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Abstract. To date, the only non-group structure that has been suitably employed as
the key space for Diffie–Hellman-type cryptographic key exchange is the infrastructure
of a real quadratic (number or function) field. We present an implementation of a Diffie–
Hellman-type protocol based on real quadratic number field arithmetic that provides a
significant improvement in performance over previous versions of this scheme. This
dramatic speed-up is achieved by replacing the ordinary multiplication and reduction
procedures for reduced ideals by a new version of the NUCOMP algorithm due to
Shanks.

Key words. Cryptographic key exchange, Real quadratic field, Reduced principal
ideal, NUCOMP.

1. Introduction

The first Diffie–Hellman-type key exchange protocol that is not based on a group structure
was introduced by Buchmann and Williams in 1989 [2]. It uses as its underlying key
space the set of reduced principal ideals of a real quadratic number field, which is not a
group, but supports instead a so-called infrastructure. An initial implementation of this
scheme was given in [12], and the method was extended to real quadratic function fields
in [13]. Recently, the required precision in the number field scheme was significantly
reduced [5], [7] and subsequently shown to depend only on the size of the exponents
and not the underlying field itself [7].

While key exchange in real quadratic fields does not perform as efficiently as Diffie–
Hellman protocols in other more conventional settings, there are nevertheless good rea-
sons for further exploring and improving this scheme. The underlying discrete logarithm
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problem (DLP) is quite different from its well-known cousins, the DLP for finite fields
and the DLP for elliptic curves. It reduces to the problem of finding the distance (or
a generator) of a reduced principal ideal, which is provably at least as difficult as in-
teger factorization [14]. Currently, the best known algorithm for solving the DLP in
real quadratic fields is of higher complexity than finite field DLP methods, though still
subexponential [20]. Its asymptotic complexity is essentially the same as that of the DLP
in imaginary quadratic fields.

The implementation in [7] revealed upon profiling that for very large discriminants
(2048 bits), the algorithm for ideal reduction took up the lion’s share of computing
time—up to 97% compared with only 3% for ideal multiplication. Previous numerical
experiments [8] showed that the arithmetic of reduced ideals in both real and imaginary
quadratic fields can be improved significantly by replacing the ordinary ideal multipli-
cation and reduction procedure by Shanks’ NUCOMP algorithm [15], [19]. NUCOMP
reduces the magnitude of the intermediate operands from O(�) to O(�1/2) in most
cases, with a (rarely occurring) worst case of O(�3/4); here, � is the discriminant of
the underlying quadratic field. An additional benefit of NUCOMP is that the relatively
expensive reduction operation is almost completely replaced by the more efficient ex-
tended Euclidean algorithm; thus, applying NUCOMP should also directly improve our
observed bottleneck, the reduction step.

The idea of incorporating NUCOMP into the key exchange protocol of [7] with the
purpose of effecting a dramatic speed-up was the primary motivating factor for the work
in this paper. However, the algorithms provided here have applications well beyond this
scope, for example in the context of regulator and class number computation as well as
principal ideal testing and solving norm equations.

The article is organized as follows. We begin with an overview of continued frac-
tions and ideals in Section 2 and an account of NUCOMP in the more illustrative
language of ideals in real quadratic fields in Section 3; in [15] and [19] the algo-
rithm is described in terms of binary quadratic forms. This new description provides
more information about the algorithm and allows for a more efficient implementation.
Next, in Section 4, we introduce a way of essentially approximating unknown ideals
by known ideals, thus avoiding the need for working with distances. This is accom-
plished by utilizing a more flexible version of the idea of ( f, p) representations first
introduced in [7]; this notion has proved useful in other contexts that require calcula-
tions involving ideals, such as the ones mentioned above. We go on to describe fast
arithmetic for such ( f, p) representations in Section 5, including an adaptation of NU-
COMP to produce from two such representations (approximating two possibly unknown
ideals) a very good approximation to the product of the two (unknown) ideals. Our al-
gorithms are proven correct in Section 6, where we also provide asymptotic complexity
estimates.

In Sections 7 and 8 we illustrate how to use our arithmetic in the context of cryp-
tographic key exchange in real quadratic fields. This resulted in a dramatic speed-up
of the protocol without increasing the precision requirements given in [7]; in fact, our
parameters were deliberately chosen so that the lower bound on the precision given in
[7] remains correct. In addition, we describe how the number of bits that need to be
transmitted may be reduced. Although this does not change the run-time of the protocol,
it does significantly reduce the communication bandwidth required. We point out that
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our scheme can also be adapted to produce ElGamal-type signatures and to transmit
cryptographic keys non-interactively. As our new protocol differs slightly from that of
[7], some new security considerations are introduced; these are discussed in Section 9.
Finally, we discuss our implementation of the improved key exchange procedure and
give numerical results in Section 10.

We expect that the reader is familiar with Diffie–Hellman-type key exchange protocols
(see for example [3] and [9]). We also assume some knowledge of continued fractions
and their relationship to ideals in real quadratic number fields; for details and proofs,
consult [21], [17], and [18].

2. Continued Fractions and Ideals

Let D be a positive squarefree integer. As usual, we write the simple continued fraction
expansion of a quadratic irrational ϕ0 = (P0 +

√
D)/Q0 (P0, Q0 ∈ Z with Q0 dividing

P2
0 − D) as

ϕ0 = [q0, q1, q2, . . . , qn−1, . . .] = [q0, q1, q2, . . . , qn−1, ϕn] (2.1)

for any n ∈ N, where qj = 
ϕj� and ϕj = (Pj +
√

D)/Qj for j ∈ N. Here,

qj =
⌊

Pj +
√

D

Qj

⌋
, Pj+1 = qj Qj − Pj , Qj+1 =

D − P2
j+1

Qj
(2.2)

for j ∈ N. If

A−2 = 0, A−1 = 1, Aj = qj Aj−1 + Aj−2,

B−2 = 1, B−1 = 0, Bj = qj Bj−1 + Bj−2,
(2.3)

then [q0, q1, . . . , qj ] = Aj/Bj . Let j ∈ N and set

�j =
j−1∏
i=1

ψi with ψi = Pi +
√

D

Qi−1
= (−ϕi )

−1 (1 ≤ i ≤ j − 1), (2.4)

where ϕi = (Pi −
√

D)/Qi is the conjugate of ϕi . Since ϕi > qi ≥ 1 for all i ∈ N, we
see that |� j | ≤ 1. We have

�j = Aj−2 − ϕ0 Bj−2. (2.5)

If we define �0 and �1 (= 1) by using (2.5), then it is easy to deduce that �j+2 =
qj�j+1 +�j ( j ≥ 0) and

�j� j = (−1) j−1 Qj−1

Q0
, (2.6)

where Q−1 = (D − P2
0 )/Q0.

Let K = Q(√D) be a real quadratic number field with discriminant � = (4/σ 2)D
and maximal order O = Z[ω] where ω = (σ − 1 +√D)/σ, σ = 2 if D ≡ 1 (mod 4)
and σ = 1 otherwise. Every non-zero ideal a in O is a Z-module of the form a =
Z SQ/σ ⊕ Z S(P + √D)/σ with S, Q, P ∈ Z, S, Q > 0, σ dividing Q, and σQ
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dividing D − P2. Here, S and Q are unique and P is unique modulo Q. The first basis
element is the norm of a, i.e. N (a) = SQ/σ. For brevity, write a = (S)(Q, P) or simply
a = (Q, P) if a is primitive, i.e. S = 1. A primitive ideal a = (Q, P) in O is reduced
if there exists no non-zero α ∈ a with |α|, |α| < Q/σ.

If b1 = (Q0, P0), then (2.2) produces a sequence of pairwise equivalent ideals bj =
(Qj−1, Pj−1) ( j ∈ N) where

bj = (ψj−1)bj−1 = (�j )b1; (2.7)

here, ψj−1 and �j are given by (2.4) and for any α ∈ K, (α) denotes the principal
fractional ideal generated by α in O. If b1 is non-reduced, then bj is reduced as soon as
(Pj−1−

√
D)/Qj−1 < 0, or, equivalently, Qj−1 > 0 and Pj−1 <

√
D; this happens after

no more than O(log(Q0/
√

D)) iterations of (2.2). If b1 is reduced, then bj is reduced
for all j ∈ N, in which case 0 < Pj <

√
D, 0 < Qj < 2

√
D, N (bj ) <

√
�, and

1+ 1√
�
< ψj <

√
�, and ψjψj+1 > 2 (2.8)

for all j ∈ N. The continued fraction expansion (2.1) of ϕ0 is always periodic with
some period l ∈ N. If b1 is reduced, then the portion following q0 is indeed purely
periodic; that is, l is the minimal positive integer n such that qn+ j = qj for all j ∈ N.
Also, it follows that the sequence bj , 1 ≤ j ≤ l, represents all the reduced ideals
equivalent to b1; in particular, bl+1 = b1 and hence �l+1 = ε is the fundamental
unit of K. We write ρ(bj ) = bj+1 and ρ−1(bj ) = bj−1 (with ρ−1(b1) = bl). Also
ρn(bj ) = ρ(ρn−1(bj )) = ρ−1(ρn+1(bj )) for n ∈ Z.

3. NUCOMP

The infrastructure of the set of reduced principal ideals assures us that for any two
reduced principal ideals b

′ and b
′′, we can find a reduced principal ideal r “close” to

their product b
′
b
′′; that is, there exists an explicitly computable relative generator θ ∈ K

with r = (θ)b′b′′ and |θ | small. The conventional way of computing r (and θ ) is first
to multiply b

′ and b
′′ and then reduce the (primitive part of the) product ideal b

′
b
′′

using the continued fraction algorithm (2.2). The problem with this method is that ideal
multiplication generally doubles the size of the coefficients (from approximately

√
D to

about D), and reduction shrinks them back to their original size ≈√D.
NUCOMP avoids this problem by applying a type of reduction—essentially the Eu-

clidean algorithm—to the two input ideals right from the start. The ideal generated
by NUCOMP is “almost” reduced; extensive numerical computations indicate that in
practice, it is at most two continued fraction steps away from being reduced. Also, the
generator of the ideal produced by NUCOMP relative to the product ideal is bounded in
absolute value by 1 (see Lemma 6.1). The key advantage of NUCOMP over the tradi-
tional multiplication and reduction technique is the fact that throughout the algorithm,
all intermediate operands remain of size O(

√
D); in very rare cases, namely when both

reduced input ideals have extremely small norm, the operands may grow as large as
O(D3/4).
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More explicitly, let b
′ = (Q′, P ′) and b

′′ = (Q′′, P ′′) be two reduced ideals in O
and let c = (Q, P) be given by b

′
b
′′ = (S)c, with c a primitive ideal and S ∈ N.

To find S, Q, and P, we let S = gcd(Q′/σ, Q′′/σ, (P ′ + P ′′)/σ ) and write σ S =
V Q′ + W Q′′ + Y (P ′ + P ′′). Then Q = Q′Q′′/σ S2 and P = P ′′ + U Q′′/σ S where
U ≡ W (P ′ − P ′′) + Y R′′ (mod Q′/S), 0 ≤ U < Q′/S, with R′′ = (D − P ′′2)/Q′′.
We thus expect Q and P to be of magnitude D, i.e. twice as large as P ′, Q′, P ′′, Q′′.
Applying the continued fraction algorithm (2.2) to c (i.e. to the quadratic irrational
(P +√D)/Q), we obtain r.

The idea of NUCOMP is as follows. Compute S and U as above; note that S,U =
O(
√

D). Now, instead of computing P, Q and then applying the continued fraction
algorithm to ϕ = (P + √D)/Q, we essentially replace the (unknown) quantity ϕ
by its good rational approximation U S/Q′. Then the first few partial quotients in the
simple continued fraction expansions of ϕ and U S/Q′ are identical. We compute the
continued fraction expansion of U S/Q′ using the Euclidean algorithm, until a remainder
not exceeding D1/4 is obtained; this choice of cut-off point is due to Atkin (see [19])
and is explained in more detail below. At this point, it is possible to “recover” a pair of
integers Q̃, P̃ such that b = (Q̃, P̃) is a primitive ideal equivalent to b

′
b
′′, and generally

Q̃, P̃ = O(
√

D) (O(D3/4) if Q′ and Q′′ are very small). As mentioned above, b tends
to be only a few continued fraction steps away from being reduced.

We now describe the process of finding Q̃ and P̃. Suppose (Q′/S)/U = [q0, q1,

. . . , qm] with m ∈ N minimal. The partial quotients qj (0 ≤ j ≤ m) can easily be
computed using the Euclidean algorithm; more precisely, we have

b−1 = Q′

S
, b0 = U, bj = bj−2 − qj−1bj−1 (1 ≤ j ≤ m + 1),

with bm = gcd(Q′/S,U ) and bm+1 = 0. Then qj = 
bj−1/bj� for 0 ≤ j ≤ m. If Aj

and Bj are as in (2.3), then

b−1 = Aj−2bj + Aj−1bj−1 (0 ≤ j ≤ m + 1). (3.1)

If we put q ′0 = 0 and q ′j = qj−1 for 1 ≤ j ≤ m + 1, then we have

P +√D

Q
= [0, q0, q1, q2, . . .] = [q ′0, q ′1, . . . , q ′j−1, ϕj ]

for 1 ≤ j ≤ m, where ϕj = (P ′j +
√

D)/Q′j with P ′j , Q′j ∈ Z and Q′j divides P ′2j − D.
Note that [q ′0, q ′1, . . . , q ′i ] = A′i/B ′i ,where A′i = Bi−1 and B ′i = Ai−1 for−1 ≤ i ≤ j−1.
If we set bj+1 = (Q′j , P ′j ), then bj+1 is a primitive ideal inO with bj+1 = (�j+1/S)b′b′′,
where �j+1 = Bj−2 − Aj−2(P −

√
D)/Q by (2.5). Using the identity b−1 Bi − b0 Ai =

(−1)i bi+1 for 0 ≤ i ≤ m, it is easy to verify that

�j+1 = Gj−2 + Aj−2

√
D

Q
, where Gj−2 = (−1) j bj−1

Q′′

σ S
− Aj−2 P ′′. (3.2)

Set

a−1 = 0, a0 = −1, aj = aj−2 − qj−1aj−1 (1 ≤ j ≤ m + 1),
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so aj = (−1) j−1 Aj−1 for −1 ≤ j ≤ m + 1. If we put

c−1 = Q′′

σ S
, c0 = P − P ′

b−1
, cj = cj−2 − qj−1cj−1,

d−1 = P ′ + P ′′, d0 = 1

b−1

(
(P ′ + P ′′)b0 − σ S R′′

)
, dj = dj−2 − qj−1dj−1,

for j ∈ N, then a simple induction proof shows that for −1 ≤ j ≤ m + 1,

cj = 1

b−1

(
bj

Q′′

σ S
+ aj (P

′ − P ′′)
)
,

dj = 1

b−1
(bj (P

′ + P ′′)+ ajσ S R′′),
(3.3)

where we recall that R′′ = (D − P ′′2)/Q′′. Using (2.6), (3.2), and the identity Q =
Q′Q′′/σ S2, we have

(−1) j Q′j = Q�j+1� j+1 =
G2

j−2 − A2
j−2 D

Q

= bj−1

Q′/S

(
bj−1

Q′′

σ S
+ aj−1(P

′ − P ′′)
)

− aj−1

Q′/S

(
bj−1(P

′ + P ′′)+ aj−1σ S R′′
)
,

and hence from (3.3),

Q′j = (−1) j (bj−1cj−1 − aj−1dj−1) (3.4)

for 0 ≤ j ≤ m. Similarly, we use (2.4), (2.6), and (3.2) to write

(−1) j (P ′j +
√

D) = (−1) j Q′jϕj = (−) j+1 Q′j� j/� j+1 = −Q� j�j+1

= − (Gj−3 − Aj−3

√
D)(Gj−2 + Aj−2

√
D)/Q,

so P ′j = (−1) j (Aj−3 Aj−2 D − Gj−3Gj−2)/Q for 0 ≤ j ≤ m. Using the identity
Q = Q′Q′′/σ S2, the expression for Gj−2 and Gj−3 given in (3.2), as well as (3.1) and
(3.3), we can now show that

P ′j = (−1) j (bj−2cj−1 − aj−1dj−2)+ P ′′ (3.5)

for 0 ≤ j ≤ m.
Suppose that b−1 > D1/4. Since the sequence of remainders (bj )−1≤ j≤m+1 strictly

decreases to zero, there exists an index n ∈ {1, 2, . . . ,m + 2} such that bn−1 < D1/4 <

bn−2. Since n ≤ m + 2 and m = O(log(Q′/S)) by Lamé’s theorem, it follows that
n = O(log D). Since by (3.1), 0 < bn−2 An−2 ≤ b−1 < 2

√
D and bn−2 > D1/4,

we have |an−2| < |an−1| = An−2 < 2D1/4. We usually expect qn−1 to be small, so
bn−2 < (qn−1 + 1)bn−1 will not be much larger than D1/4. Furthermore, D1/4 < b−1 <

2
√

D, and, usually, b−1 tends to be of magnitude
√

D, so we expect from (3.3) that
cn−1, dn−2, dn−1 = O(D1/4) (O(

√
D) if b−1 is close to the lower bound). It follows

from (3.4) and (3.5) that Q′n, P ′n = O(
√

D)most of the time and O(D3/4) in rare cases.
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Generally, we obtain our desired reduced ideal after applying only very few continued
fraction steps to the ideal bn+1 = (Q′n, P ′n).

4. (f , p) Representations

In [7] we introduced a technique for representing ideals called ( f, p) representations.
For a fixed non-negative integer p, such a representation of a primitive ideal a was a pair
(b, d) such that b was an ideal equivalent to a, d ∈ N, and if θ ∈ K with b = (θ)a, then
|2pθ/d − 1| < 2−p f for some f ∈ R with 1 ≤ f < 2p. While this representation was
reasonably convenient for the relatively simple algorithms developed in [7], the proofs of
their correctness were somewhat complicated. Simply put, this was because we had no
control over the size of d in this kind of representation. As the algorithms used here are
rather more intricate than those employed in [7], we decided to improve our definition
of an ( f, p) representation as follows.

Definition 4.1. Let p ∈ N, f ∈ R with 1 ≤ f < 2p, and let a be an ideal in O. An
( f, p) representation of a is a triple (b, d, k) where

— b is an ideal equivalent to a, d ∈ N with 2p < d ≤ 2p+1, k ∈ Z;
— there exists θ ∈ K with b = (θ)a and

∣∣2p−kθ/d − 1
∣∣ < f/2p.

An ( f, p) representation (b, d, k) of a is reduced if b is a reduced ideal, and is near
reduced if it is reduced and the following additional conditions hold:

— k < 0;
— if b = (θ)a with

∣∣2p−kθ/d − 1
∣∣ < f/2p, and if b = bj , i.e. ρ(b) = bj+1 = (ψ)b

with ψ = ψj given by (2.7), then there exist integers d ′, k ′ with 2p < d ′ ≤ 2p+1

and k ′ ≥ 0 such that
∣∣∣2p−k ′θψ/d ′ − 1

∣∣∣ < f/2p.

Informally speaking, d is a p+1 bit integer, k ≈ log2 θ, 2k−pd is an approximation of
the (unknown) relative generator θ of b with respect to the (unknown) ideal a to accuracy
2−p f, and p is the precision of the approximation. This is a somewhat more flexible
notion of an ( f, p) representation than the one used in [7] because we can fix the size
of d by introducing the new parameter k. Note that the last condition in the definition of
near reduced implies that (ρ(b), d ′, k ′) is itself a reduced ( f, p) representation of a.

It is not hard to see that for any ideal a in O and any p ∈ N, (a, 2p+1,−1) is a
(1, p) representation, and hence an ( f, p) representation for any f ∈ [1, 2p), of a.

Furthermore, if (b, d, k) is a near reduced ( f, p) representation of some ideal a and f is
not too large, then the parameters θ and k are small; more exactly, we have the following
lemma.

Lemma 4.1. Let (b, d, k) be a near reduced ( f, p) representation of some ideal a with
p > 4 and f < 2p−4. If θ, ψ, and k are as in Definition 4.1, then

15

16ψ
< θ <

17

16
and 0 > k > − log2

(
34

15
ψ

)
.
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Proof. By Definition 4.1 and (2.8), there exist integers d ′, k ′ with 2p < d ′ ≤ 2p+1 and
k ′ ≥ 0 with

1− f

2p
<

2p−kθ

d
< 1+ f

2p
, 1− f

2p
<

2p−k ′θψ

d ′
< 1+ f

2p
.

Since k < 0 and d ≤ 2p+1, we have 2k−pd < 1 and hence

θ < 2k−pd

(
1+ f

2p

)
< 1+ 2p−4

2p
= 17

16
.

Similarly, since k ′ ≥ 0 and d ′ > 2p, we obtain 2k ′−pd ′ > 1, implying

θψ > 2k ′−pd ′
(

1− f

2p

)
> 1− 2p−4

2p
= 15

16
,

and hence θ > 15/16ψ. Finally, k < 0 by definition of near reduced, and

2−k <
d

2pθ

(
1+ f

2p

)
<

2p+1

2p
· 16

15
ψ · 17

16
= 34

15
ψ.

Corollary 4.1. Under the conditions of Lemma 4.1, we have

15

16
√
�
< θ <

17

16
and 0 > k > − log2

(
34

15

√
�

)
.

Furthermore, if a is a principal ideal and b ∈ R with b ≥ 1, then

θ >
15

16b
and k > − log2

(
34

15
b

)

with probability approximately 1− log2(1+ b−1).

Proof. The first set of inequalities follows from 1 < ψ <
√
�, which holds by (2.8).

For the second set of inequalities, set b1 = O and b = bj for some j ∈ Zwith 1 ≤ j ≤ l
where l is the period of the continued fraction expansion of ω. Then ψ = ψj from (2.7).

Since b1 = O, we have ϕ0 = ω. The symmetry properties of the continued fraction
expansion (2.1) of ω imply ψn = ϕl+1−n, so ψn is a complete quotient in this expansion
for all n ∈ N. By the Gauss–Kuz’min law, the probability that ψn ≥ b for any b ≥ 1
is approximately log2(1 + b−1). Hence, ψ ≤ b with probability 1 − log2(1 + b−1), in
which case θ > 15/16ψ ≥ 15/16b and −k < log2(34ψ/15) ≤ log2(34b/15).

For example, setting b = 30
17 ≈ 1.76, we see that θ > 17

32 and k = −1 about 64% of
the time.

The term “near” is further motivated by the fact that for f sufficiently small, two near
reduced ( f, p) representations of the same ideal cannot be far away from one another,
as the following two lemmas illustrate:
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Lemma 4.2. Let (b, d, k) and (c, e, h) be two near reduced ( f, p) representations of
some principal ideal a with p > 4 and f < 2p−4. Then b ∈ {ρ−2(c), ρ−1(c), c, ρ(c),

ρ2(c)}.

Proof. Let l be the period ofω, so ρl(b) = b.Write c = ρi (b)with i ∈ Z. If 0 ≤ i ≤ 2
or l − 2 ≤ i ≤ l − 1, then the claim holds, so assume 3 ≤ i ≤ l − 3.

Set b1 = b. Then with the notation of (2.7), we have c = bi+1, ρ(b) = (ψ1)b,
and ρ(c) = bi+2 = (ψi+1)bi+1 = (ψi+1)c. By Lemma 4.1, there exist θ, ϕ ∈ K
with b = (θ)a, c = (ϕ)a, 15/16ψ1 < θ < 17

16 , and 15/16ψi+1 < ϕ < 17
16 . Since

c = (�i+1θ/ϕ)c, there exists j ∈ Z with �i+1θ/ϕ = ε j , where ε = �l+1 is the
fundamental unit of K. Since 3 ≤ i ≤ l − 3, (2.8) implies

ε j = θψ1

ϕ
(ψ2ψ3 · · ·ψi ) >

15

16
· 16

17
· 2 > 1

and

ε j = θ

ψi+1ϕ
�i+2 <

17

16
· 16

15
�l−1 = 17

15
· ε

ψl−1ψl
<

17

15
· ε

2
< ε,

which is impossible.

Using similar techniques and Definition 4.1, it is not hard to establish a third lemma:

Lemma 4.3. Let (b, d, k) and (c, e, h) be two near reduced ( f, p) representations of
some principal ideal a with p > 4 and f < 2p−4. Then b = ρi (c) with |i | ≤ 2 by
Lemma 4.2, and we have reduced ( f, p) representations (ρ(b), d ′, k ′) and (ρ(c), e′, h′)
of a as per Definition 4.1. Set a = 2k−hd/e and a′ = 2k ′−hd ′/e.

1. If h − k ′ ≤ −2, then 0 ≤ i ≤ 2. If k − h′ ≤ −2, then −2 ≤ i ≤ 0.
2. If a > 8

7 , then i = 1 or 2. If a < 7
8 , then i = −1 or −2.

If a > 7
12 , then −1 ≤ i ≤ 2. If a < 12

7 , then −2 ≤ i ≤ 1.
3. Suppose that 7

12 < a < 12
7 .

If a′ > 8
7 or a′ < 7

8 , then i = 0 or 1. If a′ < 12
7 , then i = −1 or 0.

We note that throughout our protocol, we will have p > 4 and f < 2p−4.

5. Arithmetic of (f , p) Representations

We now describe how to perform arithmetic on ( f, p) representations. For a ∈ R, we
denote by 
a� the nearest integer to a; that is, 
a� = 
a + 1

2� and − 1
2 ≤ a − 
a� < 1

2 .

Theorem 5.1 (Products of ( f, p) Representations). Let (b′, d ′, k ′) be an ( f ′, p) rep-
resentation of an ideal a′ and let (b′′, d ′′, k ′′) be an ( f ′′, p) representation of an ideal
a′′. Put d∗ = 
2−pd ′d ′′�, d∗∗ = 
2−(p+1)d ′d ′′�, k∗ = k ′ + k ′′, and

(d, k) =


(d∗, k∗) if d∗ ≤ 2p+1,

(d∗∗, k∗ + 1) if d∗∗ ≥ 2p + 1,
(2p+1, k∗) otherwise.
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Then (b′b′′, d, k) is an ( f, p) representation of the product ideal a′a′′ where f = f ∗ +
1
2 + 2−(p+1) f ∗ and f ∗ = f ′ + f ′′ + 2−p f ′ f ′′.

Proof. Using the inequality − 1
2 ≤ a − 
a� < 1

2 for a = d∗, d∗∗, we easily obtain
d∗ ≥ 2p + 3

2 + 2−p and d∗∗ ≤ 2p+1 + 1
2 , so 2p < d ≤ 2p+1 in all three cases of the

theorem.
Furthermore, we obtain in the case where d∗ > 2p+1 that 2d∗∗ > 2−pd ′d ′′ − 1 ≥

d∗ − 3
2 ≥ 2p+1 − 1

2 , which implies d∗∗ ≥ 2p, and d∗∗ = 2p in the “otherwise” case.
Similarly, if d∗∗ < 2p+1, then d∗ ≤ 2 ·2−(p+1)d ′d ′′ + 1

2 < 2(d∗∗ + 1
2 )+ 1

2 ≤ 2p+1+ 3
2 ,

so d∗ ≤ 2p+1 + 1, and d∗ = 2p+1 + 1 in the “otherwise” case. This also shows that all
three cases are mutually exclusive and exhaustive.

Let b
′ = (θ ′)a′ and b

′′ = (θ ′′)a′′ with θ ′, θ ′′ ∈ K∗. We need to show that

1− f

2p
<

2p−kθ ′θ ′′

d
< 1+ f

2p
. (5.1)

By assumption, |2p−k ′θ ′/d ′ − 1| < 2−p f ′ and |2p−k ′′θ ′′/d ′′ − 1| < 2−p f ′′. Hence(
1− f ′

2p

)(
1− f ′′

2p

)
<

22p−k ′−k ′′θ ′θ ′′

d ′d ′′
<

(
1+ f ′

2p

)(
1+ f ′′

2p

)
. (5.2)

Now it is easy to see that (1+ 2−p f ′)(1+ 2−p f ′′) = 1+ 2−p f ∗ and (1− 2−p f ′)(1−
2−p f ′′) = 1− 2−p f ∗ + 22p−1 f ′ f ′′ > 1− 2−p f ∗. Therefore from (5.2),

1− f ∗

2p
<

22p−k ′−k ′′θ ′θ ′′

d ′d ′′
< 1+ f ∗

2p
. (5.3)

Suppose d = d∗, then d − 1
2 ≤ 2−pd ′d ′′ < d + 1

2 . Similarly, if d = d∗∗, then
d − 1

2 ≤ 2−(p+1)d ′d ′′ < d + 1
2 . Multiplying by 2k ′+k ′′−k/d, we obtain in both cases

1− 1

2d
≤ 2k ′+k ′′−k−pd ′d ′′

d
< 1+ 1

2d
,

and since d > 2p, we have

1− 1

2p+1
<

2k ′+k ′′−k−pd ′d ′′

d
< 1+ 1

2p+1
. (5.4)

Finally, if d = 2p+1, then

1+ 1

2p+2
= 1

2p+1

(
d∗ − 1

2

)
≤ 1

d
· d
′d ′′

2p
= 1

2p
· d ′d ′

2p+1
<

1

2p

(
d∗∗ + 1

2

)
= 1+ 1

2p+1
,

so (5.4) holds in this last case of the theorem as well. Multiplying (5.3) by (5.4) gives(
1− f ∗

2p

)(
1− 1

2p+1

)
<

2p−kθ ′θ ′′

d
<

(
1+ f ∗

2p

)(
1+ 1

2p+1

)
. (5.5)

However, (1 + 2−p f ∗)(1 + 2−(p+1)) = 1 + 2−p f and (1 − 2−p f ∗)(1 − 2−(p+1)) =
1− 2−p f + 2−2p f ∗ > 1− 2−p f, whence (5.1) follows.
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We now present five algorithms for computing with ( f, p) representations. The cor-
rectness of these algorithms will be proved and asymptotic complexity estimates given
in Section 6. The first algorithm removes principal ideal factors from ( f, p) represent-
ations; that is, given (b, d, k) such that ((µ)b, d, k) is an ( f, p) representation of some
ideal (with µ ∈ K∗, µ > 1), it outputs an ( f + 9

8 , p) representation (b, d ′, k ′) of the
same ideal.

Algorithm DIV

Input: ((b, d, k), T,C, s, p)where ((µ)b, d, k) is an ( f, p) representation of some ideal
a withµ = |(A+ B

√
D)/C | ≥ 1 (A, B,C ∈ Zwith C �= 0), T = 2s A+ B
2s

√
D�,

and s ∈ Z≥0 with 2s |C | > 2p+4|B|.
Output: An ( f + 9

8 , p) representation (b, d ′, k ′) of a.

Algorithm:

1. Set e = 
2p+3−s |T/C |�.
2. Find t ∈ Z≥0 with 2t−1 ≤ e/8d < 2t .

3. Set d ′ = �2p+3+t d/e� and k ′ = k − t.

The next algorithm is essentially NUCOMP and subsequent ideal reduction, performed
on ( f, p) representations.

Algorithm NUCOMP

Input: ((b′, d ′, k ′), (b′′, d ′′, k ′′), p) where (b′, d ′, k ′) is a reduced ( f ′, p) representation
of an ideal a′ and (b′′, d ′′, k ′′) is a reduced ( f ′′, p) representation of an ideal a′′.Here,
b
′ = (Q′, P ′) and b

′′ = (Q′′, P ′′) with Q′ ≥ Q′′ > 0.
Output: A reduced ( f, p) representation (b, d, k) of a′a′′ where b = (Q, P), Q > 0,

P <
√

D, (P +√D)/Q > 1, k ≤ k ′ + k ′′ + 1, and f = f ∗ + 13
8 + 2−(p+1) f ∗ with

f ∗ = f ′ + f ′′ + 2−p f ′ f ′′.
Algorithm:

1. Compute G = gcd(Q′/σ, Q′′/σ) and solve (Q′′/σ)X ≡ G (mod Q′/σ) for
X ∈ Z, 0 ≤ X < Q′/σ.

2. Compute S = gcd((P ′ + P ′′)/σ,G) and solve Y (P ′ + P ′′)/σ + ZG = S for
Y, Z ∈ Z.

3. Put R′′ = (D− P ′′2)/Q′′ and U ≡ X Z(P ′ − P ′′)+Y R′′ (mod Q′/S), 0 ≤ U <

Q′/S.
4. Put b−1 = Q′/S, b0 = U, A−2 = 0, A−1 = 1, i = 0.

Put e∗ = 
2−pd ′d ′′�, e∗∗ = 
2−(p+1)d ′d ′′�, h∗ = k ′ + k ′′,

(e, h) =



(e∗, h∗) if e∗ ≤ 2p+1,

(e∗∗, h∗ + 1) if e∗∗ ≤ 2p + 1,

(2p+1, h∗) otherwise.

5. If b−1 < D1/4 then put j = 0 and

Q′j =
Q′Q′′

σ S2
, P ′j ≡ P ′′ + U Q′′

σ S
(mod Q′j ), Tj−1 = Q′j , s = 0.

Go to 12.
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6. While bi−1 > D1/4 and bi �= 0 do

put qi = 
bi−1/bi� , bi+1 = bi−1 − qi bi , Ai = qi Ai−1 + Ai−2, i ← i + 1.
7. Put ai−1 = (−1)i−2 Ai−2, ai−2 = (−1)i−3 Ai−3,

ci−1 = 1

b−1

(
bi−1

Q′′

σ S
+ ai−1(P

′ − P ′′)
)
,

di−1 = 1

b−1

(
bi−1(P

′ + P ′′)+ ai−1σ S R′′
)
,

di−2 = 1

b−1

(
bi−2(P

′ + P ′′)+ ai−2σ S R′′
)
,

Qi = (−1)i (bi−1ci−1 − ai−1di−1) ,

Pi = (−1)i (bi−2ci−1 − ai−1di−2)+ P ′′,

G ′ = (−1)i−1

(
bi−2

Q′′

σ S
− ai−2 P ′′

)
,

G = (−1)i
(

bi−1
Q′′

σ S
− ai−1 P ′′

)
,

B ′ = Ai−3, B = Ai−2.

8. Put Q′0 = |Qi |, t = sgn(Qi ), P ′0 = Pi , q ′0 = 
(P ′0 +
√

D)/Q′0� (store q ′0),m =
1, P ′m = q ′m−1 Q′m−1 − P ′m−1, Q′m = (D − P ′m

2
)/Q′m−1.

9. While P ′m >
√

D or Q′m < 0 do
put q ′m = 
(P ′m +

√
D)/Q′m� (store q ′m), m ← m + 1, P ′m = q ′m−1 Q′m−1 −

P ′m−1, Q′m = (D − P ′m
2
)/Q′m−1.

10. If P ′m + Q′m >
√

D then
put q = �(P ′m−1 − 


√
D�)/Q′m−1�, P ′m−1 ← P ′m−1 − q Q′m−1, j = m − 1,

else put j = m.
11. Compute s ∈ Z≥0 such that 2s Q′j > 6 · 2p+4SD1/4.

Put T−1 = 2s G − B
2s
√

D�, T−2 = t (2s G ′ − B ′
2s
√

D�).
For m = 0 to j − 1, put Tm = q ′m Tm−1 + Tm−2.

12. Put b = (Q′j , P ′j ). Execute (b, d, k) = DIV((b, e, h), STj−1, Q′j , s, p).

The idea of this algorithm is as follows. Theorem 5.1 shows that (b′b′′, e, h) is an
( f, p) representation of a′a′′, with f as in Theorem 5.1 and e, h as in step 4. Steps
1–3, the first line of step 4, and steps 5–7 perform NUCOMP on the ideals b

′ and
b
′′, producing an “almost” reduced ideal. Steps 8 and 9 apply the continued fraction

algorithm to reduce this ideal, and step 10 guarantees the required bounds Q > 0,
P <

√
D, and (P + √D)/Q > 1. After step 10, we have obtained a reduced ideal

b such that (µ)b = b
′
b
′′ for some µ ∈ K with µ > 1. Using the recursion on the Tm

(which is the same recursion as the one given for �j+2 just before (2.6)), a suitable
approximation of 2sµ is generated in step 11, and step 12 uses this approximation to call
DIV and find the correct values for d and k.

Throughout our protocol, we wish to use only near reduced representations. Since
the output of NUCOMP need not be near reduced, we next describe a routine NEAR
that given a reduced ( f, p) representation of some ideal finds a near reduced ( f + 9

8 )

representation of the same ideal.
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Algorithm NEAR

Input: ((b, d, k), p) where (b, d, k) is a reduced ( f, p) representation of some ideal a

with k < 0 and b = (Q, P) with Q > 0, P <
√

D, and (P +√D)/Q > 1.
Output: A near reduced ( f + 9

8 , p) representation (c, g, h) of a.

(Optional output: a reduced ( f + 9
8 , p) representation (ρ(c), g′, h′) of a.)

Algorithm:

1. Find s ∈ Z≥0 with 2s Q ≥ max{2p+4, 22|k|+1}.
Put P0 = P, Q0 = Q, T−2 = −2s P0 + 
2s

√
D�, T−1 = 2s Q0,

M = �2p+s−k Q0/d�, r−2 = 2s P0 + 
2s
√

D�, r−1 = 2s Q0, i = 1.
2. While Ti−2 ≤ M do

put qi−1 = 
ri−3/ri−2� (store all the qj ),

ri−1 = ri−3 − qi−1ri−2 (store ri−2),

Ti−1 = qi−1Ti−2 + Ti−3, (store Ti−2), i ← i + 1.
3. Put Gi−2 = 2−(s+1)(Ti−2 + (−1)i−1ri−2),

Bi−2 = Ti−2 + (−1)i ri−2

2
2s
√

D� , Bi−3 = Ti−3 + (−1)i−1ri−3

2
2s
√

D� ,

Qi−1 = (−1)i−1 G2
i−2 − DB2

i−2

Q0
, Pi−1 = Gi−2 − Qi−1 Bi−3

Bi−2
.

4. While Pi−1 +
√

D < Qi−1 or Qi−1 < 0 do
put Qi−2 = (D − P2

i−1)/Qi−1, Pi−2 = qi−2 Qi−2 − Pi−1,

Ti−4 = Ti−2 − qi−2Ti−3 (store Ti−3), i ← i − 1.
5. While Ti−2 ≤ M do

put qi−1=
(Pi−1+
√

D)/Qi−1�, Pi=qi−1 Qi−1−Pi−1, Qi=(D−P2
i )/Qi−1,

Ti−1 = qi−1Ti−2 + Ti−3, i ← i + 1.
6. Put ei−1 = �2p−s+3Ti−3/Q0�.

If Qi−2 and Pi−2 were not computed in step 4 then
put Qi−2 = (D − P2

i−1)/Qi−1, Pi−2 = qi−2 Qi−2 − Pi−1.

If dei−1 ≤ 22p−k+3 then
put c = (Qi−2, Pi−2), e = ei−1

(put ρ(c) = (Qi−1, Pi−1), e′ = �2p−s+3Ti−2/Q0�),
else

if Qi−3 and Pi−3 were not computed in step 4 then
put Qi−3 = (D − P2

i−2)/Qi−2, Pi−3 = qi−3 Qi−3 − Pi−2,

put c = (Qi−3, Pi−3), e = �2p−s+3Ti−4/Q0�
(put ρ(c) = (Qi−2, Pi−2), e′ = ei−1).

7. Find t with 2t < ed/22p+3 ≤ 2t+1. Put g = �ed/2p+t+3�, h = k + t.

(Find t ′ with 2t ′ < e′d/22p+3 ≤ 2t ′+1. Put g′ = �e′d/2p+t ′+3�, h′ = k + t ′.)

Once again, we sketch the idea behind this algorithm. If c = (θ)b with θ > 0, then θ
is determined by the continued fraction algorithm applied to the ideal b, yielding ideals
b1 = b, b2, b3, . . . ,where bi = (�i )b with�i given by (2.4). For i ≥ 0, the quantity Ti−2

is an approximation to 2s�i . However, the divisions in the continued fraction algorithm
(2.2) can be costly, so we use a NUCOMP-like trick. Suppose b = (Q, P). Instead
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of applying continued fraction steps to the irrational α = (P + √D)/Q, we perform
the Euclidean algorithm on the rational approximation (2s P + 
2s

√
D�)/2s Q of α in

steps 1 and 2. This can be shown to yield the correct partial quotients, provided the
coefficient Bi−2 of

√
D in �i satisfies B2

i−2 < 2s−1 Q (see Lemma 6.2 below). In step 3
we “pick up” the coefficients Pi−1, Qi−1 of bi and Gi−2, Bi−2 of �i , but it is possible
(though unlikely) that we have gone slightly too far in our rational continued fraction
expansion. Therefore, we “back up” in step 4 to a point where the values of Pi−1 and
Qi−1 are correct and the corresponding ideal is reduced. If necessary, we continue with
the continued fraction algorithm applied to Pi−1 and Qi−1 in step 5. Finally, steps 6 and
7 produce our desired near reduced representation.

We now combine the previous two algorithms into one operation that on input of two
near reduced representations outputs a near reduced representation of the product of the
two ideals represented by the inputs.

Algorithm NEAR-PRODUCT

Input: ((b′, d ′, k ′), (b′′, d ′′, k ′′), p) where (b′, d ′, k ′) is a near reduced ( f ′, p) repre-
sentation of an ideal a′ (b′ = (Q′, P ′)) and (b′′, d ′′, k ′′) is a near reduced ( f ′′, p)
representation of an ideal a′′ (b′′ = (Q′′, P ′′)).

Output: A near reduced ( f ∗ + 11
4 + 2−(p+1) f ∗, p) representation (c, g, h) of a′a′′ with

f ∗ = f ′ + f ′′ + 2−p f ′ f ′′.
(Optional output: a reduced ( f ∗ + 11

4 + 2−(p+1) f ∗, p) representation (ρ(c), g′, h′)
of a.)

Algorithm:

1. If Q′ ≥ Q′′ then
(b, d, k) = NUCOMP((b′, d ′, k ′), (b′′, d ′′, k ′′), p)

else
(b, d, k) = NUCOMP((b′′, d ′′, k ′′), (b′, d ′, k ′), p).

2. (c, g, h) = NEAR((b, d, k), p).

(((c, g, h), (ρ(c), g′, h′)) = NEAR((b, d, k), p).)

We can now use the standard binary exponentiation technique to do “exponentiation”
on near reduced ( f, p) representations:

Algorithm EXP

Input: ((b0, d0, k0), n, p) where n ∈ N and (b0, d0, k0) is a near reduced ( f0, p) repre-
sentation of some ideal a.

Output: A near reduced ( f, p) representation (b, d, k) of an for suitable f ∈ [1, 2p).

Algorithm:

1. Compute the binary representation of n, say n =∑l
i=0 bi 2l−i

(b0 = 1, bi ∈ {0, 1} for 1 ≤ i ≤ l, l = 
log2 n�).
2. Set (b, d, k) = (b0, d0, k0).

3. For i = 1 to l do
(a) (b, d, k) = NEAR-PRODUCT((b, d, k), (b, d, k), p).
(b) If bi = 1 then

(b, d, k) = NEAR-PRODUCT((b, d, k), (b0, d0, k0), p).
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6. Proofs of Correctness

Theorem 6.1. Algorithm DIV is correct.

Proof. We need to prove 2p < d ′ ≤ 2p+1 and

1− f + 9
8

2p
<

2p−k ′θ

µd ′
< 1+ f + 9

8

2p
. (6.1)

Since 2s |C | > 2p+4|B|, we have∣∣∣∣∣ A + B
√

D

C
− T

2sC

∣∣∣∣∣ < |B|
2s |C | <

1

2p+4
,

and hence sgn(T ) = sgn(A + B
√

D), implying∣∣∣∣2p+3µ− 2p−s+3 |T |
|C |

∣∣∣∣ < 1

2
.

It follows that |2p+3µ− e| < 1, so e > 2p+3µ− 1 ≥ 2p+3− 1, i.e. e ≥ 2p+3. Therefore
t ≥ 0, and it is now not hard to show that 2p < d ′ ≤ 2p+1.

Let (µ)b = (θ)a. Then∣∣∣∣2p−kθ

d
− 1

∣∣∣∣ < f

2p
,

∣∣∣2p+3µ

e
− 1

∣∣∣ < 1

e
≤ 1

2p+3
,

so
1− 2−p f

1+ 2−(p+3)
< 2−(k+3) θe

µd
<

1+ 2−p f

1− 2−(p+3)
. (6.2)

Now

1+ f

2p
< 1+ f

2p
+ 1

2p

(
1− f + 9

8

2p+3

)
=
(

1+ f + 9
8

2p

)(
1− 1

2p+3

)
.

Since 2p−k ′θ/µd ′ ≤ 2−(k+3)θe/µd by the definition of d ′, (6.2) now yields the right
inequality of (6.1).

Now 2p < d ′ < 2p+t+3d/e + 1 implies

1− 1

2p
< 1− 1

d ′
<

2p+t+3d

ed ′
,

so

2p−k ′θ

µd ′
= 2−(k+3) θe

µd

2p+t+3d

ed ′
> 2−(k+3) θe

µd

(
1− 1

2p

)
>
(1− 2−p)(1− 2−p f )

1+ 2−(p+3)
,

where the last inequality follows from (6.2). Furthermore,(
1+ 1

2p+3

)(
1− f + 9

8

2p

)
= 1− f + 1

2p
− f + 9

8

22p+3
<

(
1− 1

2p

)(
1− f

2p

)
,

yielding the left inequality of (6.1).
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Before we formally prove Algorithm NUCOMP correct, we require an auxiliary
lemma.

Lemma 6.1. Assume that D ≥ 256 and let bi (i ≥ −1) be as in steps 4 and 6 of
NUCOMP. Suppose bn−1 < D1/4 < bn−2. If �n+1 is given by (3.2), then |�n+1| < S.

Proof. Since �1 = 1, this is clear for n = 0, so suppose n ≥ 1. We note that from
(3.2),

�n+1 = 1

b−1
((−1)nbn−1 − ϕ′′σ S An−2), (6.3)

where ϕ′′ = (P ′′ + √D)/Q′′. Since b
′′ = (Q′′, P ′′) is reduced, −1 < ϕ′′ < 0 by

Theorem 4.2 of [18]. We have�2 = (|ϕ′′|σ S− b0)/b−1 < σ S/b−1 ≤ S since σ divides
b−1, and �2 > −b0/b−1 > −1 ≥ −S. From (6.3), �3 > 0. Also,

�3 = q ′1�2 +�1 = q0�2 + 1 <

⌊
b−1

b0

⌋
σ S − b0

b−1
+ 1 ≤ σ S

b0
≤ S,

since σ divides b0. Finally, note that for n ≥ 3, we have An−2 ≥ A1 = q0q1 + 1 ≥ 2,
so with (3.1),

|�n+1| < bn−1 + σ S An−2

bn−2 An−2
<

1

An−2
+ σ S

D1/4
≤ 1

2
+ S

2
≤ S.

Theorem 6.2. If D ≥ 256, then Algorithm NUCOMP is correct and performs
O(log D) integer operations.

Proof. After step 4, (b′b′′, e, h) is an ( f ∗ + 1
2 + 2−(p+1) f ∗, p) representation of a′a′′

by Theorem 5.1. Let (S)b1 = b
′
b
′′, b1 = (Q0, P0) where Q0 = Q′Q′′/σ S2.

Suppose first that b−1 < D1/4. In this case, Q = Q′0 = Q0 and P = P ′0 = P0.

Then 0 < P < Q ≤ b2
−1 <

√
D and hence (P + √D)/Q > 1. Since Q <

√
D, b1

is reduced by Theorem 3.4 of [18]. So after step 12, b = b1, and (b, d, k) is a reduced
( f, p) representation of a′a′′.

Assume now that b−1 > D1/4.After step 6, we have bi−1 < D1/4 < bi−2. From (3.4),
(3.5), and (3.2), it follows that at the end of step 7, we have an ideal bi+1 = (Qi , Pi )

where bi+1 = (�i+1)b1 and �i+1 = (G + B
√

D)/Q, �i = (G ′ + B ′
√

D)/Q, with
G, B,G ′, B ′ ∈ Z.

Let c1 = (Q′0, P ′0) and note that � ′0 = tψ−1
i . Then step 9 outputs an ideal cm+1 =

(Q′m, P ′m) = (Qi+m, Pi+m) where m is minimal with P ′m <
√

D and Q′m > 0, so
ϕ′m < 0 where ϕ′m = (P ′m +

√
D)/Q′m . We claim that step 10 produces a reduced ideal

cj+1 = (� ′j+1)c1 = (Q′j , P ′j ) with Q′j > 0, P ′j <
√

D, ϕ′j > 1, and |� ′j+1| ≤ 1. To see

this, suppose first that P ′m + Q′m >
√

D, so j = m − 1. Then −1 < ϕ′m < 0, so cm is
reduced and Q′m−1 > 0 by Theorem 4.3 of [18]. Furthermore, |� ′m | ≤ 1 by Theorem 4.4
of [18].1 The modification of P ′m−1 in step 10 ensures P ′m−1 <

√
D and ϕ′m−1 > 1. If,

1 In the proof of Theorem 4.4, it was assumed that 0 < P ′0 < Q′0; however, we note that this was

only needed when m = 2. Nonetheless in this case, ϕ′1 > 0, so � ′2 = ψ ′1 < 0 by (2.4). Furthermore,

ψ ′1 = q ′0 − ϕ′0 > ϕ′0 − 1− ϕ′0 = 2
√

D/Q′0 − 1 > −1, so |� ′2| < 1.
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on the other hand, P ′m + Q′m <
√

D, so j = m, then ϕ′m < −1, so cm+1 is reduced by
Theorem 3.5 of [18] and |� ′m+1| = |� ′m/ϕ′m | < 1.

Now |� ′j+1| ≤ 1 and, by Lemma 6.1, |�i+1| ≤ S, so if we put µ = S/� with
� = |�i+1�

′
j+1|, then µ ≥ 1. Now, by (2.6),

|��| = |�i+1� i+1�
′
j+1�

′
j+1| = Qi

Q0

Q′j
Q′0
= Q′j

Q0

since Q′0 = Qi by step 8. If we set � = (G̃ + B̃
√

D)/Q0 with G̃, B̃ ∈ Z, then

µ = S�

��
= S(G̃ − B̃

√
D)

Q′j
.

Furthermore, by (3.2),

|B̃|
√

D ≤ Q0

2
(|�| + |�|) ≤ Q0

2
(|�i+1| + |� i+1|) ≤ bi−1

Q′′

σ S
+ (P ′′ +

√
D)Ai−2

< D1/4 · 2
√

D + 2
√

D · 2D1/4 = 6D3/4.

Hence |B̃| < 6D1/4, implying that in step 11, 2s Q′j/S > 2p+4|B̃|.
Now Tj−1 = 2s G̃ − B̃
2s

√
D�. Since (µ)b = b

′
b
′′ with b = cj+1, the output of step

12 produces a reduced ( f, p) representation of a′a′′. Also, since k = h− t, where t ≥ 0
and h ≤ k ′ + k ′′ + 1, we have k ≤ k ′ + k ′′ + 1.

To determine the asymptotic complexity of NUCOMP, note that steps 1–3 require
O(log D) integer operations. The loop in step 6 is executed at most O(log D) times
since b−1 ≤ Q′ < 2

√
D. The same is true for the loop in step 9, since Q′m is bounded

by a polynomial in
√

D and it takes no more than O(log(Q′m/
√

D)) steps to obtain a
reduced ideal (which happens after step 10). Finally, since b = (Q′j , P ′j ) is reduced, we
have j = O(m) = O(log D).

Once again, we require some preliminary results before we can prove the correctness
of NEAR. The following lemma illustrates a NUCOMP-like strategy, namely replacing
the continued fraction algorithm on a quadratic irrational by its much faster rational
counterpart, the Euclidean algorithm.

Lemma 6.2. Let ϕ0 = (P0 +
√

D)/Q0 be a quadratic irrational with Q0 > 0, P0 <√
D, and ϕ0 > 1. Set ϕ̂0 = (2s P0 + 
2s

√
D�)/2s Q0 for some s ∈ N. Let ϕ̂0 =

[q̂0, q̂1, q̂2, . . . , q̂m] be the simple continued fraction expansion of ϕ̂0 (with m ∈ N
minimal) and let ϕ0 = [q0, q1, q2, . . . , qn, ϕn+1] (n ≤ m − 1) be the simple continued
fraction expansion of ϕ0. Set

B−2 = 1, B−1 = 0, Bj = q̂j Bj−1 + Bj−2 (0 ≤ j ≤ m).

If B2
n+1 ≤ 2s−1 Q0, then q̂j = qj for j = 0, 1, . . . , n.
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Proof. We have 0 ≤ ϕ0 − ϕ̂0 < 2−s < 1, so q0 = q̂0. Assume now that our claim
holds for j = n− 1 ≥ 0 and suppose that B2

n+1 ≤ 2s−1 Q0. Since the Bj strictly increase
for 0 ≤ j ≤ m, we inductively get q̂j = qj for 0 ≤ j ≤ n − 1 and only need to show
q̂n = qn. Since qj ≥ 1 for 0 ≤ j ≤ n and the simple continued fraction expansion of
any quadratic irrational is unique, it suffices to show that ϕn > 1.

Define A−2 = 0, A−1 = 1, and Aj = q̂j Aj−1 + Aj−2 for 0 ≤ j ≤ n. Then
Aj/Bj = [q̂0, q̂1, . . . , q̂j ] = [q0, q1, . . . , qj ] for 0 ≤ j ≤ n − 1. If we set λj =
(−1) j−1(Aj Q0 − Bj (P0 +

√
D)), then, by (2.5) and (2.4), λj = (−1) j+1� j+2 Q0 =

Q0
∏ j+1

i=1 ϕ
−1
i > 0 for −1 ≤ j ≤ n − 1. Furthermore, by (2.4),

ϕj = − � j

� j+1
= λj−2

λj−1
(−1 ≤ j ≤ n). (6.4)

Set r−2 = 2s P0 + 
2s
√

D�, r−1 = 2s Q0, and rj = rj−2 − q̂j rj−1 for 0 ≤ j ≤ m. An
easy induction argument shows that rj = (−1) j−1(Ajr−1 − Bjr−2) and hence 2sλj =
rj + (−1) j Bj (2s

√
D − 
2s

√
D�) for −1 ≤ j ≤ n − 1. It follows that

rj − Bj < 2sλj < rj + Bj (−1 ≤ j ≤ n − 1). (6.5)

Furthermore, another simple induction argument yields r−1 = Bjrj+1 + Bj+1rj , so
r−1 < 2Bj+1rj for −1 ≤ j ≤ m − 1. In particular, for j = n,

2s Q0 = r−1 < 2Bn+1rn ≤ 2s Q0rn

Bn+1
<

2s Q0rn

Bn
,

so Bn < rn and hence

Bn−2 + Bn−1 ≤ Bn < rn ≤ rn−2 − rn−1. (6.6)

From (6.5) and (6.6), 2sλn−2 > rn−2−Bn−2 > rn−1+Bn−1 > 2sλn−1, and hence ϕn > 1
by (6.4).

Lemma 6.3. With the notation of Lemma 6.2, let ϕj = (Pj +
√

D)/Qj for j =
1, 2, . . . , n. Then for 0 ≤ j ≤ n,

Qj = (−1) j
G2

j−1 − DB2
j−1

Q0
,

Pj = (−1) j DBj−1 Bj−2 − Gj−1Gj−2

Q0
= Gj−1 − Qj Bj−2

Bj−1
,

where the Bi are given as in Lemma 6.2 and Gi = Ai Q0 − Bi P0 for −2 ≤ i ≤ n.

Proof. From (6.4),

Pj +
√

D

Qj
= ϕj = λj−2

λj−1
= −Gj−2 − Bj−2

√
D

Gj−1 − Bj−1

√
D

(0 ≤ j ≤ n + 1).
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By clearing denominators and comparing coefficients of 1 and
√

D, we obtain Gj−1 =
Pj Bj−1 + Qj Bj−2 and DBj−1 = Pj Gj−1 + Qj Gj−2. Using the identities Bj−1Gj−2 −
Bj−2Gj−1 = (Bj−1 Aj−2 − Bj−2 Aj−1)Q0 = (−1) j−1 Q0, we can solve for Pj , Qj and
derive the desired result.

Theorem 6.3. If D ≥ 256, then Algorithm NEAR is correct and performs O(|k|)
integer operations.

Proof. Since d ≤ 2p+1 and k < 0, we have M ≤ 2s−k Q0. Therefore, T−1 ≤ M
and the loop in step 2 is entered. Since P0 <

√
D, we have T−2 ≥ 0 and hence

T0 ≥ q0T−1 ≥ T−1 > 0. Therefore, the sequence Tj ( j ≥ 0) in step 2 is increasing.
Let j ∈ {−1, 0, . . . , i − 3} where i (≥ 2) is determined by Ti−3 ≤ M < Ti−2, and let
Aj , Bj ,Gj be as in Lemmas 6.2 and 6.3, with q̂j replaced by qj as defined in step 2.
Then an easy induction argument shows that Tj = (−1) j−1rj + 2
2s

√
D�Bj , so

Bj = Tj + (−1) j rj

2
2s
√

D�
and

Gj = Aj Q0 − Bj P0 = 2−s(Ajr−1 − Bj (r−2 − 
2s
√

D�))
= 2−s((−1) j−1rj + Bj
2s

√
D�) = 2−(s+1) ((−1) j−1rj + Tj ),

which are exactly the expressions given in step 3 for j = i − 2 and i − 3. Now

Tj = Ajr−1 − Bjr−2 + 2
2s
√

D�Bj = 2s Aj Q0 + Bj (
2s
√

D� − 2s P0)

≥ 2s Aj Q0 ≥ 2s Bj Q0,

since P0 <
√

D and Aj/Bj = [q0, q1, . . . , qj ] ≥ q0 ≥ 1.Therefore 2s Bi−3 Q0 ≤ Ti−3 ≤
M ≤ 2s+|k|Q0, and hence B2

i−3 ≤ 22|k| ≤ 2s−1 Q0 by the definition of s in step 1. By
Lemma 6.2, (P0+

√
D)/Q0 = [q0, q1, . . . , qi−4, ϕi−3] where Pi−4 and Qi−4 are given by

Lemma 6.3 (with j = i−4). We use the formulae in Lemma 6.3 to define Qi−1 and Pi−1

in step 3. However, by the time the loop in step 2 has terminated, we may have proceeded
a few steps further in our rational continued fraction expansion than the point determined
by the bound in Lemma 6.2. That is, the quantities Pi−1 and Qi−1 in step 3 may not be
correct; however, they will be correct (and the corresponding ideal will be reduced) if
Pi−1+

√
D > Qi−1 > 0, because in that case, (P0+

√
D)/Q0 = [q0, q1, . . . , qi−2, ϕi−1]

with ϕi−1 = (Pi−1 +
√

D)/Qi−1 > 1. If these conditions do not hold, we “back up” at
most three iterations in step 4 until we reach a loop index where the ideal coefficients
are once again guaranteed to be correct and we have a reduced ideal, at which point we
pick up the correct continued fraction expansion in step 5.

At the beginning of step 6, we once again have Ti−2 > M ≥ Ti−3 where i ≥ 2. Now
set ej = �2p−s+3Tj−2/Q0� for j ∈ N. For j ≥ 3, we have Tj−2 ≥ Tj−3+ T−1 and hence

ej ≥ 2p−s+3 Tj−3 + 2s Q0

Q0
= 2p−s+3 Tj−3

Q0
+ 2p+3 > ej−1 − 1+ 2p+3,
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so ej ≥ ej−1+2p+3 ≥ ej−1+2. Since M ≥ 2p+s−k Q0/d,we have dei > 2p−s+3d M/Q0

≥ 22p−k+3.

Suppose dei−1 > 22p−k+3. Then i ≥ 3 (since de1 = 2p+3 < 22p−k+3) and

ei−2 ≤ ei−1 − 2 < 2p−s+3 Ti−3

Q0
− 1 ≤ 2p−s+3 M

Q0
− 1

<
2p−s+3

Q0

(
2p+s−k Q0

d
+ 1

)
− 1 = 22p−k+3

d
+ 2p+3

2s Q0
− 1

≤ 22p−k+3

d
− 1

2
<

22p−k+3

d

since by step 1, 2s Q0 ≥ 2p+4. It follows that dei−2 ≤ 22p−k+3, so after step 6, de ≤
22p−k+3 < de′, yielding t ′ ≥ −k ≥ t + 1 and hence h < 0 ≤ h′ in step 7. Furthermore,
the definition of g and g′ in step 7 easily yields 2p < g, g′ ≤ 2p+1.

Write e = �2p−s+3T/Q0� where T = 2s G + B
2s
√

D� (G ∈ Z, B ∈ N). Then in
step 6, c = (�)b with � = (G + B

√
D)/Q0 and |�| < 1 < �. Since c = (�θ)a, it

remains to show that ∣∣∣∣2p−h�θ

g
− 1

∣∣∣∣ < f + 9
8

2p
. (6.7)

We first claim that ∣∣∣∣2p+3�

e
− 1

∣∣∣∣ < 1

2p+3
. (6.8)

To prove (6.8), we observe that 0 < � − 2−s T/Q0 < 2−s B/Q0 ≤ 2−(p+4)B, so since
e − 1 < 2p−s+3T/Q0 ≤ e, it follows that −1 < 2p+3� − e < B/2. If B ≤ 2, then
e > 2p+3�−B/2 > 2p+3−1, so e ≥ 2p+3 and |2p+3�/e−1| < e−1 ≤ 2−(p+3).Suppose
now that B ≥ 3. Then since Q0 < 2

√
D, we have � > 2B

√
D/Q0 − |�| > B − 1, so

e > 2p+3(B − 1)− B

2
= 2p+2 B + B

(
2p+2 − 1

2

)− 2p+3 > 2p+2 B,

since B ≥ 3 and 2p+2 > 3
2 . Therefore |2p+3�/e − 1| < B/2e < 2−(p+3).

Using (6.8) and the inequality |2p−kθ/d − 1| < 2−p f, we can use exactly the same
reasoning as in the proof of Theorem 6.1 (with µ replaced by �) to derive (6.7).

Now the total number of steps performed by the loops in steps 2 and 5 is O(i) where
Ti−3 < M ≤ Ti−2. As outlined above, the loop in step 4 is executed at most three times
and thus plays no role in the asymptotic complexity of the algorithm. Since T−2 ≥ 0, a
simple induction argument shows that Tj ≥ τ j T−1 for j ∈ N, where τ = (1+√5)/2,
so τ i−3 < M/T−1 ≤ 2s−k Q0/2s Q0 = 2|k|.

Theorem 6.4. If D ≥ 256, then Algorithm NEAR-PRODUCT is correct and performs
O(log D) integer operations.

Proof. After step 1, we have k ≤ k ′ + k ′′ + 1 < 0 since k ′, k ′′ < 0. So the output of
step 1 of NEAR-PRODUCT is a legitimate input to step 2.

By Theorems 6.2 and 6.3, the output of NEAR-PRODUCT is a near reduced ( f̃ , p)
representation of a′a′′ where f̃ = f ∗ + 13

8 + 2−(p+1) f ∗ + 9
8 = f ∗ + 11

4 + 2−(p+1) f ∗.
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Furthermore, |k| ≤ |k ′| + |k ′′| + 1 = O(log�) by Corollary 4.1, so, by Theorems 6.2
and 6.3, the algorithm performs O(log D) integer operations.

Theorem 6.5. If D ≥ 256, then Algorithm EXP is correct and performs O(log n
log D) integer operations.

7. The Protocol

Suppose that f ′, f ′′ < 2p−4 for the inputs of NEAR-PRODUCT. Then f ∗ = f ′ +
f ′′ + 2−p f ′ f ′′ < 2p−1, so 2−(p+1) f ∗ < 1

4 . Hence NEAR-PRODUCT generates a near
reduced ( f, p) representation, where f = f ∗ + 3. This is the same bound on f as in
Algorithm MR of [7] and shows that the precision analysis of Section 3 of [7] and the
lower bound on p given in Lemma 4.1 of [7] remain valid here.

We give a slight improvement of the result of Lemma 4.1 in [7] that allows for the
transmission of fewer bits in our proposed Diffie–Hellman protocol.

Lemma 7.1. Let (b, d, k) be a near reduced ( f, p) representation of some ideal a. Let
r ∈ N with r < p. Set d ′ = 2r�2−r d�. Then (b, d ′, k) is a near reduced ( f + 2r , p)
representation of a.

The proof of this lemma is straightforward using Definition 4.1.

Corollary 7.1. Let r be any reduced principal ideal and let p, a, b, B ∈ Z with B ≥
12, 0 < a, b ≤ B, and 2p ≥ 50B2 max{16, log2 B}. Set r = 
log2 B� and

(a, da, ka) = EXP((r, 2p+1,−1), a, p),

(k, d, k) = EXP((a, 2r�2−r da�, ka), b, p).

Then (k, d, k) is a near reduced ( f, p) representation of rab with f < 2p−4.

Proof. Set h = max{16, log2 B}. Using the same reasoning as in Theorem 3.9 and
Lemma 4.1 of [7], we deduce that (a, da, ka) is a near reduced (g, p) representation of
ra with g ≤ 13.33B. By Lemma 7.1, (a, 2r�2−r da�, ka) is a near reduced (g + 2r , p)
representation of ra where g+2r ≤ g+B ≤ 14.33B.Since B ≥ 12,we have 0.8481B >

9.9, so h(3.43 · 14.33B + 9.9)b < 50B2h ≤ 2p. By Theorem 3.9 of [7], (k, d, k) is a
near reduced ( f, p) representation of rab where h f < 2p, so f < 2p/h ≤ 2p−4.

Corollary 7.1 and Lemma 4.2 now immediately yield the following.

Theorem 7.1. Let r, r, p, a, b, B be as in Corollary 7.1 and set

(a, da, ka) = EXP((r, 2p+1,−1), a, p),

(b, db, kb) = EXP((r, 2p+1,−1), b, p),

(k, d, k) = EXP((a, 2r�2−r da�, ka), b, p),

(m, e, h) = EXP((b, 2r�2−r db�, kb), a, p).
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Then (k, d, k) and (m, e, h) are near reduced ( f, p) representations of rab with f < 2p−4

and k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)}.

To exchange a common key (which in our context will be any desired portion of the
coefficients P, Q of a reduced ideal k = (Q, P)), two parties Alice and Bob first publicly
agree on a large squarefree positive integer D (≥ 256), a reduced principal ideal r in
the maximal order O of K = Q(√D), and a bound B ∈ N on the exponents. Good
choices of D yielding a high level of security, for example forcing D to be non-square
modulo several small primes, were suggested in [7]. Hamdy [4] gives recommendations
for sizes of D providing specific levels of security. Both communicants also precompute
p = �log2(50B2 max{16, log2 B})� and r = 
log2 B� (note that p > 4). They then
execute the following protocol.

Protocol 7.1 (Cryptographic Key Exchange).

1. Alice
(a) secretly generates a ∈ N, a ≤ B;
(b) computes (a, da, ka) = EXP((r, 2p+1,−1), a, p);
(c) sends (a, �2−r da�, ka) to Bob.

2. Bob
(a) secretly generates b ∈ N, b ≤ B;
(b) computes (b, db, kb) = EXP((r, 2p+1,−1), b, p);
(c) sends (b, �2−r db�, kb) to Alice.

3. Alice computes (k, d, k) = EXP((b, 2r�2−r db�, kb), a, p).
4. Bob computes (m, e, h) = EXP((a, 2r�2−r da�, ka), b, p).

Note that Alice transmits roughly log2�+ log2 B log2 log2 B bits: the coefficients of
the ideal a are of approximate size log2(

√
�), |ka| tends to be very small, and 2−r da ≈

2p−r ≈ 50B log2 B; similarly for Bob. This is an improvement of approximately log2(B)
bits over the protocol in [7].

Asymptotically, Protocol 7.1 requires the same number of integer operations as the key
exchange protocol in Section 4 of [7]. Nevertheless, as evidenced by the data presented
in Section 10, our new protocol is significantly faster. The main advantages of NUCOMP
are that the sizes of operands involved are smaller than standard ideal multiplication and
reduction and that the continued fraction expansion of quadratic irrationals is replaced
by the computationally simpler extended Euclidean algorithm. Neither of these reduce
the number of integer operations required, but both have a positive effect on performance
in practice.

By Theorem 7.1, k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)}.We have k = m essentially
all the time; in fact, in our numerical experiments, which consisted of the 5000 key
exchanges computed to generate the runtimes in Table 2 plus the numerous protocol
runs conducted during the process of optimizing the code, this was always true. If Alice
and Bob have doubts about whether they computed the same ideal, they can choose
D ≡ 3 (mod 4) and execute another small protocol that guarantees them a common key
ideal. Before we describe this final procedure in the next section, we explain how a user
can employ a technique similar to Protocol 7.1 to transmit a cryptographic key of her
choice to another user.
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Suppose Alice wishes to send a private key K ∈ {0, 1}n to Bob. In addition to the
public parameters required for Protocol 7.1, they both agree on a public hash function h
that maps reduced ideals (i.e. their Z-bases (Q, P)) into the set {0, 1}n of n-bit strings.
Using the same notation as above, Bob generates a secret exponent b and publicizes
(b, �2−r db�, kb). Now Alice looks up Bob’s public entry (b, �2−r db�, kb), generates a
secret exponent a, and computes first (a, da, ka), then (k, d, k), and finally S = K⊕h(k).
She sends S and (a, �2−r da�, ka) to Bob. Bob now computes (m, e, h) and K = S⊕h(m)
to obtain the secret key K .2 Alice could even have sent a ciphertext C = EK (M) (where
M is some secret message) to Bob along with the rest of the information, which Bob
could immediately decrypt to M = DK (C).

We finally point out that by using ideas of [1] and [11], Protocol 7.1 can also be
adapted to exchange ElGamal-type signatures.

8. The Final Key Agreement Protocol

We now describe a short protocol that establishes a provably unique key. To this extent,
we assume that D ≡ 3 (mod 4). Suppose Bob computed (m, e, h) and Alice computed
(k, d, k) with k = (Q, P). From her last call of NEAR-PRODUCT (within EXP), she
also knows (ρ(k), d ′, k ′).

Protocol 8.1 (Final Key Agreement).

1. Alice
(a) puts q ≡ Q (mod 4), 0 ≤ q ≤ 3;
(b) puts b1 = 0 if d ≤ 3 · 2p−1 and b1 = 1 otherwise;

puts b2 = 0 if d ′ ≤ 3 · 2p−1 and b2 = 1 otherwise;
(c) puts

(a0, a1, a2) =


(1, 1, 0) if k ≤ −3;
(1, 0, b1) if k = −2;
(0, b1, b2) if k = −1;

(d) sends (a0, a1, a2, q) to Bob.
2. Bob

(a) determines an ideal l = (Q̃, P̃) according to Table 1.
(b) Sets k

′ = l if q ≡ Q̃ (mod 4) and k
′ = ρ(l) otherwise.

The last column of Table 1 gives the ideal l which Bob must determine in step
2(a) of Protocol 8.1. Entries of ∗ indicate any possible value for the parameter in that
column.

Theorem 8.1. k
′ = k; that is, the ideal k

′ computed by Bob in step 2(b) of Protocol 8.1
is the same as the ideal k computed by Alice in step 3 of Protocol 7.1.

2 As stated above, m = k basically all the time. If Alice and Bob are not confident that m = k, Alice can
send along the five extra bits specified in Protocol 8.1. This enables Bob to deduce k.
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Table 1. Ideal l for the final key agreement protocol.

a0 h a1 a2 l

1 < −1 ∗ ∗ m

1 = −1 1 ∗ ρ−2(m)

1 = −1 0 0 ρ−2(m)

1 = −1 0 1 ρ−2(m) if e > 2p+3/7
1 = −1 0 1 ρ−1(m) if e ≤ 2p+3/7

0 < −2 0 1 ρ(m)

0 = −2 1 ∗ ρ(m)

0 = −2 0 ∗ m if e > 7 · 2p−2

0 = −2 0 ∗ ρ(m) if e ≤ 7 · 2p−2

0 = −1 1 ∗ ρ−1(m) if e > 21 · 2p−4

0 = −1 1 ∗ m if e ≤ 21 · 2p−4

0 = −1 0 ∗ ρ−2(m) if e > 3 · 2p+2/7
0 = −1 0 0 ρ−1(m) if e ≤ 3 · 2p+2/7
0 = −1 0 1 ρ−1(m) if 21 · 2p−4 < e ≤ 3 · 2p+2/7
0 = −1 0 1 m if e ≤ 21 · 2p−4

Proof. By Theorem 7.1, we have k = ρi (m) for some integer i with |i | ≤ 2. As in
Lemma 4.3, set a = 2k−hd/e.

If a < 7
8 , then, by part 2 of Lemma 4.3, k ∈ {ρ−2(m), ρ−1(m)}. Suppose first that

(a0, a1, a2) = (1, 1, 0). Then Bob knows that k ≤ −3. If h < −1, then h− k ′, k − h′ ≤
−2, so, by part 1 of Lemma 4.3, l = m = k. If h = −1, then since d ≤ 2p+1 and e > 2p,

we have a ≤ d/4e < 1
2 <

7
8 , so k ∈ {ρ−2(m), ρ−1(m)} = {l, ρ(l)}.

Suppose now that (a0, a1, a2) = (1, 0, b1), so k = −2. Since k − h′ ≤ −2, k ∈
{ρ−2(m), ρ−1(m),m} by part 1 of Lemma 4.3. If h < −1, then l = m = k as before.
If h = −1, then we consider two cases. If b1 = 0, then d ≤ 3 · 2p−1, so with e > 2p,

a = d/2e < 3 · 2p−1/2p+1 = 3
4 <

7
8 and again k ∈ {l, ρ(l)}. Suppose b1 = 1, so

d > 3 · 2p−1. If e > 2p+3/7, then a < 7 · 2p+1/2p+4 = 7
8 , so k ∈ {l, ρ(l)}, otherwise

a > 7 · 3 · 2p−1/2p+4 = 21
32 >

7
12 , in which case k ∈ {ρ−1(m),m} by part 2 of Lemma

4.3, so again k ∈ {l, ρ(l)}.
Continuing in a similar fashion, one can show that k ∈ {l, ρ(l)} for every possible

set of values of (a0, a1, a2). By Lemma 4.5 of [7], if l = (Q̃, P̃) and ρ(l) = (Q̂, P̂),
then Q̃ �≡ Q̂ (mod 4), provided D ≡ 3 (mod 4). Hence the quantity q enables Bob to
distinguish l from ρ(l) correctly, and it follows that k

′ = k.

9. Security

Aspects of the security of the general idea underlying the real quadratic fields key
exchange protocol have been discussed in some detail in [12] and [7]. However, the
specifics of this particular implementation are somewhat different from those in [12]
and even in [7]; thus, we provide some additional remarks concerning this matter
here.
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We note that for the fixed values p and r given in Section 7, a pair of unknown integers
a, b, and a given ideal r, the objects roughly corresponding to a Diffie–Hellman triple
here are

(a, �2−r da�, ka), (b, �2−r db�, kb), and k,

where

(a, da, ka) = EXP((r, 2p+1,−1), a, p),

(b, db, kb) = EXP((r, 2p+1,−1), b, p),

(k, d, k) = EXP((a, 2r�2−r da�, ka), b, p),

because usually k = m. Certainly, an attacker can break this system if he can deduce a
or b from the transmitted information.

The discrete logarithm problem in this context is the problem of finding a generator
α (or a good approximation of log|α|) of a reduced principal ideal (see [12]). Since
(a, da, ka) is a near reduced ( f, p) representation of ra, we have

a = (θa)r
a (9.1)

for some θa ∈ K.Suppose an attacker can find a generatorα of a,or a good approximation
of log|α|. Then he could solve (9.1) for a as follows. It is easy to deduce γ ∈ K with
r = (γ ). Then, by (9.1), |α| = εmθaγ

a where m ∈ Z and ε is the fundamental unit of
K, so

logα = m R + log θa + a log γ,

where R = log ε is the regulator of K. Now log γ is small by construction of r, log θa

is small by Corollary 4.1, and m is small by our choice of the upper bound B on a (see
[12]). So it would not be hard to find a, once R is known. Of course the determination
of R is just another instance of our discrete logarithm problem.

However, it is possible to view (9.1) from another point of view. The attacker knows
�2−r da� and ka .Note that knowledge of ka provides him with little information, since ka

is usually small by Corollary 4.1—as mentioned right after the proof of that corollary, we
expect ka = −1 in 64% of all cases, for example—so many possible values for θa could
have the same ka value. However, the adversary also knows that |2p−kaθa/da−1| < 2−p f
for some f < 14.33B, so he can use ψ̂ = 2p−r−ka/�2−r da� as an approximation to
ψ = θ−1

a . If we set δ = |ψ̂/ψ − 1|, then it can be shown that δ < (1+ 21−r ) · 2−p f <
(1 + 2−15) · 2−p f when B ≥ 216, so δ < (1 + 2−15) · 14.33/(50B log2 B). We may
therefore assume that the attacker knows a good rational approximation ψ̂ to ψ as well
as an upper bound δ < 0.29/(B log2 B) on the relative error of that approximation.

As usual, for two functions f (n), g(n) (n ∈ N),we write f (n) = �(g(n)) if c g(n) ≤
f (n) ≤ d g(n) for positive constants c, d, and n sufficiently large. Let m/n be any
convergent of the continued fraction expansion of

√
�. Then for a given n, it is possible

to formulate explicitly an infinitude of distinct pairs of rationals (r(n), s(n)) such that
r(n), s(n)

√
� = �(n), and if ψ(n) = r(n)− s(n)

√
�, then |ψ̂ −ψ(n)| = O(n−1), so

knowing ψ̂ and δ still leaves infinitely many possibilities for ψ.
On the other hand, if the coefficients of ψ were known to lie in a certain range that is

not too large, then it might be possible to search for them successfully. Ifψ = r− s
√
�,
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then since r = (ψ + ψ)/2 and s
√
� = (ψ − ψ)/2, an interval containing r and s

√
�

can be determined from bounds on ψ and |ψ |. By (9.1), we have

N (r)a = ψ |ψ |N (a). (9.2)

Now N (r) is public information, 1 ≤ N (a) <
√
� since a is reduced, and we have

the bounds 16
17 < ψ < 16

√
�/15 on ψ from Corollary 4.1. It follows from (9.2) that

|ψ | = �(N (r)a) as a grows, so r and s
√
� are exponentially large in a. Since a tends

to be quite large (see Section 10), this does not allow for an efficient search for a.

10. Implementation

When implementing Algorithm NUCOMP, there are a number of optimizations one
can utilize. First, steps 1–3 can be simplified by making use of the observation that
gcd(Q′/σ, Q′′/σ) = 1 most of the time. If this condition is detected, the second step,
including the relatively expensive extended GCD computation, need not be executed and
step 3 can be simplified.

The ideal reduction steps (steps 8 and 9 of NUCOMP and step 5 of NEAR) can be
replaced by the more efficient Tenner’s algorithm [21]. In order to use Tenner’s algorithm,
we need the R values corresponding to each ideal (Q, P), where R = (D − P2)/Q.
These can be computed expeditiously in step 7 of NUCOMP using

Ri = (−1)i−2 (ai−2di−2 − bi−2ci−2) .

The R value corresponding to a given ideal computed using Tenner’s algorithm is
simply the Q value of the previous ideal.

As in [8], the computations in step 7 of NUCOMP can be rearranged and simplified
in order to reduce the number of integer multiplications. Using (3.1) and (3.3), it is
easy to prove bi−1ci−2 − bi−2ci−1 = (−1)i−1(P ′ − P ′′) and ai−1di−2 − ai−2di−1 =
(−1)i−2(P ′ + P ′′), implying

ci−2 = bi−2ci−1 + (−1)i−1(P ′ − P ′′)
bi−1

, di−1 = (P ′ + P ′′)− Ai−2di−2

Ai−3
,

from which we can derive the following optimized version of step 7:

— Compute ai−1, ai−2, ci−1 as before.
— X1 = bi−2ci−1, ci−2 =

(
X1 + (−1)i−1(P ′ − P ′′)

)
/bi−1.

— Compute di−2 as before.
— X2 = Ai−2di−2, di−1 =

(
(P ′ + P ′′)− X2

)
/Ai−3.

— Compute Qi as before,

Pi = P ′′ + (−1)i−1(X2 − X1), Ri = |ai−2di−2 − bi−2ci−2|.
— Compute G ′,G, B ′, B as before.

We can also improve these formulas in the frequently occurring case of squaring
an ideal. The resulting algorithm was called NUDUPL by Shanks. The modifications to
steps 1–3 and step 7 are straightforward to derive using the facts that Q′ = Q′′, P ′ = P ′′,
and bj = σcj .



An Improved Real-Quadratic-Field-Based Key Exchange Procedure 237

Another improvement to our new protocol over that of [7] is that we use significantly
smaller s values. In [7] we had to choose s such that 2s > D3/4, whereas here we can
choose s dynamically. In practice, rather than computing s as in step 11 of NUCOMP or
step 1 of NEAR, we precompute a table of valid s values which can be indexed by the
size of Q′j/S in step 11 of NUCOMP and by the size of Q in step 1 of NEAR.

Hamdy [4] reports that replacing the extended GCD computations of NUCOMP with
Lehmer’s variant yields significant performance increases when applied to key exchange
in imaginary quadratic fields. We have used Lehmer’s variant for the extended GCD
computations in both NUCOMP (step 6) and NEAR (step 2). This resulted in a savings
of about 25% over the classical extended Euclidean algorithm.

The key exchange protocol described in Section 7, including the optimizations de-
scribed above, was implemented using the GNU C++ compiler version 3.2 and the C++
computer algebra library NTL [16]. For comparison purposes, we also implemented the
protocol from [7] using the same software. The following computations were performed
on a Pentium IV 2.53 GHz computer running Linux.

In order to test the efficiency of our improved protocol, we computed numerous
examples using discriminants of 795, 1384, 1732, 3460, and 5704 bits. According to
Hamdy’s estimates [4] on solving the discrete logarithm problem in imaginary quadratic
fields, discriminants of these sizes offer 80, 112, 128, 192, and 256 bits of security for
cryptographic protocols based on that problem. NIST [10] currently recommends these
five levels of security for key establishment in U.S. government applications. These
discriminant sizes offer the same level of security or better for real quadratic fields,
as the best-known algorithm for solving the infrastructure discrete logarithm problem
has the same asymptotic complexity as that in imaginary quadratic fields [20], and may
indeed be slightly harder in practice [6].

For each discriminant size, we randomly selected 1000 discriminants and executed
both our new protocol and that of [7] once for each discriminant. We used ρ5((1))
for the initial ideal r and B = 2160, 2224, 2256, 2384, and 2512 for the exponent bounds,
respectively. The exponent bounds were chosen so that the difficulty of solving the infras-
tructure discrete logarithm problem using generic algorithms running in time O(

√
B) is

approximately the same as that using a subexponential index-calculus algorithm such as
[6] or [20].

Table 2 contains the average CPU time per communication partner for a single appli-
cation of the protocol. The protocol from [7] is indicated by MULT and our new protocol
by NUCOMP. We also give the ratio of the average time using standard ideal multipli-

Table 2. Average CPU times (in seconds) per key exchange per partner.

log2 � IMAG MULT NUCOMP MULT/NUCOMP

795 0.04 0.38 0.13 2.8948

1384 0.11 1.05 0.30 3.4518

1732 0.15 1.63 0.43 3.7925

3460 0.50 6.34 1.45 4.3814

5704 1.32 17.97 3.86 4.6553
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cation and reduction (i.e. the protocol from [7]) over the average time using NUCOMP.
For comparison, the first column contains the corresponding runtimes for an imaginary
quadratic field-based key exchange protocol using the same NUCOMP implementation
(without distance computation).

Our new protocol using NUCOMP was significantly more efficient than that of [7] in
all cases, from just under 3 times as fast for 795-bit discriminants to over 4.5 times as
fast for 5704-bit discriminants. As observed in [8], as the discriminant size increases, the
savings obtained by using NUCOMP become more dramatic. The data suggest that the
improvement factor might be of order log log D—a more precise complexity analysis
and investigation are currently under investigation.

Although our algorithm does not yet rival key exchange in imaginary quadratic fields
in terms of performance, our new implementation using NUCOMP is clearly much more
competitive than that of [7]. In addition, A. Stein has observed that one can improve the
efficiency of key exchange in real quadratic function fields to the point that it is faster than
the corresponding protocols in imaginary quadratic function fields, by essentially taking
advantage of the fact that reduction steps in the infrastructure are much less expensive
than ideal multiplications. Whether these ideas will bear fruit in the real quadratic field
case is the topic of further research.

As in [7], both partners end up with the same ideal in all cases. Thus, the second round
of the protocol is never executed in practice.
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