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Abstract. In 1976 DiMe and Hellman first introduced their well-known key- 
exchange protocol which is based on exponentiation in the multiplicative group 
GF(p)* of integers relatively prime to a large prime p (see I-81). Since then, this 
scheme has been extended to numerous other finite groups. Recently, Buchmann 
and Williams [2] introduced a version of the Diffie-Hellman protocol which uses 
the infrastructure of a real quadratic field. Theirs is the first such system not to 
require an underlying group structure, but rather a structure which is "almost" like 
that of a group. We give here a more detailed description of this scheme as well as 
state the required algorithms and considerations for their implementation. 
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1. Introduction 

The idea underlying the Dit t ie-Hellman key-exchange protocol [8] and all its 
extensions (see [17], [16], [20], [ 14], [ 1], and others) is as follows. Two communica- 
tion partners Alice and Bob agree on a large finite multiplicative group G and an 
element g e G (G and g can be made public). Alice secretly selects some positive 
integer a < I GI, computes x = ga, and transmits x to Bob. Similarly, Bob secretly 
chooses a positive integer b < IGr and sends y = gb to Alice. Alice computes k = 
y~ = gb, and Bob computes k = x b = gQb. Then k can be used as the common key. 
A cryptanalyst tapping the communication line knows G, g, x, and y, and attempts 
to find k. One way to achieve this is to find a = logg x or b = logg y, i.e., to solve 
the discrete logarithm problem (DLP) in G. Hence G should be chosen such that 
D L P  in G is hard. 
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In [2] Buchmann and Williams sketched the first Diffie-Hellman protocol which 
does not require a group structure. Their scheme is instead based on the infra- 
structure of a real quadratic field. This approach not only introduces a new crypto- 
graphic idea, but is also quite unexpected in that it extends the scheme beyond the 
use of multiplication in a group--a concept which seemed essential to any Diffie- 
Hellman-like pro tocol - -and  employs, more generally, arithmetic in a set which is 
not a group. The fastest-known algorithm for solving the DLP corresponding to 
this scheme is subexponential if we assume certain Extended Riemann Hypotheses. 

Unfortunately, there is a price to pay for this new idea. The key-generation 
algorithm is more complicated and computationally more involved than that of the 
standard Diffie-Hellman protocol. Furthermore, the scheme requires more band- 
width and an additional round of communication,.although in the second round, 
the two partners transmit at most one bit each. Thus the system, while employing 
an interesting mathematical concept, seems to loose some of its practicality. 

In this paper we give a more detailed description of the protocol [2]. Section 2 
presents the underlying mathematical concepts and how they arc used in the scheme. 
In Sections 3 and 4 we give the required algorithms, analyse their complexity, and 
consider implementation issues and error bounds. Section 5 shows how the two 
communication partners can agree on a unique key. The overall protocol is 
presented in Section 6. The paper concludes with a discussion of the scheme's 
security in Section 7 and some numerical examples and aspects of optimization in 
Section 8. 

2. Real Quadratic Fields 

2.1. Reduced Ideals 

For a more detailed introduction to this material we refer the reader to [7] or [9] 
and [22]. Let D be a positive squarefree integer. K = Q + Q x / ~  is the real quadratic 
number field generated by x / ~  over the rationals Q. Let 

{12 if D - 2 , 3  (mode),  
a =  if D - 1  (mode) ,  

and let co = (tr - 1 + ,v/D)/a e K. It can be shown that O = Z ~ Zco is the maximal 
real quadratic order in K, whcrc Z denotes the set of rational integers. 

For  any ~ = x + y,v/D e K (x, y e Q), denote by ~ = x - y x / ~  its algebraic con- 
jugate. The norm of ~ is defined as N(~) = ct~' = x 2 - y2D. 

A unit in K is a divisor (in O) of 1, or, equivalently, an element in O of norm 1. A 
unique unit r />  1 in K exists such that every unit in K can be written as _+ ~/n for 
some n e Z. i/is called the fundamental unit of K. Denote by R = log ~/the regulator 
of K. 

A subset a of O is called an (integral) ideal in O if both a + a and O-  a arc subsets 
of a. It can be shown that every ideal a has a representation 

a = [a, b + cco] = Za ~ Z(b + ca)), 
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where a, b, c ~ Z, a, b > 0, clb, and c[a. The integers c and a are unique and a is the 
least positive rational integer in a, denoted by L(a). We also have aclN(b + coo). 

A principal ideal a of  O is an ideal of the form a = a O  where ~t ~ O. We say that  
generates the ideal a and write a = (c0. Denote  by P the set of  principal ideals in 

O. Clearly, P is a semigroup under multiplication, if we define the product  of  two 
principal ideals (a), (fl) to be (ctfl). 

We define a pair  of  ideals a, b in O to be equivalent (written a ~ b) if7 ~ K - {0} 
exists such that  a = ~b, or, equivalently, if a, fl ~ O - {0} exist such that aa  = fib. 
It is easy to see that ~ is in fact a proper  equivalence relation. Fur thermore ,  P is 
exactly the equivalence class of the unit ideal O = (1) under  .,-. 

If a is any ideal, then we call a number  # ~ a a minimum in a if # > 0 and no 
ct ~ a - {0} exists such that I~1 < ~ and  I~'1 < I/~'1- Clearly, 1 is a min imum in O. It 
can be shown that  the set {log #1# is a min imum in O} is discrete in the real numbers  
R. Fur thermore ,  there is an iterative procedure  which enables us to generate a 
sequence of  minima in O such that 1 = p~ < #2 < #3 < "'" (details of this me thod  
are given in Section 3). Then we have #~+1 = ~/for some I e Z÷, and in fact #~+,,~ = 
#jr/" for all j ~ Z+, m ~ Z such that j + ml >_ 1. If  D is chosen appropr ia te ly  (see 
Section 7.2), then I might  be as large as O ( x / ~  log log D). 

An ideal a = [L(a), b + co~] is said to be primitive if c = I. We define a to be 
reduced i fa  is primitive and L(a) is a min imum in a. Clearly, O = [1, ~o] is reduced. 
Denote  by 9t the set of  all reduced principal ideals in O. It can be shown that  r ~ 91 
if and only if r is generated by a min imum in O, i.e., r = rj = (/~j) for some j ~ Z+. 
Thus the ordered sequence (#j)j~ z. of minima in O gives rise to an ordered sequence 
r x = (1), r 2, r 3 . . . .  of reduced principal ideals Since ~j+,,~ = ktffl ~, it follows that  
rj+,~ t = rj for all j ~ Z+, m ~ Z such that  j + ml > 1. Hence the sequence (rj)j~ z+ is 
purely periodic with period length l, and the set 91 is finite and of  cardinali ty l. If  
we set M = {#1 = 1,/~2 . . . . .  p~}, i.e., M consists of all the minima/~ ~ O such that  
1 < # < r/, then we can write 91 = {r i = (#i)1#, ~ M} = {r 1 = (1), r z . . . . .  rz}. 

2.2. Distances 

With each reduced ideal rj = (#fl where #j is a min imum in O, we can associate a 
distance 

6j = log &. 

Then 6j is a strictly monotonical ly  increasing function, i.e., ~5i. 1 > 6j. Fur thermore ,  
we can define the distance 1 between a reduced ideal rj and a real number  x as 

6(rj, x) = 6j - x. 

For  each x e R+, there is a un ique j  e Z+ such that  6j _< x < 6j+1. I f r j  = (/~j) where 
aj = log #j, then we call rj the ideal closest to the left of x and denote it by r_(x). 
Similarly, ifri+ 1 = (#j+l) where aj+l = log #j+l, then rj+ 1 = r+(x) is the ideal closest 
to the right of  x. 

We are now ready to present the idea for ou r  protocol.  

This definition differs from the one given in [2] only in its sign. 
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2.3. Outline of the Protocol 

Our goal is to establish a protocol similar to the one developed by Diffie and 
Hellman [8]. However, as the underlying set we use 9t, the set of reduced principal 
ideals in K. The idea is as follows. 

Two communication partners Alice and Bob publicly agree on a real quadratic 
field K with large D. Alice secretly chooses a positive integer a and computes a 
reduced ideal a e {r_(a), r+(a)} and an approximation ~(a, a) to its distance fi(a, a) 
from a. She sends both the ideal and its approximate distance from a to Bob. 
Similarly, Bob secretly chooses b e Z+ and determines a reduced ideal b e 
{r_(b), r+(b)} andan  approximation ~(b, b) offi(b, b). He transmits both h and ~(h, b) 
to Alice. From h, fi(b, b), and a, Alice computes a reduced ideal k h e {r_(ab), r+(ab)}. 
Likewise, Bob determines from a, 6(a, a), and b a reduced ideal k a e {r_(ab), r+(ab)}. 
Since our distances are irrational numbers and the two communication partners 
might use different rational approximations in their respective computations, k A 
and k a need not be the same ideal. Furthermore,  Alice and Bob do not know whether 
they computed the same ideal, i.e., whether k A = ka. However, the exchange of 
at most two more bits of information will enable them to agree on a common key 
ideal k. 

This scheme introduces two problems: 

1. Given a number a, how to find an ideal a e {r_(a), r+(a)}. More generally, given 
a real number a, an ideal b e  {r_(b),r+(b)}, and 6(b,b), how to find 
k A e {r_(ab), r+(ab)}. 

2. How do the communication partners detect whether or not k A = k a and, in 
case  k A ¢: ka,  how do they agree on a common key ideal k? 

In order to solve problem l, we need to be able to do arithmetic in 91. The required 
algorithms are introduced in the following two sections. The ambiguity problem of 
the key ideal is solved in Section 5. 

3. A r i t h m e t i c  in  

3. I. Ideals and Continued Fractions 

We introduce a basis representation for ideals which allows us to perform integer 
arithmetic on primitive principal ideals. Let a = [a, b + co] be a primitive principal 
ideal. If we set Q = aa, P = ba + a - 1, then a can be written as 

a =  , = Z  ~ Z  , 
o" o" 

where P, Q e Z, a[Q, and aQ]D - p2 (recall that t7 = 1 or 2). So every primitive 
ideal can be associated with a pair (P, Q) of rational integer coefficients. For  the 
unit ideal O, we have P = a - 1, Q = a. 

Let 

a =  , e P  
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be a primitive ideal. If  we set Qo = Q, Po = P, q~o = (Po + v/D)/Qo, and expand q~o 
into a cont inued fraction as described in Algor i thm 1 (a) below, then we obtain  a 
sequence of  primitive principal ideals a 2, a3, . . . ,  where 

a j =  ' O" 

For  each j > 2, we call a~+ 1 the right neiahbour and aj_l the left neighbour of  aj. If 
a 1 = a is reduced, then a 1 = r e for some k ~ Z+, a i = rk+j_ 1 is reduced for a l l j  > 1, 
and the sequence (ai)l_<j_< ~ will generate all the ideals in ~ .  In this case we can 
compu te  reduced principal ideals by starting at any rl (i > k) and generat ing ri+l, 
ri+2 . . . .  , or  ri-1, rl-2 . . . . .  rl (for the latter sequence, we require i > k + 1). In  the 
case where al  is not  reduced, this method  will yield a reduced ideal after O( log D) 
iterations. Hence, the continued fraction algori thm allows us to step through 9{ in 
either direction and quickly find, for any primitive principal ideal, an equivalent 
reduced one. The algorithm is given in [22] and operates as follows. Let d = [.x/~J. 

Algorithm 1 (Continued Fract ion Algorithm). 

(a) Input: Any primitive ideal 

a =  , e P .  

Output: A sequence of primitive ideals a l, a 2, . . .  in P, where 

a j =  1, o" 

Algorithm: Set 

q:-1 = j, 

Set 

Po=P, Qo=Q, 

e~ = q j - i Q : - i  - E - x ,  Qj - 

a J •  ' o" " 

Q j-1 

Then aj+ I = O]a: where ~,j = (V/'-D -- Pj)/Qj-I (J ~ Z+). 
(b) Input: Any 

[ ~ P'-x+'v/~-] ( i~Z+) .  r i ~  , r i =  -Q- t ,  a 

Output: The sequence of  ideals ri-1, ri-2 . . . .  , r 1 = O, where 

rJ "~-" 1 o" 

( j =  1,2 . . . .  ). 
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j - -  m 

Set 

Algorithm: 

D - Pi21 [ Pi+1 + d l  Pj+a 2, i 1, 
QJ+, ' qJ = L -QJ -]' Pj = qjQj - ( j  = i -- -- . . . ,  1). 

Then  rj = tpjri+ 1 where 

Theorem 3.1. 

(a) Let 

r j =  ' O" " 

1 Pj + x /D (I _<j < i). 
eJ = 0r ~2j 

be a primitive principal ideal and let a 1, a 2 . . . .  be the sequence computed by 
Algorithm l(a). I f  O < Qo < x~ ~ ,  then, for al l j  e Z . :  

(i) aj e ~R;/f k e Z+ is such that a I = rk, then aj = rk+j_ 1. 

(ii) qi >_ 1 , 0 <  Pj < x//-D, a < Qi < 2 x / ~ .  
(iii) - 1 < 1/¢j = (Pj - x/~)/Q~ < o. 
(iv) qj = [(Pj+I + d)/Qj.l, so the expressions for qj in Algorithms l(a) and (b) 

are equivalent. 
(b) Let r i = [Qi_l/a, (Pi-t + x//-D)/a] ~ ~ (i ~ Z ->2) and let r : - l ,  r~_2 . . . .  be the 

sequence computed by Algorithm l(b). I f  0 < Qi-2 < v/-~, then, for all 1 < 
j < i -  1: 

(i) rjE ~ , 6 j =  6./+1 + 1ogl~0jl = 6i+1 --logl~bjl. 

(ii) qj-1 > 1:0 < P~-x < v/-~, a < Q j-1 < 2x/-D. 
(iii) - 1 < ~oj-t = (P~-I - "x/~)/Qj-1 < o. 

Proof.  Fo r  part  (a) see [22]. The  second par t  follows analogously.  [ ]  

The  next l e m m a  indicates how far we advance  in distance in one step and in two 
consecutive steps of Algori thm l(a). 

L e m m a  3.2. Let a 1 be as in Theorem 3.1. Then, for al l j  ~ Z+: 

(a) qj < 14Jj+ll < qj + 1. 
(b) Oj+l Oj > 2. 
(c) 1 + 1/x/'A < ]Ojl < w/-~, where A = (4/a2)D is the discr iminant  of K. 

By the G a u s s - K u z ' m i n  law of a lmost  all cont inued fractions (see, for example,  
p. 92f. of [11]), a partial quotient q occurs with probabil i ty  log2(1 + 1/((q + 1) 2 - 1)). 
Hence,  we expect q~ to be small in mos t  cases, for  example,  qj = 1 in 41.5~,  qj <_ 10 
in 87.43/0 of all cases. 
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Let  ax be a primitive principal ideal and  let am (m ~ Z+) be generated f rom a~ 
using Algor i thm 1 (a). Then am = 0"a~ where 01 = 1, 0,, = l"-[~"_S~k. It  follows that, 
for any fixed i ~ Z+ a n d j  > i, we have aj = (Oj/O~)a i. I f  we set (m = 1/0m, i.e., (1 = 1, 
(m = [-I~'--~0~ (m > 1), then, for 1 < j  < i, we have  ai = ((j/('i)ai. 

In  the special case where a~ = r~ = (1), i.e., am = rm, we have (0") = a m = r m = 
(#m), and in fact #m = [0"l. The following l e m m a  summar izes  some propert ies  and 
gives a simple recurrence relation for 0~, (i. 

L e m m a  3.3. For  all m > 1: 

(a) Ore+2 = --qmOm+x + Ore, (m+Z = qrn(m+l "t- (m" 
(b) [0~,+,1 > 10~l >_ I, Iff'+~l < I('1 <- 1. 
(c) sgn(0~,) = ( -  1) m-l, sgn((~,) = ( -  1) m-l. 

Proof.  We have 0m+2=~m+l@m0m. An easy calculat ion shows @,,+l~km= 
--qm~bm + 1, whence follows the recurrence relat ion for 0m+2. Similarly, we show 
q~m+~0,, = qmq~m + 1, which yields the recurrence relat ion for (m+2. N o w  10"+11 = 
I~'110~,1 and, by Theorem 3.1(a)(iii), we have  1 > 1/1¢~,1, hence 10~,+11 > 10"1. W e  
show s g n ( 0 " ) =  ( - 1 )  m-1 by induction on m. We  have 0~ = 1 > 0, 0~ = ~k~ = 

- (PI + x /D) /Qo  < 0 by Theorem 3.1, and for m > 0, using the induct ion hypothesis  
for m + 1 and  m, 0~,+2 = --qm(--1)ml0~,+ll + ( - -1)m-t l0"[  ----- (--1)m(qml0~+~l + 
10"1). The  rest of  the l emma follows f rom the identi ty ~m = 1/0m. [ ]  

In order  to find, for any x ~ R, a reduced ideal rt ~ {r_(x), r+(x)}, we could use 
Algor i thm 1 (a), s tar t ing at rl = (1), to generate  a sequence of reduced ideals r2, r3, 
. . .  with distances 6 2 ~--- log l0~l, 63 = log l0~l . . . . .  until we obta in  r e such that  6, < x < 

61+1. However ,  since I@il < 2 v / D  for I > t by L e m m a  3.2(c), each step advances  us 
O( log D) in distance, hence this will require exponent ia l  c o m p u t a t i o n  t ime if x is 
po lynomia l  in D. We need to move  through ~R at  a much  more  rapid  pace. T o  achieve 
this, we make  use of  Shanks's  infrastructure idea 1-19-1. 

3.2. Mul t ip l y  & Reduce  

We impose  an opera t ion  • ("Multiply & Reduce") in 9~ as follows. Ifr~, rj are reduced 
ideals with respective distances 6i, 6~, then r~.  rj is a reduced ideal rm such that  
~,, ~ 6 i + ~j, i.e., rn ~ i + j. N o w  if we want  to find a reduced ideal rl such that  
6t < x < 6~+1, where x is polynomial  in D, we star t  with a reduced ideal r~ with small 
~i = O( log D). r i can be obtained using Algor i thm l(a) on r 1 = (1). We then compute  
r~ = r1 * ri * " "  * r~ where the number  of  te rms is n ~ x/gi.  Then  6j ~ n6i ~ x, and it 
can be shown that  a few applications of  Algor i thm 1, s tar t ing at  rj, will yield r z. I f  
we adop t  a s tandard  exponent iat ion technique as described, for example,  on p. 442 
of [12-1, we can compute  rj using O(log n) = O(log D) appl icat ions  o f . ,  hence this 
m e t h o d  is much  faster than the single-step method ,  p rov ided  the opera t ion  • of two 
ideals can be done  in time O(log D) and  the c o m p u t a t i o n  of rt f rom rj requires at 
mos t  O( log D) i terations of Algori thm 1. 
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In order to define • formally, consider ideal multiplication as given in Section 2.1. 
Let r~, r~ e 9L If we set e = r~r i, then c = (~) where log ~ = 6~ + 6j, hence, e would 
give us exactly our required distance. Unfortunately, e need not be reduced. How- 
ever, by using the reduction technique described in [22], we can compute a fixed 
reduced ideal r,, which we define to be r~. r~ such that 6,, = ~ + 6j + e where 
lel = O(log D), so lel is usually very small relative to ~, ~Sj. r m can be generated as 
follows. If we set a~ = e and apply the continued fraction algorithm as given in 
Algorithm l(a) to the product ideal e = a~ O(log D) times, then we obtain an ideal 
a k which is reduced, i.e., ak = r,, for some m e Z÷. Since ideal multiplication requires 
time O(log D), r~ • r i can in fact be computed in time O(log D). The algorithms for 
ideal multiplication and reduction are given below. 

A l g o r i t h m  2 (Ideal Multiplication). 
Input: 

= - , , r ~ =  , ~ 9 ~  

Output: e e P primitive, U e Z+ such that r~r~ = (U)e. 

Algorithm: 

1. Solve 

T a 1 

2. Solve 

P,-I+a P~ - ' x2+  Yy2=U=gcd(  P'-1+¢ P,-1 y ) ,  

3. Set Q = Qi_IQj_I/¢U 2. 
4. Set 

X =- y ~ x l ( P j _  1 - P/ -1)  dr- x 2 - -  

f o r x l , y  t, Y e Z .  

(i,j ~ Z+). 

for Xz, y2, U ~ Z. 

Qi-1 

5. Set P = Pi-1 + (XQH/¢U) (mod Q). (If U = Y, then set x2 = 0, Y2 = 1.) 
6. Set 

This algorithm, which is basically Shanks' modification to Gauss' composition 
algorithm for quadratic forms, is mentioned in [21]. The factor U is extracted to 
ensure that the product ideal e is primitive. 

T h e o r e m  3 . 4 .  If  r~, rj are such that 0 < Q,-1, Q j-1 < 2~/D, - 1  < (P~-I - ~/-D)/ 
Qi-1, (Pi-1 - ~/D)/Qi-t < O, then Algorithm 2 performs O(log D) arithmetic opera- 
tions on numbers requiring O(log D) bits of storage. 
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Proof. Q.i-1, Qj-I, P~-I, Ps-1 = O(x//D), hence all numbers throughout the algo- 
rithm are bounded by O(D). Our algorithm performs a fixed number of arithmetic 
operations plus two applications of the Extended Euclidean Algorithm (EEA) to 
solve the diophantine equations. The number of arithmetic operations performed 
by the EEA is logarithmic in its largest input number. [] 

Algorithm 3 (Reduction). 
Input: a 1 ~ P where 

a 1 = c - - - - - ~ r i r  j =  , 

is computed by Algorithm 2. 
Output: 

ak = 0 al ok = ( -  1) Gk-2 - -  Q 
such that BR_ 2, Gk-2 ~ Z>_o and k _> 2. 

Algorithm: 

1. 
2. 

. 

4. 

S e t Q b = Q , P ~ = P , B _ 2 =  1, B_, = 0 .  
Repeat, starting a t j  = 1: 

Compute qj-1, Q~, Pj as in Algorithm 1 (a). 
Set Bj-1 = qj-lBj-2 + Bj-3. 

until tr < Q) < d. 
Compute one more quadruple (qj-l, Q~, Pj, Bj-1) as in step 2. 
Set 

k = j + l ,  a k = [ Q ~  1 / ' k - l+X/ /~  1, Ok ( 1 )  k - l G k - 2 - B k - 2 x / ~  
a Qo 

where Gk_ 2 = P~_IBk_2 + Q'k_lBk_3. 

Algorithm 3 is discussed in [22]. As soon as Q~ is obtained such that a < Q~ < d, 
the ideal 

• 

ak _-- 1 ,  O" 

is reduced, so a k ----- r m for some m E Z+. The extra iteration in step 3 of the algorithm 
is to ensure that the bounds 0 < P~-z < x/~,  0 < Q~-I < 2 x / ~  of Theorem 3.1 are 
satisfied. (Note that we write P j l ,  Q~-I instead of Pj_~, Qj-t to indicate that these 
are the coefficients of an ideal a t which is not reduced for j < k - 1. This notation 
is not to be confused with the notation ~t' e K which denotes the conjugate of ~.) 

Lemma 3.5. Let c, Bi ( - 2  _< i _< k - 2), Gk_2, Ok, and a k be as in Algorithm 3. 
Then 0 < B, < Bi+ 1 < Q'o/x/~ ( - 2  _< i _< k - 4), Bk-2 < (ql,-2 + 1)(Q~/v/D), and 
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Proof.  0 < Bi < B~+~ is clear from the recursion since all q~ > 1 for i _> 1 by 
Theorem 3.1. F rom Theorem 4.2 in [21], we get Bk-3 < Q'o/x/D. T he  bound  for 
B~_ 2 follows from the recursion. The inequali ty for Gk-2 can be obta ined  using the 
bounds on P~_~, Q~,-t in Theorem 3.1 (it is at this point  that  we need the extra 
i teration in step 3 of Algorithm 3). [ ]  

Theorem 3.6. I f  e = (1/U)rirj, where the coefficients of ri and rj satisfy the bounds 
of Theorem 3.4, then Algorithm 3 performs O(log D) arithmetic operations on numbers 
of O(log D) bits. 

Proof.  F r o m  Algorithm 2, we have Qb = O(D), P6 = O(D) where 

e = a  1 = , 

If 

ak ~- 1 O" 

then it follows from Theorem 4.1 and Corol lary  4.1.1 in [21] that  IP[I < ~ + Q'o, 

[Q'il < Q~ fo r0  < i < k - 2. Theorem 3.1 yields P~-I, Q~,-: = O(x/D)- F r o m  Lemma 
3.5, we obtain Bi = O(x/~D)(-2  < i < k - 3)and Bk-z < (q;,-2 + 1)Bk-3 = O(D3/2), 
since ql,-z < (P;,-z + ,~) /Q'k-2  = O(D), and G = O(D2). (Indeed, by the G a u s s -  
Kuz 'min  law, q~-2 will be small most  of  the time, so generally we have [P~-z[ = 
O(x/~) ,  Bk-z = O(x/~),  Gk-z = O(D)). Hence all numbers  in the algori thm are 
bounded  by a fixed power of_D. By Corol lary  4.2.1 of [22] the max imum number  
of i terations is O(loglQ'ol/x/D) = O(log D). [ ]  

Theorem 3.7. Let e = (1/U)r~rj, where ri, rj are as in Theorem 3.4, and let a k be 
the reduced ideal computed from e = a 1 using Algorithm 3. I f  ak = rm, then ¢5 m = 
6~ + fit + e where I~l = log D + O(I). 

Proof.  We have, from Algorithm 2, Q~ = Qi_lQi_i/crU 2, so 

6 k - ,  + 10~]_ 

U Qi-1 Qj-I 

Since step 3 of Algorithm 3 ensures that k > 2, we have Bk-2 > 1, sO 

10~1 G~_~ + Bk-2x /~  1 

U 4 D  - 4x//-D 

and, from L e m m a  3.5, 

_ _  3Bk-z~/~  + Bk_aw/-D 4Bk_z~/-D 10~1< 10£1 < , -- < 4(q~_ 2 + 1) = O(D). 
u - Qo t2 , 

Set e = log(lO~l/U), then let = log D + O(1). If ri = (#i), r~ = (#~), and if ak = 
rm = (#m), then r ,  = 0;,e = (6"~/U)rirs, so ~,n = (lOkl/U)#d.tp hence ~,~ = log # ,  = 
log(lO~lg,#s/U) = e + ~ + 6 i. [] 
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Let x, y ~ R. O u r  next goal is to compute  efficiently f rom ideals ri ~ {r_(x), r+(x)} 
and rj ~ {r_(y), r+(y)} an ideal r ,  ~ {r_(x + y), r+(x + y)}. T o  achieve this, we first 
compu te  e = (1/U)rir j and a reduced ideal r,, such that  6,, = 6i + 6j + e, [el = 
log D + O(1) in t ime O(log D), using Algor i thms 2 and 3. Then  6(r,,, x + y) = 
fi,. - x - y = fi(r~, x) + 6(rj, y) + e, and r,. need not  yet be our  correct  ideal r.. 
However ,  r ,  can be computed  from r,. using Algor i thm 1. It  remains to be shown 
that  this requires O(log D) iterations of  Algor i thm 1. We  prove  this result and 
discuss the details of  the a lgori thm in the next section. 

4. Computing Closest Ideals 

4.1. Preliminaries for  the Implementation 

Since we wish to avoid evaluating logar i thms in our  implementa t ion ,  we use 
expoential distances. If  rj = (#j) is any reduced ideal with distance 6), then define its 
exponent ia l  distance as simply e ~j = pj. Similarly, if x ~ R+, we define 

2(rj, X) = e a(,~'x~ =/~ je  -'~. 

Since distances are generally irrat ional  numbers ,  we need to use rat ional  app rox ima-  
tions in our  algori thms.  More  specifically, we app rox ima te  a distance 2(r, x) ~ R by 
2(r, x) ~ Q with a fixed precision of p bits, i.e., we write 

M(r, x) where M(r, x) ~ Z+. 
2 ~ , 

~.(r, x) - - -  

We define the relative error: 

~(r, x) 
p(r, x) - ,~(r, x)" 

We denote  by i~(x) the ideal actually compu ted  by our  a lgori thm, so we always have 
~(x) ~ {r_(x), r+(x)}. Let 2(x) -- 2(i~(x), x), $.(x) = $.(i~(x), x) = M(x)/2 p, and p(x) = 
~(x)/~(x). 

The  following l emma  is an immedia te  consequence of L e m m a  3.2(a) and  (c). 

Lemma 4.1. Let  x ~ R and le t j  ~ Z+ be such that r_(x) = rj, r+(x) = rj+ 1. 

(a) 1/(qi_ 1 + 1) < 2(r_(x), x) _< 1 < 2(r+(x), x) < qj-1 + 1. 

(b) 2(r_(x), x) > 1/,vfA, 2(r+(x), x) < x /~ .  

For  our  implementa t ion  details, we need to define a n u m b e r  of constants  together  
with their properties.  Let B e Z>_2 be an upper  bound  on the secretly chosen 
"exponents"  a, b such that  B is po lynomia l  bounded  in D. Set 

1 1 
d* = rz,,/-b], z = 1 + 2p_ 1, g = 1 + 47----d' 

= rg - ' 2 , l ,  K = \1  -- y-~// ' A = gU~68~. 
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Also recall that d = I.D] and A = (4/a2)D is the discriminant of K. Four our 
computation, we require 

2 n > 3072dB 2, 

i.e., our precision is polynomial in D. For example, if a, b are bounded by d = Lx//DJ, 
we must carry O(D 3/2) bits of precision; a bound of I.~/-DJ on a and b requires a 
precision of O(D) bits, etc. Furthermore, ~, will be a lower bound for all our 
approximate distances M(a, x) throughout our protocol. The following inequalities 
hold. 

Lemma 4.2. 

(a) 7 > 1. 
(b) K > 1. 
(c) X2(1 + 9/2 ~') < ~ < A 3. 
(d) g 7 < i + i/x/~- 
(e) Z + 2 - n < l + l / 2  p - 2 < A < g .  
(f) (1 + 2-n)g6/(1 - ga2-n) < 1 + I/x/A. 

Proof. 
bound for p. We have 

1 + -- 1 + < exp ,F - ) 

Since log(1 + ltx) > 1/(1 -I- x) for x > 1; 

1 1 16B 2 
log(g) _> 47d + i -> 48d > 2 p-2 " 

So 

We only prove the inequality 1 + 1/2 p-2 < A as it explains our lower 

(16B2"~ ( 1 "~t682 
A x6s' = g > exp\~--/~-] > 1 + ~ - ~ j  • []  

4.2. The Algorithms 

Our first algorithm in this section takes two input ideals ~(x) ~ {r_(x), r+(x)} and 
~(y) ~ {r_(y), r+(y)} (x, y e R) and computes ~(x + y) ~ {r_(x + y), r+(x + y)}. The 
second algorithm computes, from a positive integer m and l~(x) ~ {r_(x), r+(x)}, an 
ideal ~(mx) ~ {r_(mx), r+(mx)}. 

Algorithm 4. 
Input: ~(x), ~(y) ~ 91, M(x), M(y) (x, y ~ R) such that: 

(i) M(x), M(y) > y. 
(ii) t(x) ~ {r_(x), r+(x)), i~(y) e {r_(y), r+(y)). 

(iii) g - t  < p(x)o(y) < g. 

Output: ~(x + y) ~ 9t such that ~(x + y) ~ {r_(x + y), r+(x + y)}, M(x + y) > y. 
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Set 

Case 3: L > g3. Set 

Tm=2 p -  1, 

F r o m  Qm-I Pm-1, TIn, 
( j  < m - 2) where 

T = 22pGk-22v + Bk-2d* 0 = 23 v, L = g~.(x)~t(y). 
Q 

Casel: l ~ L _ g a .  Then set 

P(x + y) = r . ,  M(x + y) = 2PI(x) i (y)  = . 

Case 2: L < 1. Compute  qm-1, P,,, Q,, using Algori thm l(a). Set 

rP~+2, + a • ] 
Tm= 2 p, T,.,,+I I Q-mTI I 

F r o m  qm-1, Pro, Q,,, TI, T,.+I, compute  qj-2, ej-lOj-1, using Algori thm l(a) and Tj 
( j  > m + 2) where 

Tj = qj_2Tj_t + Tj_ 2 

unt i l j  = n such that 7", > 2P/L > T._ x. Set 

P ( x + y ) = r . ,  M(x + y) = [ T~ 2(x)2(y) ] = I ? 1. 

i-p._l:,+ =l ] =, 
T._t,  compute  Qj, qj, Pj, using Algori thm l(b) and Tj 

un t i l j  = n such that T._ 1 > L2 p > T~. Set 

P(x + y) = r., M(x + y) = .-7-~ 2(x)2(y) = . 
I gT;, I 

Algorithm: First use Algorithm 2 to compute  U ~ Z+, 

such that  e = (1/U)P(x)P(y) = a 1. Then compute  

= - ~ 9~, 0~ = ( -  1) ~-1 Gk-2 / ~ - 2 q / O  ak 1, a Q~ 

such that  ak = 0~e and Gk-2, Bk-2 > O, using Algor i thm 3. Then  ak = (O'k/U)P(x)P(y) 
and 

ak = r"  = [ Q ~  --1' Pm-l+x/~]a for some m e Z + .  
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P roof  of  correctness of Algorithm 4. As ment ioned  before, we need to step through 
9t in the appropr ia te  direction, starting at rm, to obtain r. ~ (r_(x + y), r+(x + y)}. 
To  see that  r.  is indeed the correct  ideal, it suffices to show that 2(r._~, x + y) < 
1 < ~.(r,+l, x + y). 

Since 2(ak, X + y) = (I O'kl/U)2(X)2(y), we see that  t9 and L are approximat ions  for 
10;,I and 2(a k, x + y), respectively. Fo r  simplicity, let 0 = t0;,l, a = Gk-2,  n = n~-2 ,  
and Q = Q~. Then  

0<19 <x0. 

Proof.  

23o0 23PG + 23PBx/~  ~ 22oG 2p + Bd* 2t, G 2p + Bd* - _ < T <  + 1  Q Q Q 

2~G2P + B(2Px/~  + 1) 2oB < Q + 1 = 2 a P 0 + 2  ~ + 1 .  

N o w  23° x = 2 ap + 22~+1 and 22p > 30722d2B 4 > (3072/2)2(2d) 2 > (3072/2)2D, 
since D = (v/-D) 2 < (d + I) 2 < (2d) 2. Fur thermore ,  step 3 of Algorithm 3 guarantees 
that  k > 2, so B > B0 > 1 and G > Pk-i B > 1. Therefore  

22p+ t B > _ _  > > - - -  > 1 
Q- Q 4 0  - 

and trivially 

22p+1Bx/~  > 22a B.  
Q Q 

It follows that  

2t, B ~QD + 22O+IQ - 23pO_F 22o+IO - 3oZO" T < 23~0 + 2 ~ + 1 < 2aP0 + 2 2p+1 B 

We also have 

L 
ga < 2(ak, x + y) ~ L. 

Proof .  

o 0,~(x),~(y) 0L 
2(ak, x + y) = 2(x)2(y) = Up(x)p(y) - Ogp(x)p(y)' 

so, since X < g, by Lemma 4.2(e), 

L L L L 
g--~ < - -  < 2(ak,  X -'l- y )  < ~ L .  

gZz < gzp(x)p(y) - -  gp(x)p(y) 

The bounds on 2(a k, x + y) show that  our  three cases, 1 _< L _< ga, L <~ 1, L > ga, 
correspond to 2(r=, x + y) ~ 1, 2(rm, x + y) < 1, and 2(rm, x + y) > I, respectively, 
For  each case we need to show M ( r . , x + y ) > _ 7  and 2(r._ l , x + y ) < l <  
2(rn+ 1, x + y). 
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Case I. 
4.2(d), 

and 

In this case we have 1/g 3 < 2(r,., x + y) < g3, so, by L e m m a s  3.2(c) and  

2(r,,, x + y) g 3 1 
2 ( r m - l ' x + Y ) =  10'-11 < 1 + l / v / -  S < ~-~ < 1 

1 + 1/,/X o" 2(r. ,+i ,  x + y) = l~;.12(r.., x + y) > 03 > > 1. 

Fur the rmore ,  M(x  + y) > 12~/03 = ~. 

Case 2. Here  2(r,., x + y) < 1, so we need to compu te  right neighbours  of  r m 
in order  to increase the distance and move  closer  to x + y. N o t e  that  ifrj = (Oj/O,)rm, 
then T /2  v is an  approx imat ion  for IOj/O',.I = 1-II=~ I~il ( j  > m) and this expression 
increases a s j  increases. Hence, if Tj ~ 2P/L, then 

1 ~ L ~  O, 2(rm, x + y )  2(r i , x + y ) .  

We have 

0j  < < Z  ( j  > m). 

P r o o f  by induct ion on j .  The case j  = m is 2 ~ = Tm < ~2 p. F o r j  = m + 1, we have 

0"+ 1 P,.2 p + d* Pm 2p + d* 
2 p < 2Vl~b,] < < Tin+ 1 < + 1 

-02-. - Q. -1  Q . -1  

Pro2 v + ~ 2  ~ + 1 1 
< Q,,-1 + 1 = 2vlq / I  + ~ + 1 < 2Vl~O'l + 2 

0;÷1 
=Z2~l~b ' l  =Z2P  0" " 

F r o m  L e m m a  3.3(a) and (c), it follows that  

Oj+2 _ 0~+ 1 O; 

-~-. = q' -02 + 0 , '  

hence, since all qj > 1 f o r j  > m, the rest follows trivially f rom the linear recursion 
for T i. 

We clearly have M(x  + y) > r2./o] = r. N o w  

Oj 2(rm, x + y ) _  iOjlZV O TiL 1 2(rs, x + y) = 
0" 16,] T i 0 2v gp(x)p(Y) 

SO 

for all j > m ,  

2(r._1, x + y) = - -  
t p 10'.-112 0 T~_, l 

Io, I T._~ 0 L2~ ap(x)p(y) 
< 1 - 1 . 1 . ~ . g = 1  

9 
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and, as in Case 1. 

~.(r.+x, x + y) > 1 + 10;.I T. 0 2P gp(x)p(y) 

hence i~(x + y) ~ {r_(x + y), r+(x + y)}. 

Case 3. In this final case 2(r,., x + y) > 1, so we need to compute left neighbours 
of r,. in order to decrease the distance and move closer to x + y. Here, if 

> 9 7 1  1 1" 1 95 I, 

d* - P,.-I 2P P..-12P + d* 
< Tm-~ < + 1  

ZQm-2 ZQm-2 
P,._12" + x /~2"  + 1 2 p 1 

zQ,.-2 + 1 = Z I¢/-xl  + ÷ 1. 

Now X2 p = 2" + 2. so 2P/X = 2 p - 2/g and 

~l@ ' - x l  + + 1 < 2Pl~,~._t 
ZQm-2 

= 2Pl@~._x 

< 2P1¢'~,_1 

= 2P I~k~,_l 

< 2Vlql~._l + 1 - 

1 ( Z )  + 1 - -  21q4.- .1-  
x 

l 2P=_, + 2 x / ~ -  1 
+ I - -  

X Q,.-2 

1 2 + Q m _ 2 - 1  
+ l -  

Z Qm-z 

(&) + 1  1 1 +  
X 

+ 1  1 1 +  
z 

l ( l  + 2pl-~l)= 2 [~b.-ll _ _  P ," 

Z 

< 

2", so 2P/Z < 

rj = ((~./~j)r,., then T/2 p is an approximation for 

!! = ~ = ifIX I~,;t ~., ,=J ( j < m ) .  

and this expression increases as j decreases. Hence, if T. ~ L2 p, then 

1 .~.--T-~-~ (. L . ~  ( .  2 ( r , . . x + y ) = 2 ( r . . x + y ) .  

We show. by induction on j. 

(., ¢,. - 

Proof. Z(2 p - l )  = ( l + l / 2 P - t ) ( 2  " - 1 )  = 2 " + 1 - 1 / 2  p-I > 
2 p -  1 = T., < 2 p. 

2" ~ 2Pl~O._t I < 
Z 
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using v/D < 2 p-2. Now from Lemma 3.3(a) and (c), we obtain I~j+21 = -qjl~j+ll  + 
Ifj[, hence 

(j  < m - 2), 

so Tj and [(j/(~,i satisfy the same recursion. Hence the above inequalities follow since 
all qj > 1 for j < m - 2 by Theorem 3.1. 

Now, as in Case 1, we have M(x + y) _> I-2P/g] = y and 

2(rj, x + y) = 2(r,~, x + y) - - -  
1~5;.I T~ 0 L2 p 1 
I¢'jl2" 0 Ti gp(x)p(y) 

SO 

2(r,_ x, x + y) - - -  
IC;.I T._, o L2 p 1 

I(';-, 12" 0 T._, gp(x)p(y) 

and 

for all j < m ,  

< l . l . l . ~ . g = l  
g 

2 ( r . + , , x + y ) >  1 + l~',12P0 T. gp(x)p(y) 

hence ~(x + y) e {r_(x + y), r+(x + y)}. 

_. g5 
>gT1 1 1.~2 = >g3  

> 1 .  

[ ]  

Theorem 4.3. I f  t(x), i~(y) E 9~ are such that the bounds of Theorem 3.4 and the 
conditions of Algorithm 4 hold, then Algorithm 4 performs O(log D) arithmetic opera- 
tions on inputs requiring p + ½ log D + o(1) bits of storage in almost all cases. In 
particular, M(x + y) = O(2 p) almost always. 

Proofi By Theorem 3.4, computing e takes O(log D) arithmetic operations on 
numbers bounded by O(D). By Theorem 3.6, the same is true for the computation 
of r,,. By Theorem 3.1, in obtaining i~(x + y) from r,,, all coefficients computed by 

the neighbouring algorithm are bounded by O(x/~). So we only need to prove 
that r, = t(x + y) can be obtained from r,, in O(log D) iterations (i.e., In - ml = 

O(log D)) and that the maximum value of Tj is bounded by O(2Px/~) in almost all 
cases. From the proof of Theorem 3.7, we have 1/4v/-D < O/U < 4(q + 1) where q 
is as in Theorem 3.7. By Lemma 4.1(a), 2(x) < q' + 1, 2(y) < q" + 1 for some partial 
quotients q', q" generated by the continued fraction algorithm. Therefore 

and 

0 
L < gz-~p(x)p(y)2(x)2(y) < 4xg2(q + 1)(q' + 1)(q" + 1) 

L > g 0~/2 1 1 1 
- > - 

Distinguish between the same three cases as in Algorithm 4. 
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Case I. M(x + y) = [L2P/9] <_ 12P921. There  is nothing else to prove. 

Case 2. From Lemma 3.2(b), 4Ov/-D > I/L > T._t/2 p > [0',_i/0~,[ = I-IT=-~ I~;l > 
2 t"-"-1~/2 or 2"-"  < 32920. So n - m = O(log D). Now T._ 1 < 2P/L < 2p+29x/~,  
T. < (q.-2 + 1)T.-I < (q.-2 + 1)92v+2~/'-~, and q.-2 is almost always small by the 
G a u s s - K u z ' m i n  law. Finally, 

Case 3. Here  

5 0: .-, 
= = I q,"l > 2 ~"-")/2, 4Xg2(q + 1)(q' + l)(q" + 1) > L > ~ = ~" 0'. i=I-I. 

so 2" -"  < (4zo2(q + 1)(q' + 1)(q- + 1)) 2 = 0(1)  in almost  all cases and O ( 0  4) in 
the worst case. Hence m - n = O(log D) and m - n = O(1) almost always. Now 
T.-1 < (q.+t + 1)T. _< (q,+l + 1)L2V _< 4Zo2(q + 1)(q' + 1)(q" + 1)(q.+l + 1)2V, so 
again T._ 1 = O(2 p) in most  cases, and T.-x is the largest value computed  in the 
recursion. Finally, 

1 q.+1 + 1 q.+l + 1 
< - - <  - - ,  

T. T._ 1 L2 p 

so M(x  + y) <_ r(q.+l + l)(2p/o)]. [ ]  

Algorithm 5. 
Input: ~(x) E 9~ for x ~ R, M(x), m ~ Z+. 
Output: ~(mx), M(mx). 

Algorithm: 

1. Obta in  the binary decomposi t ion m = ~ '=o  bl 2r-~ of m, b i e {0, 1}, b o = 1. 
2. Set i~(zo) = i~(x). 
3. F o r i = l t o r d o  

(a) Compute  ~(2zi-l), M(2zi-1) using Algori thm 4. 
Set ~(z~) = ~(2zi_t), M(zi) = M(2zi_x). 

(b) If bi = 1, then compute  i~(z~ + x), M(z~ + x) using Algori thm 4. 
Set i~(zl) = ~(zi + x), M(z0 = M(zi + x). 

4. Set t(mx) = t~(z,), M(mx) = M(z,). 

This algori thm uses a s tandard exponent ia t ion technique (see, e.g., 1"12]). F rom 
Algori thm 4, it is clear that if 0 - 1 <  p(z~_02 < 9 after step 3(a) and 9 - 1 <  
p(2z~_1 )p(x) < 9 after step 3(b) in each i teration of  the algorithm, we have M(z~) > ), 
and ~(z~) ~ {r+(zi), r_(zi)} (1 < i < r). 

Theorem 4.4. Let m E Z+, x ~ R, and let ~(x) satisfy the bounds of Theorem 3.4. 
Furthermore, assume that conditions (i)-(iii) of Algorithm 4 are satisfied for each 
application of Aloorithm 4 in step 3 of Aloorithm 5. I f  m is polynomially bounded in 
D, then Algorithm 5 performs O((log D) 2) arithmetic operations on inputs of O(log D) 
bits. 
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Proof. By Theorem 4.3, since p = O(log D), all numbers have input size O(log D). 
Step 1 of Algorithm 5 takes O(r) = O(log m) operations and this is O(log D) if m is 
polynomially bounded in D. Steps 2 and 4 take O(1) operations. For each iteration, 
steps 3a and 3b each perform O(tog D) operations. So the number of operations 
needed for step 3 is O(r log D) = O((log D)2). [] 

Now that all the required algorithms for our protocol are known, there remain 
two more problems to be solved: 

1. Both communication partners need to start with an initial ideal such that 
conditions (i)-(iii) of Algorithm 4 are satisfied throughout the protocol, i.e., 
for each iteration of Algorithm 4. 

2. Algorithm 5 computes one of two possible ideals. The two partners need not 
obtain the same ideal from Algorithm 5 and must be able to agree on a 
common unique key. 

These two problems are solved in Sections 4.3 and 5, respectively. 

4.3. Error Analysis 

Theorem 4.5. Let x, y, t(x), ~(y), M(x), and M(y) be as in Algorithm 4. Then 

p(x)p(y) N p(x  + y) < x//K(x)p(y).  

Proof. Assume M(x), M(y) >_ ?, i~(x) ~ {r_(x), r+(x)}, i'(y) ~ {r_(y), r+(y)}, and 
9-1 < p(x)p(y) _< 9. We only prove the result for Case 3; the reasoning for Cases 1 
and 2 is analogous. 

).(rn, x + y) (2P/Tn)(O/U),~.(x)J.(y) 
p(x + y) - > 

2(r., x + y) - ]('~/~'.l(O/U)2(x)2(y) 

02~ 5! 
- 07", ~m p(x)p(y)  > p(x)p(y),  

(2P/T~)(O/U)i(x)i(y) + 2-p 
p(x + y) < 

[~'~/ff',l(O/U),((x)2(y) 

= p(x)p(y) 2 ( .  0 1 
- O +  p , , 2 I gr,/~,I(OTUfi(X)2(Y 

0 
< z + < p(x)p(y)~ Z + - ~  C,,, J L22", ] 

P(x)p(y)x2 C I + -~p) 
x/-Kp(x)p(y) < 

by Lemma 4.2(c). [] 
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Theorem 4.6. 

Proof .  

Define 
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Let m e Z, 1 < m < B, x ~ R, l~(x) ~ {r_(x), r+(x)}, M(x)  > y and let 

be such that 0 < Q < 2 x / ~ ,  - 1 < (P + x / ~ ) / Q  < O. I f  

then M(mx) > 7, $(mx) e {r_(mx), r+(mx)}, and 

min{1, p(x) 2m-~ } < p(mx) < m a x { l ,  p ( x ) Z ' - ~ } K  m-~. 

Let U o = max{1, p(x)} > 1, L o = min{1,  p(x)} < 1, and 2" < m < 2 "+~. 

Ui+l = KUo U2, L,+ 1 = Lo L2 (0 < i < r -- 1). 

Then  Ui+ 1 > Ui > 1 since K > 1, and Li+l < Li < 1. By induction on i it is easy to 
prove  

r2'+~-1 (0 < i < r). Ui = Uo2'+I-IK 2 '-1,  Li = "-'o - - 

Then  U, = U 2 . . . .  I K 2 - - 1  ___ Uo2m-lKm-1 < Uo2a-iKS-1, L,  = L 2"÷'-1 > L20 m-' > 
L 2a-1. If  Uo = 1, then U, < K 8-1 < .4. 6(s-l '} = g3(B-1)/aBz < g by L e m m a  4.2(c). If 
U o = p(x), then U, < p(x)2B-1K B-I < ( g / K a - ' ) K  n-~ = g. So in either case U~ < g 
for 0 < i < r. Similarly, if Lo = 1, then L,  > 1 > g - l ,  and if Lo = p(x), then 
L, > p(x) za- '  > g- l ,  so in either case L i > g-1 for 0 < i < r. 

We show L ~ < p ( z i ) <  U, for 0 < i <  r. Prove  this by induct ion on i: 
L o < p(x) < U o and p(zo) = p(x). Using T h e o r e m  4.5, we obta in  the following. 

Case bi+l = O. 

p(zi+l) = p(2zl) > p(Zi) 2 ~ L 2 > Li+l since Lo < i. 

p(z,+l) < x/r-Kp(zi) z < x / ~ U }  < U~+~ since K > 1, Uo > 1. 

Case bi+, = 1. 

P(Zi+t) = p(2zi + x) >_ p(zi)2 p(zo) >__ L~ Lo = Li+l. 

p(z,+l) < x/rKp(2zi)p(x) < Kp(z,)2p(zo)  <_ K V ,  ZUo = V,+ 1. 

It  follows that  L 2m-1 < L,  < p(z,) = p(mx)  < U, < Uo 2m-1K m-l. 
Next  we p rove  that  Li < p(z~_~) 2 < Ut and  (in case b~ = 1) L i < p(2zi_~)p(x) < Ui 

(1 < i < r). Then  it follows that  g-~ < p(z~_t) 2 < g after step 3(a) and  g-~ < 
p(2zi_~)p(x) < g after step 3(b) in each i terat ion of Algor i thm 5, hence M(z~) > 
7 and  l~(zi)e {r+(zi),r_(zi)} for 1 < i <  r, and  f rom the r th  i terat ion ~(mx)e  
{r_(mx), r+(mx)} and M(mx) > 7- Again, we p rove  our  c la im by induct ion on i. For  
simplicity, we let p(z_l)  = p(2z_~) = 1. 

The case i = 0 is Lo < 1 < Uo and Lo < p(x)  < Uo. N o w  assume that  our  claim 
holds for i and  prove  it for i + 1. F r o m  our  previous  result  Li < p(z~) < Ui. 
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Li+~ = Lo L2 < L~ < p(z~) : < U 2 < K U  oU~ 2 =  U~+ 1. N o w  assume b ~ + ~ = l .  
F r o m  Theorem 4.5, p(2z~)p(x) > p(zl)2p(x) > L2Lo = L~+I and p(2z~)p(x) < 

V/--KP(z~)~P(X) <- v/KUi~Uo <- Ui+,. [] 

Theorem 4.7. Let  a, b ~ Z, 1 < a, b < B, c e R, and let 

be such that ~(c) ~ {r_(c), r+(c)}, M(c) > ~, A -~ < p(c) < A, and 0 < Q < 2 x / ~ ,  

- 1 < (P - ~/-D)/Q < O. Then M(abc) > ?, ~(abc) ~ {r_(abc), r+(abc)}, and g-~ < 
p(abc) < g where ~(abc) is obtained by applying Algorithm 5 to ~(c) and b to compute 
~(bc), then applying Algorithm 5 to ~(bc) and a. 

Proof.  We want  to apply Theorem 4.6 first to l~(c) and b and  then to t(bc) and a. 
Hence  we first need to show that  g-1/(2s-1) < p(c) < (g /KB-I)  ~/~28-~). To p rove  these 
inequalities, observe that, by L e m m a  4.2(c), A 2B-t K B-t < A2B-1A 6~B-I) = A 8B-7 = 
g (SB-7)/16B2 < g, SO A 2B-1 < g /K  B-1 < g and hence g-1/(2~-~ < A - t  < p(c) < A < 

(g/KB-1) 1/t2a-lJ. By Theorem 4.6, we have M(bc) > y, ~(bc)~ {r_(bc), r+(bc)}, and  
min{1, p(c) 2b-~} < p(bc) < max{ l ,  p(c)Zb-t}K b-1. F r o m  Theo rem 3.1, we know 

tha t  e(bc) satisfies 0 < Q < 2x~/--D, - 1 < (P - x//--D)/Q < 0, so only g-t/t2s-~) < 
p(bc) < (g /K B-1)l/t2B-1) remains to be proven.  

Assume first that  p(c) > 1, then f rom our  above  result p(bc) > 1 > g-1/t2s-1). 
Using L e m m a  4.2(c)again, we see that  g = A 16n2 > A482K2ae > At2B-~)~K2atB-I) = 
(A2B-1KA-S)2n-~ KB-X, so p(bc) < p(c)2b-~ K ~-~ < p(c)2S-~ K ~-~ <_ A2a-I  K ~-~ < 

(g/Kn-~)  u(2B-t~. N o w  consider the case p ( c ) <  1. Then  p ( b c ) > p ( c ) 2 ~ - t >  
p(c)2n-1 > A-(2a-1) = g-(2B-1)/16B 2 > g-((2B-1)/(4.S-2) z) ) ,  gl/(2B-1) and f rom # > 

A ~2s~ > K zs2 > K 2sCn-~ = K(s-~(2n-I~K ~-~, we obta in  p(bc) < K ~-~ <_ K s-~ < 

(#/Kn-1)  1/~2~-1). If  follows f rom Theo rem 4.6  tha t  M(abc) >_ 7, ~(abc) s {r_(abc), 
r + (abc) }, and rain { 1, p(bc) z°-~ } < p(abc) <_ max  { 1, p(bc) 2~-~ } K ~-~. 

We finally need to show that  #-1 _< p(abc) <_ O. I fp(bc) >_ 1, we have p(abc) >_ 1 > 
# - I  and  p(abc) < p(bc) z°-I K ~-1 < p(bc) 2s-~ K ~-~ < (# /K n-~)K ~-1 = #. In  the case 
where p(bc) < 1, it follows that  p(abc) >_ p(bc) 2~-~ > p(bc) 2s-~ >_ g-1 and  p(abc) <_ 
K o-~ < K n-1 < A6(B-l)  = g3(B-D/8 B~ < g. [] 

Lemma 4.8. Let  

= = , ~ ~, 

where r is obtained from 0 by applying Algorithm 1 (a) to 0 a few times (at least once). 
Set c = logl~l, l '(c)= r, M(c)= 2 p. Then ~(c) and M(c) satisfy the conditions of 
Theorem 4.7. 

Proofi  By T h e o r e m  3.1, 0 < Q < 2x//-D, - 1 < (P - x / ~ ) l Q  < 0. Since 2(r, c) = 
I#[e -c = 1, we have r ~ {r_(c), r+(c)}. Fur thermore ,  M(c) = 2 p > ?, so p(c) = 1. [] 
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Now if both  communica t ion  par tners  start  on an initial ideal t(c) generated as 
described in Lemma 4.8, they can obta in  their respective key ideals ~(abc) such that  
M(abc) > ~, ~(abc) ~ {r_(abc), r+(abc) }, and g-~ < p(abc) < g, and the condi t ions of  
Algorithms 4 and 5 as well as those for Theorem 4.3-4.7 are satisfied th roughou t  
their entire computat ion.  Given the above  bounds  on the relative er ror  p(abc), we 
show that  the partners are able to agree on a c o m m o n  unique key. 

5. Solving the Ambiguity  Problem 

Before resolving the ambiguity in the ideal computed  in the protocol ,  we need a 
method  for computing from ~(abc) not  only its neighbouring ideals as done  in 
Algori thm 1, but  also their approximate  distances. 

Algorithm 6 (Neighbouring). 
Input: rj ~ 9~, M(rj, x) (x e R , j  > 2). 
Output: rj+l, rj_ 1 ~ ~R, M(rj+t, x), M(rj_l ,  x). 

Algorithm: Compute  ri+i, r~_~ using Algori thm 1. Compute  rational approximat ions  
~j, $ j - i  for ICjl and I~0j-x I, respectively, as follows. Define s ~ Z ---° by 

0 if Pi-1 < d, 

s = Llog2(2d + 1)J if Pj-t = d. 

Let t = s + p and t7 = [2'v/-31. Set 

~i = 2pPJ + d* ~r - -  2tej_i 

2pQi_ ~ ' C J - ~ -  2'Q~_~ ' 

M(r~÷~, x) = I-rjM(rj, x)], M(rj_l,  x) = I'$j_~M(r~, x)]. 

L e m m a  5.1. Let rj_1, rj, rj+ I ~ ~tl, x ~ R. Then 

1 + 2  -p 
p(rj, x) < p(ri± t, x) < 1 - M(r~±1, x) -1 p(rj, x). 

Furthermore, if t is as in Algorithm 6, then t < 2(p - log2 B) - 9. 

Proo~  

Sj-t  _ 2 - Q  - Pi-1 > 1. 

Similarly, " ' _ ¢/1¢~t > 1. 

q~-I < ( 2 - ' +  ~/-D) - Pi- ,  < 1 +  1 

I~oj,, I ~ -  Pj-t 2'(x/D- Pi-t)" 
I f  P~_~ < or, then ~ - Ps-, > l ,  so Cj-,/l~oj-~l < 1 + 2 - '  = 1 + 2-~. I f  P:_, = a, 



A Key-Exchange Protocol Using Real Quadratic Fields 193 

t h e n 2 d + l  < 2  s ,so  

D - Pj2_ 1 D - -  d 2 1 
"/°-PJ-' ,/5+e-vc +d 

1 ~bJ-----2 < 1 +  = 1 + 2  -~. 
Iq,j-ll - ~:~ 

Analogously,  we prove  @1@ < 1 + 2 -p. 

i(rj+~, x) ~bji(rj, x) 
o(rj+~, x) - ~(rj+l, x) --- I ¢,j--q)t(-Tj; ~) -> p(rj, x) 

and 

Sji(rj, x) + 2 -p 
p(rj+~, x) < < (1 + 2-P)p(rj,  x) + 

SO 

and 

1 
> 2 - '  and  

2 d +  1 - 

P(b+,, x) 
I~jl ~(rj, x) 2"i(rj+l, x)' 

( 1)  
p(ri+ t, x) 1 M(ri+l, xi < (1 + 2-P)p(rj,  x) 

1 + 2  -p 
p(ri+ 1, x) < 1 - M(ri+ I , x) -1 p(r~, x). 

1 + 2  -p 
p(rj_ 1, x) < 1 - M(rj_ 1, x) -1 p(rj, x). 

Similarly 

p(rj_ 1, x) > p(rj, x) and 

I fPj_  1 < d, then s = 0, so t = p. IfPj_ 1 = d, then since 2 s-t  < 2d + 1, i.e., 2 s -2  _< d, 
we have 2 s-2 < d < 2P/3072B 2 < 2P/2048B 2, hence s < p -  2 log B -  9 and t < 
2(p -- tog B) -- 9. [ ]  

Deno te  by r(x) the reduced ideal closest to x, i.e., 16(r(x), x)] < ]6(r, x)l for any 
reduced principal  ideal r # r(x). Let 21 (x) = 2(r(x), x); analogously,  we d e f n e  M 1 (x), 
21(x), p1(x). Clearly, r(x) ~ {r_(x), r+(x)}, so Algor i thm 4 computes  either r(x + y) 
or  one of its neighbours;  similarly, Algor i thm 5 generates r(mx) or one of its 
neighbours .  

O u r  pro tocol  is such that  Alice and Bob are either bo th  able to determine r(abc) 
or, if this is impossible,  they both  obta in  r+(abc). The  next two lemmas  give the 
details for resolving the ambiguity problem.  

L e m m a  5.2. Let  x e R and 9 -1 < p(x) < g. I f  9-1 < ft(x) < 9, then g--2 < 
;.l(x) < 0 2. 

Proof .  F o r  brevity omit  the argument  x. I f  J = 6(x) = 6(~(x), x), then, by defini- 
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tion, 16 1 ~ 101, which gives four cases, depending on the signs of 6, and  6: 

1. 2 > 2 i > 1 .  
2. 2_< 1 / 2 1 ~ 1 .  
3. 2 > 1 / 2 : > 1 .  
4. 2 < 2 1 < 1 .  

Suppose  first 2, _< 9 -2, so 21 < 1. I f  2 _< 1, then, f rom Case 4, J. = p2 _< p2~ < 
99 -2 = g -~ which is a contradict ion.  I f  2 > 1, then, f rom Case 3, ,~ > p ( 1 / 2 0  > 
g-*g 2 = g which is again a contradict ion.  The  case )-i > 92 follows analogously.  

[ ]  

L e m m a  5.3. Let a, b, c, i~(c), and M(c) be as in Theorem 4.7. I f  2x(abc) >_ g2 or 
21(abc ) <_ g-2,  then f(abc) = r+(abc). I f  g -2 < 21(abc) < g2, then r(abc) can be deter- 
mined from ~(abc). 

Proof.  Again omit the argument abc for brevity. If21 > g 2 o r 2 i  _<g-2, then(s ince 
~. >_ g- i ) ,  by L e m m a  5.2, ,~ > g. I t  follows that  2 = 2/p > gg-1 = 1, so l ~ = r+. N o w  
let g-2  < 21 < g2. F r o m  Theo rem 4.7, g-a _< p _< g and  ~ ~ {r_, r+}, so r = i~ or  r is 
one of the neighbours  of  It Therefore,  by L e m m a  5.1, 

1 + 2  - v  
P < P l - - <  1 - M ~  -a p" 

N o w M 1  = 212 p = p l )q2  p > p212 p > g-lg-22P = g-32p, so 1 - M~ -1 > 1 - g32-t '  
and 

l + 2 - p  l + 2 - p  
- - <  
1 - Mi  -1 1 - #32-p" 

Hence 

1 + 2  -n  1 + 2  -p  
g32_np2: 3 g-3 < p21 < pl21 < 1 -- < 1 -- g32-Pg " 

Since pi) . t  = ,~1, we can determine an ideal a which is either i ~ or  a ne ighbour  of 
such that  

1 + 2  -p  3 
g-3 < i (a ,  abc)< 1 - g32-Pg 

I f r  = Oa where 0 s K, then 

101 2x 2tp(a ,  abc) 
2(a, abc) J.(a, abc) 

1 
> 

: + 1/,/S 
and 

1 + 2  -p  
I•1 < gg3 1 - ga2-t'P ~ 

1 + 2  - ~  
and p < p(a,  abc) < 1 - ga2-nP" 

g-Xp 1 - 2-Pg 3 

((1 + 2-P)/(1 -- g32-P))g3 -> (1 + 2-~)y 6 

(1 + 2-P)g 6 1 
< 1 + - -  

1 - 2 - ~ g  3 x / -A'  

using L e m m a  4.2(f). By L e m m a  3.2(c), it follows that  a = r is the ideal closest to 
abc. [] 
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Now assume that either of the communicat ion partners computes a final ideal 
~(abc) with distance M(abc). He/she then determines the idears two neighbours and 
their respective distances. If among these three ideals there is one, say a, which 
satisfies 

2 p (1 + 2P)g 3 
g3 < M(a, abc) < 1 + 2-Pg 3' 

then b = r(abc) from the proof of the previous lemma. Otherwise, by the same 
lemma, we must have 21(bac ) < g-2 or 21(bac) > g2 and hence ~(abc) = r+(abc). 
With this final observation, we are able to present the entire protocol. 

6. The Protocol 

1. Both Alice and Bob agree on D and an ideal r ~ ~R (obtained by applying the 
right neighbour algorithm to the ideal O = I1, (a - 1 + x//D)/a] one or more 
times). They compute p = I.log2(3072dB2)j + 1 and M = M(c) = 2 p according 
to Lemma 4.8 where c = logl#[, r = (/~), i.e., r = f(c). D, r, and M can be made 
public. 

2. Alice secretly chooses a ~ { 1 . . . . .  B} and from f(c) computes 

using Algorithm 5. She sends the triple (Pa, QA, M(ac)) to Bob. 
3. Bob secretly chooses b e { I . . . . .  B} and from f(c) computes 

using Algorithm 5. He sends the triple (PB, Qs, M(bc)) to Alice. 
4. From ~(ac), M(ac), and b, Bob computes ~(bac) and its two neighbours as well 

as their approximate distances (i.e., M values) using Algorithms 5 and 6. If he 
finds among these an ideal a such that 

2 p (1 + 2"V)g 3 
g~ < M(a, bac) < 1 - 2-Pg 3' 

then a = r(bac). In this case he sends "0" back to Alice. If he cannot find such 
an ideal, then he has computed r+(bac). In this case he sends "1" to Alice. 

5. F rom ~(bc), M(bc), and a, Alice computes f(abc), M(abc) using Algorithm 5. If 
she received "0" from Bob, then she computes the neighbours of ~(abc) and 
their approximate distances and attempts to compute r(abc). If successful, she 
sends "0" back to Bob. The common key is then r(abc). Otherwise the ideal 
~(abc) she computed is r+(abc). In this case she sends "1" to Bob. If  Alice 
received "1" from Bob, then he was unable to determine r(bac) in which case 
the ideal f(abc) computed by Alice is r+(abc). This is then the key. 
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If Bob sent "1," then the ideal ~(bac) = r÷(bac) is the key. If Bob sent and 
received "0," then the ideal a he computed in step 4 is the key. If Bob sent "0" 
and received "1," then Alice was unable to determine r(abc). The key is then 
the ideal ~(bac) = r÷(bac) initially computed by Bob. Note that if Bob sends 
"1," Alice need not reply. Altogether: 

Bob Alice Key 

Sends "0" Sends "0" r(abc) 
Sends "0" Sends "1" r+(abc) 
Sends "1" No reply r+(abc) 

The actual key is the bit string given by the binary representation of the 
coefficients of the key ideal (or any substring thereof). 

7. Security 

7.1. The Discrete Logarithm Problem in 

The only known way of breaking our scheme (apart from exhaustive search) is to 
solve the discrete logarithm problem in 9~, given as follows: for any given reduced 
ideal rj ( j  < l), find its distance ~5 i. If a cryptanalyst can solve any instance of the 
DLP, clearly he can break our scheme, since on intercepting ~(ac) = rj and M(ac), 
he can compute ac ,~ 6~ - log(M(ac)/2 p) + kR for some k E Z (similarly for b). Since 
R is usually larger than ac, k will tend to be quite small; thus an adversary can 
retrieve the key ideal in a few trials for k values. 

Since 6~ = log #~ for rj = (/~j) ~ 9~, the DLP in 9~ is equivalent to the problem of 
finding, for any reduced principal ideal rj, a generator ~i- It should be pointed out 
that a fast algorithm for solving the DLP can be used to find the regulator R of K 
quickly. Details of this method are given in 1-3] and I-2]. By a result of Schoof [18], 
we know that if it is possible to find R quickly, then D can be factored quickly. Thus 
the DLP in K = Q(x/~) is at least as difficult as factoring D. 

An algorithm to solve the DLP is sketched in 1"3]. The first stage employs a 
method which can also be used to determine R and the structure of the class group 
of K. Details and an implementation are given in 14]. As an example, we mention 
that the computation for A = 1040 + 1 (a discriminant far too small to guarantee 
security in our scheme) took 8.3 hours on a SparcStation 2. Then the results 
computed in the first stage are used to solve the actual DLP by an index calculus 
technique. This second part of the algorithm is explained in the case of imaginary 
quadratic fields (i.e., D < 0) in 115]; an extension to the real quadratic case is 
outlined in 1,3]. The overall algorithm seems to be subexponential, with the 
precomputation in the first stage requiring most of the work. The complexity is 
L(A)'/i+°t 1~, assuming certain Extended Riemann Hypotheses (ERH), where L(x) = 
exp(x/log x log log x). For large values of D, this method is totally impractical. 
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7.2. Choice of D 

To prevent an exhaustive key-search attack, we need to ensure that the number 
l of reduced principal ideals in K is sufficiently large. Since r /=  10;+1[ = 
~ = 1  [~'~t, where rl = (1) and ~j = (x//-D - Pj)/Qj (1 < j  _< l), we have g = log ~/= 
~ =~  logiC/j] < (//2) log A by Lemma 3.2(c), and therefore 1 > 2R/log A. Hence we 
require a lower bound on R. 

The analytic class number formula yields R = (L(1, Z)/2h)x/~, where L(s, ~) = 
~k>_l (x(k)/k s) is the Dirichlet L-function corresponding to the Kronecker symbol 
X = (A/.) of K and h is the class number of K. By a result of Littlewood [13], we 
have L(1, X) > C/(log log A) (assuming ERH), where C = n2/12eV(1 + o(1)) and y 
is Euler's constant. Hence 

c 
l >  

h log log A' 

and we need to bound h from above. 
If k is the odd part of the class number, i.e., h = 2ink where 2 ~ k, then we can use 

the heuristics of Cohen and Lenstra [5], [6] to show that the probability that k > x 
is asymptotic to 1/2x. This can be done by estimating ~n_~ . . . .  dd (w(n)/n) (for notation 
see [5]) and using the Tauberian theorem mentioned in the proof of Lemma 5.2 of 
[6], followed by partial summation. Now it is known (see, for example, [7]) that h 
is odd if D = p, D = 2p, or D -- PiP2 where p is any odd prime and p~, P2 are 
primes congruent to 3 (mod 4), More cases of values of D for which the even part 
of the class number can be bounded are given in [10]. Thus by selecting such 
a D value which is large, we expect that it would be most unlikely that I < 
x/~/(102° log D log log D), say. This renders the likelihood of success of a search 
technique to be very slight indeed. 

8. Remarks on the Implementation 

The implementation was done in C language using multiprecise integer arithmetic. 
Unfortunately, the only machine available to us at the time was a DEC MicroVAX. 
Tests show that a more modern workstation (such as a DECStation 5000) yields 
computation times which are approximately 100 times faster than those achieved 
by the MicroVAX. 

Examples show that among the three cases of Algorithm 4, Case 1 was never 
encountered, Case 3 occurred very rarely (at most once per application of Algorithm 
5), and Case 2 occurred almost always. This is to be expected since Case 1 
(1 _< L _< g3) permits only a very small range of L values and corresponds to 
a very unlikely event, namely, having found t'(x + y) immediately after the reduction 
step. Using the bounds from Theorem 4.4, we see that the range for L in 
Case 2 (1/4gx/~ < L < 1) is much larger than the one for Case 3 (1 < L < 
4zg2(q + 1)(q' + 1)(q" + 1)). In addition, as pointed out in the proof of Theorem 
4.3, the number of iterations of Algorithm l(b) in Case 3 was always very small. In 
fact, it never exceeded two, even for our largest discriminants which were around 
200 digits. 
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In all our examples, we encountered the simple case of the protocol where Bob 
and Alice both compute r+(abc) and only Bob needs to send his bit 1. Again, we 
expect this since the bounds given in step 4 of the protocol leave an extremely narrow 
range for M(a, bac) and force M(a, bac) to be very close to 2 ~. 

8.1. Examples 

Among many examples, we ran our scheme on the two fields K1, K 2 generated by 
the square root ofD 1 = 2 1 ° 7  - 1 (a 33-digit prime) and Dz = 2 6 0 7  - 1 (a 183-digit 
prime), respectively. For K1, we chose B = L~Y-DJ as our bound on a and b, requiring 
O ( D  3/2) bits or roughly 50 decimal digits of  precision. The computation time for a 
16-digit exponent was 3 minutes 21 seconds. For K2, we used B = L~DJ (precision 
O(D a/2) or 275 decimal digits) for a 91-digit exponent and B = L~/DJ (precision 
O(D)) for a 45-digit exponent. We consider the latter bound sufficiently secure. The 
first exponent took approximately 97 CPU minutes to compute; the second one 
used 41 minutes of computation time. Recall that, by our previous remark, the above 
parameters would give us computation times of approximately 2 seconds, 1 minute, 
and 25 seconds, respectively, on a modern workstation. 

8.2. Improvements 

Considering the above remarks about the frequency of occurrence of the three cases 
of Algorithm 4 and the number of iterations of Algorithm 1 in each case, we focused 
our efforts for speed-up on Case 2 of Algorithm 4, i.e., on speeding up Algorithm 
1 (a). The following version of the continued fraction algorithm due to Tenner (see 
[22]) is a significant improvement and can be used for both Algorithms 3 and 4. Let 

a 

be a primitive principal ideal. Set 

D - P ~  t o = ( O  if Q > 0 ,  
P o = P ,  Q o = Q ,  Q - l -  Q ~ '  ~1 if Q < 0 ,  

Po + d + t o = qoQo + ro 

(i.e., qo = [(Po + d + to) /QoJ and r o = Po + d + t o - qoQo), and, forj > 0, 

Pj+I = d + t i - rj, Q~+I = Q j-1 - aj(Pj+l - Pj), 

{~ if QJ+a>0 '  py+1+d+tj+l=qj+lQj+l+rj+ 1 
tj+l = if Qi+t < 0, 

(i.e., q~+x = [(Pj+I + d + tj+l)/Q~+ll and r~+l = Pi+l + d + t~+l - qi+~Q~+~)" 
This algorithm is particularly useful if division with remainder is a single opera- 

tion as was the case in our implementation, since q j+l and rj+l are computed in 
one step. It cuts down the number of divisions and multiplications by half(i.e., from 
two to one per step) and merely introduces one extra addition if the ideals are 
reduced. 
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