9.39 see 

10 100000000000000000039 13.10 sec 

12 46415888336127803 15.66 sec 

14 193069772888329 19.67 see 

16 3162277660169 25.50 sec 

18 129154966537 31.70 sec 

20 10000000019 33.70 sec 

22 1232846819 26.33 sec 

24 215443483 8.69 see 

26 49238857 9.77 sec 

28 13894961 16.51 see 

30 4641631 13.11 see 

32 1778279 15.12 sec 

34 762721 9.95 sec 

36 359389 11.37 sec 

38 183299 12.47 see 

40 100003 14.31 sec 

42 57793 8.24 sec 

44 35111 9.00 sec 

46 22277 9.89 sec 

48 14683 10.27 sec 

50 10007 11.52 see 
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parameters (such as p�89 deg(O) ~ 1050) still provide sufficient security while resulting in a 
significant performance increase. If D is a random squarefree polynomial in Fp[x] of  even 
degree, we used a prime-generating routine to find a prime p ~ exp (In(10) �9 200 /deg(D)) .  
For example, if deg(D) = 4, then p ~ 105~ In our table, we only give the degree of  D rather 
than D itself. In accordance with Section 5, we chose exponents of  order of  magnitude 

1 p~deg(n) ~ 1050. 

Each computation time given in the table is the total time for each party to compute the 
common key. This is equal to the sum of the computation times required for POWER and 
POWERDIST, respectively, as described in the protocol. Time is recorded in seconds. The 
results in the table document the changing point from single to multiple precision. If p 
is a prime less than 230 -- 1, we can see from p�89 ,~ 10100 that deg(D) > 22. For 
comparison, we computed the largest prime less than 230 - 1, p = 1073741789, and ran 
another example for deg(D) = 22. Here, the running time was 7.09 seconds, which is 
significantly less than that for the degree 22 example given in the table. 
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