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CONSTRUCTION OF HYPERELLIPTIC FUNCTION FIELDS
OF HIGH THREE-RANK

M. BAUER, M. J. JACOBSON, JR., Y. LEE, AND R. SCHEIDLER

Abstract. We present several explicit constructions of hyperelliptic function
fields whose Jacobian or ideal class group has large 3-rank. Our focus is on
finding examples for which the genus and the base field are as small as pos-
sible. Most of our methods are adapted from analogous techniques used for
generating quadratic number fields whose ideal class groups have high 3-rank,
but one method, applicable to finding large l-ranks for odd primes l ≥ 3, is
new and unique to function fields. Algorithms, examples, and numerical data
are included.

1. Introduction and motivation

The Cohen-Lenstra heuristics [6] imply that the ideal class group of an imaginary
quadratic number field is expected to have low l-rank for any odd prime l, and there
is strong numerical evidence to support this claim. As a result, beginning in the
1970’s, a considerable body of literature has been devoted to the construction of
families of “atypical” imaginary quadratic fields of unusually large 3-rank and the
development of algorithms for finding such fields [30], [34], [33], [7], [8], [10], [31],
[11], [27], [20], [22], [21], [4]; some of this work will be discussed in more detail in
this paper. For completeness, we mention that the record is held by Llorente and
Quer [27, 21] who found three imaginary quadratic fields of 3-rank 6.

Friedman and Washington [13] proposed a function field analogue of the Cohen-
Lenstra heuristics, conjecturing that the l-rank of the Jacobian of a hyperelliptic
curve over a finite field is small with high probability, despite the fact that it can
be as large as twice the genus of the curve. This result was recently formalized
and proved by Achter [1]. Lee and Pacelli [25, 19] provided explicit constructions
of infinite families of degree m function field extensions K/Fq(x) whose ideal class
group has d-rank m − 1 when d, m and q are pairwise coprime; the simplest case
yields an infinitude of hyperelliptic function fields of odd characteristic and positive
d-rank. It is well-known that the Jacobian and the ideal class group of an imaginary
hyperelliptic function field are very closely linked; they are essentially isomorphic
(possibly up to a factor of Z/2Z), so their respective d-ranks are equal when d is
odd. Therefore, we can use the ideal class group to describe our methods without
loss of generality.
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In this article, we present methods to construct and explicitly compute hyper-
elliptic function fields of large 3-rank. As opposed to methods such as [25, 19] in
which families of curves with certain rank properties are constructed, our focus is
on small examples, namely hyperelliptic function fields where both the base field
and the genus are as small as possible. We generalized methods of Craig [7], Shanks
[30], Shanks and Weinberger [34], and Diaz y Diaz [10] for finding quadratic num-
ber fields with high 3-rank. The method of Diaz y Diaz, essentially a brute-force
search for field discriminants satisfying conditions that guarantee 3-rank at least 3,
turned out to be the most useful, yielding function fields with 3-rank as high as 7.
This method fixes the base field Fq (we used q = 5, 7, 11, 13, 17 for our examples)
and produces examples of varying but reasonably small genus — our examples all
had genus at most 10. We also present a new method unique to function fields,
in which the underlying hyperelliptic curve is fixed and the 3-rank is increased by
enlarging the base field. If the curve is defined over a sufficiently small base field,
then the examples obtained by this method will still be of reasonable size. Unlike
the methods generalized from quadratic number fields, this method is applicable to
finding examples with large l-rank for any odd prime l not dividing q. Both of our
methods are primarily useful for small values of q, as their run-time complexities
are proportional to a power of q due to enumerating all polynomials over Fq up to
a certain degree for the Diaz y Diaz method and computing the L-polynomial of
the hyperelliptic function field for the second method.

While the problem of finding quadratic number fields and function fields of large
d-rank is interesting in its own right, there are further reasons for investigating
this topic, particularly the case d = 3. For a fundamental discriminant D ∈ Z,
D < 0, the associated dual discriminant is D = −3D/ gcd(D, 3)2, i.e. D = −D/3 if
3 divides D and −3D otherwise. Scholz’s Theorem [29] states that the 3-rank of an
imaginary quadratic number field is either equal to the 3-rank of the associated dual
real quadratic field (the non-escalatory case) or exceeds it by 1 (the escalatory case),
and Scholz gave criteria to distinguish between the two scenarios. In fact, some of
the work cited above investigates whether the fields under discussion are escalatory
or non-escalatory; the three fields of Llorente and Quer [27, 21] mentioned earlier
are in fact escalatory, giving rise to three real quadratic fields of the impressive
3-rank 5. Recently, the third author has extended Scholz’s theorem to function
fields [17, 18], proving that if q is an odd prime power and l an odd prime with
q ≡ −1 (mod l), then the l-rank of the real quadratic function field Fq(x,

√
D(x))

(with D(x) ∈ Fq[x] monic, square-free, and of even degree) is either equal to the
l-rank of the imaginary hyperelliptic function field Fq(x,

√
uD(x)) (with u any non-

square in Fq) or is 1 less; if the latter (escalatory) case occurs, then l must divide
the regulator of the real quadratic field.

It is also well-known that there is a remarkable connection between quadratic
and cubic fields. More specifically, for any fundamental discriminant, there is a
bijection between the quadratic field of that discriminant and any triple of conjugate
cubic fields of the same discriminant. Furthermore, Hasse’s Theorem [14] states
that for a given quadratic number field of fixed discriminant whose ideal class
group has 3-rank r, there are (3r − 1)/2 non-isomorphic cubic fields of the same
discriminant. The third author has proved a function field analogue of Hasse’s result
as well. In an unpublished manuscript [32] (see also Chapter 4 of [12]), Shanks
proposed a technique which he called CUFFQI (short for “Cubic F ields F rom
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Quadratic Infrastructure” and pronounced “cuff-key”) that, given an imaginary
quadratic number field of 3-rank r, explicitly generates the associated (3r − 1)/2
complex cubic fields of the same discriminant by making use of the infrastructure
of the set of reduced principal ideals in the associated dual real quadratic field.
Research on a function field version of CUFFQI is currently in progress. Although
the constructions and examples presented here are interesting in their own right,
it was the endeavour of rediscovering CUFFQI and adapting it to hyperelliptic
function fields that motivated and eventually produced this paper, as high 3-rank
hyperelliptic function fields are ideal candidates for testing CUFFQI.

2. Preliminaries

Throughout Sections 2-4 of this paper, let Fq be a finite field of order q where
q is a power of an odd prime; in Section 5, we will allow q to be even or odd. For
any non-zero polynomial F in the polynomial ring Fq[x], we denote by deg(F ) the
degree of F and by sgn(F ) the leading coefficient of F. We also write |F | = qdeg(F ).
If E, F ∈ Fq[x] with E non-constant and F non-zero, write E | F if E divides F,
and define vE(F ) = e if Ee | F and Ee+1 � F.

2.1. Overview of hyperelliptic function fields. A hyperelliptic function field
over Fq is a quadratic extension K = Fq(x, y) of Fq(x) where x ∈ K is transcendental
over Fq. The function field K is defined by a hyperelliptic curve over Fq which (for
odd q) has the form y2 = D(x) with D(x) ∈ Fq[x] a square-free polynomial of
degree at least 3, so K can be written as K = Fq(x,

√
D(x)). The genus of K is

g = �(deg(D) − 1)/2�. It is well-known (see for example Proposition 14.6, p. 248,
of [28]) that the place at infinity of Fq(x) defined by the negative degree valuation
is ramified in K if D has odd degree, inert in K if D has even degree and non-
square leading coefficient, and split in K if D has even degree and square leading
coefficient. In the first two cases, K/Fq(x) is an imaginary quadratic extension,
whilst in the latter scenario, K/Fq(x) is real.

The maximal order (or coordinate ring) of K/Fq(x) is the integral closure of the
polynomial ring Fq[x] in K and is denoted by Ø. For any element α = a+ b

√
D ∈ K

we denote by α = a − b
√

D its conjugate and by N(α) = αα its norm. Similarly,
for any ideal a in Ø, we let a = {α | α ∈ a} be its conjugate ideal. Note that
aa = (N(a)) is the principal ideal generated by a monic polynomial N(a) that is
the norm of a. The ideal a is reduced if a is primitive, i.e. a has no polynomial factors,
and deg(N(a)) ≤ g. If a is primitive, then N(a) is the unique monic polynomial in
a of minimal degree.

Let C denote the ideal class group of K/Fq(x); that is, the group of fractional
Ø-ideals modulo principal fractional Ø-ideals. If K/Fq(x) is imaginary, then every
ideal class of K has at most one reduced representative (see pp. 178-183 of [2]),
whereas in a real quadratic extension, there can be many (in fact exponentially
many) reduced representatives in any given ideal class of K.

Suppose that K/Fq(x) is imaginary. Then there is only one place at infinity,
denoted by ∞ in K of degree f = 1 or f = 2, and the group of units of Ø consists
of only the trivial units Fq

∗, i.e. the non-zero elements of Fq. Then according to
Proposition 14.1, p. 243, of [28], there is a short exact sequence

(2.1) (0) → Jac(Fq) → C → Z/fZ → (0)
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where Jac(Fq) denotes the Jacobian of K/Fq. We thus see that C modulo an iso-
morphic copy of Jac(Fq) is isomorphic to Z/fZ, so we have that C is isomorphic
to Jac(Fq) if ∞ is ramified and the quotient group is isomorphic to Z/2Z if ∞ is
inert; in particular, for any d ∈ N odd, C and Jac(Fq) have the same d-rank. In
short, we say that K has d-rank r if Jac(Fq) (or C) has d-rank r.

2.2. d-torsion ideal classes. Let D ∈ Fq[x] be any square-free polynomial of
degree at least 3. For fixed d ∈ N, consider the equation1

(2.2) 4Ad = B2 − C2D

in the unknowns A, B, C ∈ Fq[x] \ {0}. Our key observation is the correspondence
between solutions of (2.2) (with d odd) and elements in the ideal class group C of
the hyperelliptic function field K = Fq(x,

√
D) whose order is a divisor of d. More

exactly, any d-torsion class yields a non-zero solution of (2.2) (Lemma 2.1 below),
and more importantly, the converse also holds under a certain divisibility condition
(Theorem 2.2 below).

Lemma 2.1. Suppose that d ∈ N is odd. Then any non-zero ideal in the maximal
order Ø of the hyperelliptic function field K = Fq(x,

√
D) whose d-th power is

principal yields a non-zero solution (A, B, C) of (2.2). More exactly, if a is a non-
zero ideal in Ø of norm U ∈ Fq[x], and ad = (l) where l = V + W

√
D ∈ Ø,

then there exists u ∈ Fq
∗ such that (A, B, C) = (uU, 2u(d−1)/2V, 2u(d−1)/2W ) is a

non-zero solution of (2.2).

Proof. Since U = N(a), we have (Ud) = (ll) = (V 2 −W 2D), so there exists u ∈ Ø∗

such that

(2.3) uUd = V 2 − W 2D.

Conjugating (2.3) reveals that u = u, so u ∈ Fq
∗. Multiplying (2.3) by 4ud−1, we

obtain 4(uU)d = (2u(d−1)/2V )2 − (2u(d−1)/2W )2D as claimed, and uU 	= 0, so this
is a non-zero solution. �

Theorem 2.2. Suppose that d ≥ 3 is odd and let (A, B, C) be a solution of (2.2)
with ABC 	= 0. If G = gcd(A, B) divides D, then this solution yields a non-zero
ideal in the maximal order Ø of the hyperelliptic function field K = Fq(x,

√
D) whose

d-th power is principal. More exactly, if a = (A, l/H) is the ideal in Ø generated
by A and l/H, where l = (B + C

√
D)/2 and H = G(d−1)/2, then a is a primitive

integral ideal of norm sgn(A)−1A with ad = (l).

Proof. Set J = gcd(B, C). We first show that H | J, or equivalently, l/H ∈ Ø, so
that a is indeed an integral ideal in Ø. This is clear for G = 1, so assume that
G 	= 1 and set e = vG(J) ≥ 0. Suppose e < (d − 1)/2. Then G2e+2 | Gd | Ad

and G2e+1 | J2G | C2D, so G2e+1 | B2 = 4Ad + C2D. Since vG(B2) is even, we
must have G2e+2 | B2, so G2e+2 | C2D = B2 − 4Ad. Now D square-free implies
vG(D) = 1, so G2e+1 | C2. Again since vG(C2) is even, we have G2e+2 | C2. But
then Ge+1 | B and Ge+1 | C, so Ge+1 | J, contradicting the definition of e. It follows
that e ≥ (d − 1)/2, so H | Ge | J.

1In the function field setting, one can easily eliminate the factor 4 on the left-hand side of (2.2).
However, we chose to keep it to make the connection to the number field methods more readily
visible, particularly for the Diaz y Diaz technique [10] discussed in Section 3. From a practical
and computational viewpoint, the factor 4 makes no difference in any of our algorithms.
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We claim that G is coprime to any power of A/G. To that end, since G is
squarefree, it suffices to show that G is coprime to A/G. Assume to the contrary
that there is an irreducible polynomial P dividing gcd(G, A/G). Then P 2 | A, so
vP (A) > 1. Since G = gcd(A, B) is square-free, we must have vP (B) = 1. On the
other hand, P 3 | P d | Gd | 4Ad + C2D = B2, a contradiction.

Next, we prove that N(a) = sgn(A)−1A. We have (N(a)) = aa = (A2, Al/H,
Al/H, Ad/H2) = (A)b with b = (A, l/H, l/H, (A/G)d−1), so it suffices to show
that b = Ø. Note that H(l/H + l/H) = B ∈ b, so G = gcd(A, B) ∈ b. It follows
that 1 = gcd(G, (A/G)d−1) ∈ b, implying b = Ø.

To establish that a is primitive, assume that (S) | a for some non-zero S ∈ Fq[x].
Then S | (l/H) and S | (l/H), so S | (B/H). Furthermore, S2 | aa = (A), so S | G,
and therefore S(d−1)/2 | H. Then S2 | S(d+1)/2 | SH | B and S2 | A yield S2 | G, so
S ∈ Fq

∗.
Finally, to see that l is a generator of ad, we show that (l) | ad; since both ideals

have identical norm, namely (sgn(A)−1A)d, they must be equal. The ideal ad is
generated by elements of the form αi = Ad−i(l/H)i with 0 ≤ i ≤ d, so it suffices
to show that each αi is an Ø-multiple of l. For i = 0, this holds since Ad = ll,
so we need to show that Hi | Ad−ili−1 in Ø for 1 ≤ i ≤ d. Since G(d+1)/2 | B,
G(d−1)/2 | C, and G | D, we see that Gd | l2. Then Gd−i | Ad−i | A2(d−i) and
Gd(i−1) | l2(i−1) yield G(d−1)i = G(d−i)+d(i−1) | A2(d−i)l2(i−1). Taking square roots
produces the desired result, i.e. Hi | Ad−ili−1. �

The ideal a = (A, l/H) of Theorem 2.2 is called the ideal corresponding to the
solution (A, B, C) of (2.2) (or to the pair (A, B)).

As a point of interest, we note that if q is even, then a hyperelliptic function field
has the form K = Fq(x, y) where y2 + Ey = D with E, D ∈ Fq[x] (there are certain
conditions on the degrees and leading coefficients of D and E that we need not
state in detail). Here, the analogue of equation (2.2) (with the factor of 4 removed)
is

(2.4) Ad = B2 + C2D + BCE .

Lemma 2.1 is still true with (2.4) in place of (2.2). An analogue of Theorem 2.2
holds for example under the assumptions G = gcd(A, B) | gcd(D, E) and E coprime
to A/G, but it is unclear if or how these conditions can be relaxed, or how to find
solutions of (2.4). This is a subject for future research.

2.3. A strategy for obtaining high prime rank. We note that it is sufficient
to consider only solutions of (2.2) with d prime. To see this, suppose d = ps with
p prime and s ∈ N, and that we have a triple (A, B, C) with 4Ap = B2 − C2D.

Then 4Ad = 4(Ap)s = B2
s −C2

sD where Bs and Cs are defined via (B ±C
√

D)s =
2s−1(Bs ±Cs

√
D). The polynomials Bs and Cs can easily be evaluated recursively

using the arithmetic of Lucas functions.
Let d = l be an odd prime (the case d = 2 was discussed in [40]). Suppose

D ∈ Fq[x] is a square-free polynomial of odd degree at least 3 or even degree
at least 4 and non-square leading coefficient, so K = Fq(x,

√
D) is an imaginary

hyperelliptic function field.2 Then it is well-known that every ideal class of K has
at most one unique reduced representative, and exactly one such representative

2In light of Scholz’ Theorem, the condition on K being imaginary is essentially no restriction,
at least in the case where q ≡ −1 (mod l).
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if deg(D) is odd.3 The reduced ideal in the principal class is Ø; it is the only
reduced ideal of constant norm (i.e. norm 1). If (A, B, C) is a solution of (2.2)
satisfying Theorem 2.2 with 0 < deg(A) ≤ g = �(deg(D) − 1)/2�, then it is clear
from Theorem 2.2 that the ideal a in K corresponding to this solution is the unique
reduced representative of an ideal class of order l.

This leads to the following strategy for finding imaginary hyperelliptic function
fields of high l-rank. Fix an odd prime power q and A1 = A ∈ Fq[x]. Find all
non-zero B1 = B such that the square-free part DB of B2 − 4Al has odd degree
≥ 3 or even degree ≥ 4 and non-square leading coefficient, gcd(A, B) divides DB ,
and 0 < deg(A) ≤ gB = �(deg(DB) − 1)/2�. If no such B exists, try a different
A. Note that the conditions on DB force |B|2 ≤ |A|l, so the search space for B is
finite. Each pair (A, B) yields an ideal class of order l in the imaginary hyperelliptic
function field KB = Fq(x,

√
DB), so each KB has l-rank at least 1.

For each B found above, search for further solutions of (2.2) (with d = l and
D = DB), i.e. search for pairs (Ai, Bi) (i = 2, 3, . . .) such that Bi 	= 0, the square-
free part of B2

i − 4Al
i equals DB , gcd(Ai, Bi) | DB , 0 < deg(Ai) ≤ gB, and no two

among the Ai (i = 1, 2, . . .) differ by a constant factor. Then the corresponding
ideals a1, a2, . . . are all distinct (since their norms are distinct) and reduced, so they
generate different ideal classes of KB of order l. Now if the method for producing
the pairs (Ai, Bi) from (A, B) can guarantee at least t among the ideal classes
[a1], [a2], . . . and their conjugates to be independent (for suitable t ∈ N), then each
field KB has l-rank at least t.

In the next section, we present a method that utilizes this strategy for l = 3;
initially, t = 2, but a subsequent refinement of the search technique yields t = 3.

3. Diaz y Diaz’s construction

In 1978, Diaz y Diaz [10] devised a search technique using the strategy described
above for generating quadratic number fields of 3-rank at least 2, and if certain
conditions are met, the 3-rank is at least 3. Since his approach has a high numerical
yield even for parameters of modest size and can be applied to hyperelliptic function
fields without too many changes with the same lower bounds on the 3-rank, we
describe our function field adaption of this technique in some detail.

3.1. The idea for 3-rank at least 2. The method is based on the following idea.
Suppose we have three solutions (Ai, Bi, C) (i = 1, 2, 3) with Ai, Bi, C ∈ Fq[x] and
AiBiC 	= 0 of

(3.1) 4A3 = B2 − C2D

for fixed D, with pairwise distinct Ai; note that the C values of these three triples
are identical. Then

(3.2) 4(Ai − A1)(A2
i + AiA1 + A2

1) = (Bi − B1)(Bi + B1)

for i = 2, 3. Suppose also that the linear factor on the left-hand side of (3.2) divides
the first linear factor on the right-hand side, and that furthermore, the ratios are
the same for i = 2, 3, i.e. (B2 − B1)/(A2 − A1) = (B3 − B1)/(A3 − A1). Call this

3If deg(D) is even and sgn(D) is a non-square in Fq , then there can be ideal classes C such
that every integral ideal in C has a norm whose degree exceeds g. Each such class contains exactly
q + 1 pairwise equivalent primitive ideals whose norm has degree g + 1; see p. 183 of [2].
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ratio 2V ∈ Fq[x]. If we set Ti = Ai − A1, then Bi − B1 = 2TiV. Substituting this
into (3.2) yields

(3.3) 3A2
1 + 3A1Ti + T 2

i = V (B1 + TiV )

for i = 2, 3. If we subtract (3.3) for i = 3 from (3.3) for i = 2 and divide by
T3 − T2, we obtain T3 = V 2 − T2 − 3A1, or equivalently (in a more symmetric
form) A1 + A2 + A3 = V 2. So we see that the pairs (A1, B1) and (A2, B2) uniquely
determine the third pair (A3, B3). Note that if we set A = A1, B = B1, T = T2,
and U = B + TV, then (3.3) for i = 2 can be rewritten as

(3.4) 3A2 + 3AT + T 2 = UV, B = U − TV ,

so we have the following lemma:

Lemma 3.1. Let (A, B, C) be a solution of (3.1) with ABC non-zero. If A and
B satisfy (3.4) for some polynomials T, U, V ∈ Fq[x], then (3.1) has three solutions
(A1, B1, C), (A2, B2, C), (A3, B3, C) where A1 = A, B1 = B, A2 = A + T, B2 =
B + 2TV, A3 = A + T̃ , B3 = B + 2T̃ V with T̃ = V 2 − 3A − T.

Under the right conditions, the three solutions of Lemma 3.1 generate an imag-
inary hyperelliptic function field of 3-rank at least 2:

Lemma 3.2. Assume that K = Fq(x,
√

D) is imaginary of genus g, and let Ai, Bi

(i = 1, 2, 3) be as in Lemma 3.1 such that no two among the Ai (i = 1, 2, 3) differ by
a constant factor. Suppose that Bi 	= 0, gcd(Ai, Bi) divides D, and 0 < deg(Ai) ≤ g
for i = 1, 2, 3. Then K has 3-rank at least 2.

Proof. From our discussion in Section 2.3, we see that the three ideals ai corre-
sponding to the solutions (Ai, Bi, C) (i = 1, 2, 3) of (3.1) generate three distinct
ideal classes of K of order 3. The field K cannot have 3-rank 1 since Z/3Z contains
only two distinct elements of order 3. So K has 3-rank at least 2. �

Lemma 5 of [10] shows that the product a1a2a3 is principal, so we cannot guar-
antee a 3-rank exceeding 2.

3.2. The search space. The above idea can be converted into a search strategy
as follows. As described above, fix an odd prime power q and a non-constant
polynomial A ∈ Fq[x]. In light of (3.4), we search for non-zero polynomials V ∈
Fq[x] such that 3A2 + 3AT + T 2 ≡ 0 (mod V ) has a solution T ∈ Fq[x]. Note that
if q ≡ 1 (mod 3) and u ∈ Fq

∗ with u2 = −3, then the equation 3A2 + 3AT + T 2 = 0
has solutions T± = A(±u − 3)/2 ∈ Fq[x], so we can choose any suitable V and set
T ≡ T+ or T− (mod V ).

Each pair (T, V ) defines polynomials U and B as given in (3.4). Then Lemma
3.1 yields three solutions (Ai, Bi, C) (i = 1, 2, 3) of (3.1) for some square-free poly-
nomial D ∈ Fq[x]. We only consider those V, T, U, B which satisfy the following
conditions:

Conditions (C)
• |T | < |V |;
• D has odd degree ≥ 3 or even degree ≥ 4 and non-square leading coefficient;
• no two among the Ai (i = 1, 2, 3) differ by a constant factor;
• Bi 	= 0 and gcd(Ai, Bi) divides D for i = 1, 2, 3;
• 0 < deg(Ai) ≤ g = �(deg(D) − 1)/2� for i = 1, 2, 3.
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By Lemma 3.2, each pair (V, T ) satisfying these conditions yields a hyperelliptic
function field of 3-rank at least 2.

Given a value of A, the first step is to search for values of V for which the
congruence 3A3 + 3AT + T 2 ≡ 0 (mod V ) arising from the first identity in (3.4)
has a solution T. We can bound V in terms of A :

Lemma 3.3. Under conditions (C), we have deg(V ) ≤ (3 deg(A)− 1)/4. Further-
more, if 3 � q, then deg(V ) ≥ deg(A)/2, and if 3 | q, then deg(V ) ≥ 2.

Proof. Since V 2 = A1+A2+A3, we have deg(V ) ≤ g/2. Using the triangle inequal-
ity, the conditions on D yield |A|3 = |B2 − C2D| = max{|B|2, |C2D|}, so |D| ≤
|C2D| ≤ |A|3. Since deg(D) ≥ 2g + 1, we have 2 deg(V ) ≤ g ≤ (3 deg(A) − 1)/2,
yielding the upper bound on deg(V ).

Assume that 3 � q, and suppose by way of contradiction that |V | < |A|1/2. Then
|T | < |V | < |A|1/2, so |3A2 + 3AT + T 2| = |A|2. Now |B| ≤ |A|3/2, so by (3.4) and
the triangle inequality,

|A|2 = |3A2 + 3AT + T 2| = |(B + TV )V |
≤ max{|BV |, |TV 2|} < max{|A|2, |A|3/2} = |A|2,

a contradiction. Finally, suppose that 3 | q. By (3.4), wee have T 2 = UV. Since
A1 	= A2, we have T 	= 0, and hence U 	= 0, so 0 < |T | < |V | ≤ |UV | = |T |2. It
follows that |T | > 1 and hence deg(V ) ≥ deg(T ) + 1 ≥ 2. �

The search for V can be further narrowed if q ≡ −1 (mod 3), so the method
is particularly suited (though not limited) to this case. The following lemma and
corollary give criteria that suitable values of V must satisfy in this case.

Lemma 3.4. Suppose q ≡ −1 (mod 3). Under conditions (C), V is the norm in
Fq(u)(x)/Fq(x) of a polynomial in Fq(u)[x] where u2 = −3.

Proof. Irreducible polynomials in Fq[x] split two-fold in Fq(u)[x] if they have even
degree and are irreducible in Fq(u)[x] if they have odd degree. So the statement of
the lemma is clear if all irreducible divisors of V in Fq[x] have even degree, or have
odd degree and appear in V as an even power.

Suppose there exists an irreducible divisor P ∈ Fq[x] of V of odd degree such that
vP (V ) is odd. For any F ∈ Fq(u)[x], denote by F the image of F under the map
u → −u. Then UV = 3A2+3AT+T 2 = FF where F = (3A+2T+uA)/2 ∈ Fq(u)[x].
Since P has odd degree, it is irreducible in Fq(u)[x], so it must divide F or F in
Fq(u)[x]. But P | F if and only if P = P | F, and in fact vP (F ) = vP (F ) in Fq(u)[x].
It follows that vP (UV ) is even and at least 2. Therefore vP (U) is odd, so P divides
U and hence B = U − TV. Furthermore, P divides u−1(F − F ) = A, so P | G.
Since P 2 | FF = 3A2 + 3AT + T 2, P must divide T. Also, G3 | A3 + C2D = B2, so
vP (B) ≥ 2. Then P 2 | B − TV = U. Since vP (U) is odd, P 3 must divide U, so P 4 |
UV. But then P 2 | F and P 2 | F , implying P 2 | A and hence P 2 | gcd(A, B) = G,
contradicting the fact that G is square-free. �

Corollary 3.5. Suppose q ≡ −1 (mod 3). Under conditions (C), V is of the form
V = O2E where

1. O is the product of odd degree irreducible polynomials in Fq[x];
2. E is the product of even degree irreducible polynomials in Fq[x];
3. O divides A.
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Proof. Parts 1 and 2 are clear from the proof of Lemma 3.4. Let P ∈ Fq[x] be
irreducible with vP (O) = m ∈ N. Since P 2m | O2 | V | UV = FF where F
and F are as in the proof of Lemma 3.4, we must have Pm | F, F in Fq(u)[x], so
Pm | u−1(F − F ) = A. �

3.3. The algorithm for 3-rank at least 2. For each A, our algorithm generates
a considerable number of hyperelliptic function fields of 3-rank at least 2. More
exactly, for each pair (V, T ) that results in conditions (C) being satisfied, it is
possible to find not just one polynomial B, but a whole parameterized family of
polynomials BF = B + F (T − T̃ ) + F 2V (F ∈ Fq[x]) so that each pair (A, BF )
yields a hyperelliptic function field K = Fq(x,

√
DF ) of 3-rank at least 2.

Algorithm 3.6.
Input: An odd prime power q and a non-constant polynomial A ∈ Fq[x].
Output: A set of square-free polynomials DF ∈ Fq[x] (F ∈ Fq[x]) such that

each hyperelliptic function field KF = Fq(x,
√

DF ) has 3-rank at least 2.
Algorithm:
1. Let N be the set of all non-constant V ∈ Fq[x] satisfying the degree

bound(s) given in Lemma 3.3 and, if q ≡ −1 (mod 3), of the form given in
Corollary 3.5.

2. For each V ∈ N do
2.1 Find all T ∈ Fq[x], |T | < |V |, with 3A2 + 3AT + T 2 ≡ 0 (mod V ).
2.2 Set U = (3A2 + 3AT + T 2)/V and T̃ = V 2 − 3A − T.
2.3 Compute the set R(V, T ) of all F ∈ Fq[x] such that

• BF 	= 0, B2
F 	= 4A3 where BF = U − TV + F (T − T̃ ) + F 2V ;

• |BF | ≤ |A|3/2;
• |TF | ≤ |T̃F | where TF = T + FV and T̃F = T̃ − FV ;
• the square-free part DF of B2

F − 4A3 has either odd degree ≥ 3
or even degree ≥ 4 and non-square leading coefficient;

• A + TF and A + T̃F are non-constant;
• A, A + TF , and A + T̃F do not differ by a constant factor;
• �(deg(DF ) − 1)/2� ≥ deg(A), deg(T̃F );
• gcd(A, BF ), gcd(A + TF , BF + 2TF V ), and gcd(A + T̃F , BF +

2T̃F V ) all divide DF .
2.4 Output {DF | F ∈ R(T, V )}.

Theorem 3.7. Algorithm 3.6 is correct.

Proof. Let F ∈ R(V, T ). As F = (TF −T )/V, |T | < |V | < |A|3/4 by Lemma 3.3, and
|TF | ≤ |T̃F | < |DF |1/2 ≤ |A|3/2, we have |F | < |TF − T | < max{|A|3/2, |A|3/4} =
|A|3/2. It follows that the sets N and R(V, T ) are finite, so Algorithm 3.6 terminates.

Write B2
F − 4A3 = C2

F DF 	= 0, so CF ∈ Fq[x] is the square part and DF the
square-free part of B2

F −4A3. Then KF = Fq(x,
√

DF ) is an imaginary hyperelliptic
function field of genus gF = �(deg(DF )−1)/2�. It is easy to verify that 3A2+3ATF +
T 2

F = UF V with

UF = U + 3AF + 2TF + F 2V = U + F (V 2 + T − T̃ + FV ) .

Furthermore, BF = UF − TF V and T̃F = V 2 − 3A − TF . Set A1 = A, B1 = BF ,
A2 = A + TF , B2 = BF + 2TF V, A3 = A + T̃F , B3 = BF + 2T̃F V. Then by
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Lemma 3.1, B2
i − 4A3

i = C2
F DF for i = 1, 2, 3, and since 0 < deg(Ai) ≤ gF for

i = 1, 2, 3, KF has 3-rank at least 2 by Lemma 3.2. �
We note that the set R(V, T ) is non-empty if A has sufficiently large degree.

Furthermore, we may limit our search to polynomials F with |TF | ≤ |T̃F | because
otherwise, we may exchange T with T̃ and replace F by −F and obtain the same
solution (A1, B1, CF ) to (2.2). However, we know of no better way to compute
R(V, T ) than to test all polynomials F ∈ Fq[x] with |TF | ≤ |T̃F |. Thus, the run-
time of Algorithm 3.6 is at least proportional to some power of q, so the method is
only useful for small values of q.

Example 3.8. Let A = x4 + x = x(x + 1)(x2 + 4x + 1) ∈ F5[x]. The first step
of Algorithm 3.6 is to determine all V ∈ F5[x] satisfying the degree bounds of
Lemma 3.3 and, because 5 ≡ −1 (mod 3), having the form given in Corollary 3.5.
As deg(A) = 4, we must have deg(V ) = 2, and by Corollary 3.5, the only permissible
values of V are x2 and (x+1)2 = x2 +2x+1. For each value of V, we determine all
T ∈ F5[x] with |T | < |V | that satisfy 3A2+3AT +T 2 ≡ 0 (mod V ). As deg(V ) = 2,
this means we need only consider T with deg(T ) ≤ 1. We then determine the set
R(V, T ) corresponding to each (V, T ) pair, each member of which yields a field with
3-rank at least 2.

For example, when V = x2 and T = 3x, we obtain U = (3A2 + 3AT + T 2)/V =
3x6 + 1 and T̃ = V 2 − 3A − T = 3x4 + 4x. For F = 2x2, we get BF = U −
TV + F (T − T̃ ) + F 2V = x6 + 1 and DF = B2

F − 4A3 = 2x12 + 3x9 + x3 + 1.
The three solutions of (2.2) obtained via Lemma 3.1 are (A, BF ) = (x4 +x, x6 +1),
(A+T, BF +2TV ) = (3x4+4x, x3+1), and (A+T̃ , BF +2T̃ V ) = (2x4, 3x6+3x3+1);
as DF is square-free, C = 1. It is easily verified that the conditions of Lemma 3.2
are satisfied, so the hyperelliptic function field F5(x,

√
DF ) has 3-rank at least 2. In

fact, for A = x4 + x, V = x2, and T = 3x, we have |R(V, T )| = 42, and each of the
corresponding DF values yields a hyperelliptic function field of 3-rank at least 2.

3.4. The algorithm for 3-rank at least 3. If the set R(V, T ) is sufficiently large
— in practice, this is usually the case — then there is a good chance that two
distinct polynomials G, H ∈ R(V, T ) produce the same polynomials BG, BH up to
sign (and hence the same hyperelliptic function field KG = KH). In addition, we
can expect that in some cases the solution triples (Ai, Bi, C) (i = 1, 2, 3) as defined
in Lemma 3.1 with T = TG and T = TH produce three independent ideal classes of
order 3, thereby yielding a lower bound of 3 on the 3-rank of K.

The algorithm below makes use of this fact and generates a (possibly empty) set
of imaginary hyperelliptic function fields of 3-rank at least 3. We use the following
notation: if V̂ is a polynomial generated by step 1 of Algorithm 3.6 and T̂ is the
corresponding polynomial computed in step 2.1, then in step 2.3, B̂F , T̂F , ˆ̃TF , and
D̂F have the obvious meaning.

Algorithm 3.9.
Input: An odd prime power q and a non-constant polynomial A ∈ Fq[x].
Output: Zero or more square-free polynomials DF (x) ∈ Fq[x] (F ∈ Fq[x])

such that each hyperelliptic function field KF = Fq(x,
√

DF (x)) has 3-rank
at least 3.

Algorithm:
1. Call Algorithm 3.6 on input q and A. Set S = {(V, T ) | R(V, T ) 	= ∅}.
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2. If #S ≥ 2, then
for all (V, T ) ∈ S do

for all (V̂ , T̂ ) ∈ S \ {(V, T )} do
for all G ∈ R(V, T ) do

for all H ∈ R(V̂ , T̂ ) do
if BG = ±B̂H , none of the polynomials A, A + TG, A + T̃G,

A + T̂H , A + ˆ̃TH is constant and no two of them differ
by a constant factor, then

output DG.

Theorem 3.10. Algorithm 3.9 is correct, i.e. if it generates any output, it only
outputs polynomials DF such that KF has 3-rank at least 3.

Proof. Let (V, T ), (V̂ , T̂ ) be two distinct pairs in S such that BG = ±B̂H , none of

the polynomials A, A + TG, A + T̃G, A + T̂H , A + ˆ̃TH are constant, and no two of
them differ by a constant factor. Define polynomials Ai, Bi (1 ≤ i ≤ 6) as follows:

i 1 2 3 4 5 6

Ai A A + TG A + T̃G A A + T̂H A + ˆ̃TH

Bi BG BG + 2TGV BG + 2T̃GV B̂H B̂H + 2T̂HV B̂H + 2 ˆ̃THV

Then B2
i −4A3

i = CGD2
G for i = 1, 2, 3, and B2

i −4A3
i = Ĉ2

HD̂H for i = 4, 5, 6. Now
A1 = A4 and B2

1 = B2
4 imply CGD2

G = Ĉ2
HD̂H . Since DG and D̂H are square-free,

they differ only by a constant square factor, so KG = Fq(x,
√

DG) = Fq(x,
√

D̂H).
Normalize so that CG = ±ĈH and DG = D̂H (this does not change the function
field KG).

Let ai be the ideal corresponding to the triple (Ai, Bi, C) (1 ≤ i ≤ 6). Then each
ai as well as well as its conjugate generates an ideal class of order 3 in KG. We note
that a1, a2, a3, a5, a6 are pairwise distinct (again, because their norms are pairwise
distinct) and are each distinct from their respective conjugate ideal (because they
each generate an ideal class of order 3). Hence we have ten distinct ideal classes of
order 3 in KG. The class group of KG cannot have 3-rank 2 since Z/3Z×Z/3Z has
only eight distinct elements of order 3. Hence KG must have 3-rank at least 3. �

Once again, the 3-rank may in fact be equal to 3, since a1a2a3 and a4a5a6 are
both principal. Thus, we can only guarantee the independence of three ideal classes;
for example, those generated by a1, a2, and one of a5, a6.

Example 3.11. Let A = x4 + x ∈ F5[x]. As shown in Example 3.8, there are two
valid V, and each of them has five permissible T. The sets R(V, T ) are non-empty for
each (V, T ) pair, so we have |S| = 10. Algorithm 3.9 searches for two distinct pairs
(V, T ) and (V̂ , T̂ ) in S such that BG = ±B̂H , where G ∈ R(V, T ) and H ∈ R(V̂ , T̂ ).
From Example 3.8, we have that (x2, 3x) = (V, T ) ∈ S with G = 2x2 ∈ R(V, T ) and
BG = x6 +1. Algorithm 3.6 finds that the pair (x2 +2x+1, 4x+4) = (V̂ , T̂ ) is also
in S, with H = 2x2 + x + 4 ∈ R(V̂ , T̂ ) and B̂H = x6 + 1 = BG. From Example 3.8
we have A + TG = 3x4 + 4x and A + T̃G = 2x4, and the corresponding values for
H are A + T̂H = 3x4 + 3x2 + 4x + 3 and A + ˆ̃TH = 2x4 + 4x3 + 3x2 + 4x + 3. As
none of A, A + TG, A + T̃G, A + T̂H , and A + ˆ̃TH is constant and no two among
them differ by a constant factor, by Theorem 3.10, the hyperelliptic function field
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F5(x,
√

DF ) with DF = 2x12 + 3x9 + x3 + 1 has 3-rank at least 3. In fact, the ideal
class group of this field is isomorphic to Z/3Z × Z/3Z × Z/3Z × Z/100Z.

4. Other constructions

For completeness, we mention some of the other constructions for finding qua-
dratic number fields of high 3-rank that were cited in Section 1. We have generalized
these constructions to the hyperelliptic function field setting and conducted nu-
merical experiments in order to explore their suitability for generating high 3-rank
function fields.

4.1. The Shanks/Weinberger fields. In [34], it was shown that the imaginary
quadratic fields Q(

√
−3p), where p is a prime of the form p = A6 + 4B6, have

3-rank at least one and are escalatory if and only if B is a multiple of 3. The
first result (positive 3-rank) extends readily to the analogous function fields K =
Fq(x,

√
−3P (x)) where q ≡ −1 (mod 3), P (x) = A(x)6 + 4B(x)6 is irreducible

with A(x), B(x) ∈ Fq[x] \ Fq, and if |A| = |B|, then sgn(A)6 	= −4 sgn(B)6. It is
not known whether there is a similar simple condition to determine whether these
function fields are escalatory.

4.2. The Shanks series. In [30], Shanks defined four “series” of discriminants:

Series 1: ∆(w) = (3w2 − 12w + 18)2 − 2w3,

Series 2: ∆2(x) = (6x2 − 12x + 9)2 − 4x3 = ∆(2x)/4,

Series 3: ∆3(y) = 9(3y2 − 4y + 2)2 − 6y3 = ∆(3y)/9,

Series 6: ∆6(z) = 9(6z2 − 4z + 1)2 − 12z3 = ∆(6z)/9.

He proved that with the exception of certain small cases, the fields Q(
√
−3∆(w))

and Q(
√
−3∆2(x)) generated by square-free radicands of series 1 and 2, respec-

tively, have positive 3-rank and are non-escalatory, while the series 3 and 6 fields
Q(

√
−∆3(y)/3) and Q(

√
−∆6(y)/3) (again considering square-free radicands only)

have 3-rank at least 2 and are escalatory, thereby producing infinite families of real
quadratic fields of 3-rank at least 1. Numerical examples revealed that some of the
series 3 and 6 fields in [30] had 3-rank 3, and [33] produced instances in these series
of 3-rank 4. Subsequent follow-up computations [20], [27], [21] using the Shanks
series 3 and 6 as well as the Diaz y Diaz technique [10] and Mestre’s elliptic curve
method [22] produced many more imaginary quadratic fields of 3-rank 3 and 4 as
well as 20 examples of 3-rank 5. The latter include two series 3 fields and two series
6 fields; being escalatory, these three Shanks fields give rise to four real quadratic
fields of 3-rank 4.

In the function field setting, these series all produce the same fields. Once again,
the lower bounds on the 3-rank of the Shanks series fields extend easily to the
corresponding function fields — we need to again assume that q ≡ −1 (mod 3)
to obtain imaginary hyperelliptic fields, and the parameters w, x, y, z need to be
polynomials with coefficients in Fq. Our numerical data indicates that some of the
fields produced are escalatory, while some are not. Again, it is not known whether
there is a simple condition to separate the two cases.
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4.3. Craig’s construction. The imaginary quadratic number fields generated by
Craig’s method [7] have 3-rank at least 3, but tend to be large. In his construction,
Craig made use of two results originally due to Yamamoto [38] on constructing
independent ideal classes of some fixed order in a quadratic number field. Craig
considered Mordell’s parameterized solutions

X = S4, Y = S(18T 3 − S3), Z = 18T 4, W = 3T (S3 − 6T 3)

of the Diophantine equation X3 + Y 3 = 2(Z3 + W 3) [24]. From these quadruples
(X, Y, Z, W ), he constructed five pairs (Ai, Bi) (1 ≤ i ≤ 5) such that 4A3

i − B2
i =

4A2
j − B2

j for all i, j. These five pairs give rise to ideal classes of order 3 in the
quadratic number field Q(

√
D) where D is the square-free part of B2

i −4A3
i for all i.

Using Yamamoto’s theorem, three of these classes can be shown to be independent,
thereby producing a quadratic number field of 3-rank at least 3.

Yamamoto’s results as well as Craig’s reasoning can be readily extended to hy-
perelliptic function fields over a finite field Fq with certain restrictions on q; for
details, see [3]. Unfortunately, in this setting, the technique produces just two in-
dependent ideal classes of order 3, thereby guaranteeing a lower bound of only 2
on the 3-rank of the field. This is due to the fact that 7 is a prime in Q, whereas it
is of course a constant in Fq(t). As a result, in the function field scenario, only two
(but no three) of Craig’s five pairs (Ai, Bi) can be proved to produce independent
ideal classes using Yamamoto’s results. Furthermore, not surprisingly, the method
produces huge function fields; see Section 6.1.

It is worth mentioning that Craig also provided a remarkable method for creating
quadratic number fields of 3-rank at least 4 [8], but the algorithm is impractical —
the smallest suitable D has over 100 decimal digits — so we did not investigate an
extension of this method to function fields.

5. Increasing the field of constants

Until now, we have only considered the case d = 3, i.e. the question of con-
structing a hyperelliptic function field of high 3-rank, and we used number field
methods to accomplish this. In contrast to this approach, we will now explain how
to increase the 3-rank — or more generally, the l-rank for any prime l coprime to
q — of a given hyperelliptic function field by extending the base field Fq. In other
words, we fix a hyperelliptic curve and vary the field over which we consider the
curve. This technique has no analogue to number fields. While both strategies may
be employed independently of each other, the combination of the two will generate
examples of hyperelliptic fields with maximal 3-rank very efficiently. Furthermore,
if the hyperelliptic curve is defined over a small field Fq, then the resulting examples
with maximal 3-rank of 2g may still be defined over a reasonably small extension
field.

We point out that the results in this section apply to both real and imaginary
hyperelliptic function fields of both even and odd characteristic. Specifically, we
investigate the l-rank of the Jacobian, rather than the ideal class group, of the
extension K/Fq(x). We saw that if K/Fq(x) is imaginary, both these groups have
identical l-rank. However, when K/Fq(x) is real, then the exact sequence (2.1) no
longer applies, so in this case, the Jacobian will generally have much larger l-rank
than the ideal class group.
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Let K = Fq(x, y) be a hyperelliptic function field of genus g over a finite field Fq;
if q is odd, then we again write the corresponding hyperelliptic curve as y2 = D(x).
The idea is to increase the base field from Fq to Fqn for some n ∈ N. We note that
this may change the signature of the extension, i.e. the splitting behaviour of the
place at infinity in Fq(x) in the resulting function field. Set Kn = KFqn = Fqn(x, y).
In the case of odd q, the signature of Kn relates to that of K as follows. If deg(D) is
odd, then both extensions K/Fq(x) and Kn/Fqn(x) are totally ramified at infinity
and hence imaginary. If K/Fqn(x) is real, then so is Kn/Fqn(x), but the converse
need not be true. More specifically, if deg(D) is even and sgn(D) is a non-square
in Fq

∗, then K/Fq(x) is imaginary (with the place at infinity of Fq(x) inert in K),
and Kn/Fqn(x) is still imaginary if n is odd, but Kn/Fq(x) is real (with the place
at infinity of Fqn(x) split in Kn) if n is even.

Rather than limiting ourselves to the 3-rank, we discuss the more general setting
of the l-rank of a field Kn, where l is a prime not dividing q; some of our reasoning
even applies to the d-rank where d is any integer coprime to q. Specifically, we will
address the following questions:

1. How can we compute the minimal positive integer nl such that Knl
/Fqnl

has maximal l-rank 2g? Can we at least find an upper bound on nl?
2. How can we find a positive integer n such that the l-rank of Kn/Fqn is

guaranteed to exceed the l-rank of K/Fq? What is (a lower bound on) the
increase in l-rank?

For question 1, we use the fact that nl is the order of a 2g×2g matrix Ml arising from
a certain Galois representation. This order is easily computed if Ml is converted
to a suitable normal form; here, we will choose the primary rational canonical
form which is determined by the minimal polynomial of Ml. We do not know this
minimal polynomial, but we are able to compute the characteristic polynomial Fl of
Ml, using a deep result originally due to Weil [37] that links Fl to the L-polynomial
L(t) of K/Fq. The L-polynomial can be computed relatively easily if q and g are
of reasonable size. Furthermore, if Fl(t) has an irreducible divisor P different from
t−1, then we can provide an answer to question 2 above; namely, we know that the
l-rank increases by at least deg(P ) if n is taken to be the order of a certain block
submatrix of Ml corresponding to P.

5.1. Theoretical background. We denote by Fq the algebraic closure of Fq. For
any field E with Fq ⊆ E ⊆ Fq, let Gal(E/Fq) denote the Galois group of E/Fq

and Jac(E) the group of E-rational points on the Jacobian of the hyperelliptic
curve defining K. For brevity, write G = Gal(Fq/Fq) and J = Jac(Fq). Note that
Jac(Fq) ⊆ Jac(E) ⊆ J up to isomorphism (see pp. 177-179 of [28]). For any d ∈ N,
denote by Jac(E)[d] the d-torsion group of Jac(E), i.e. the subgroup of elements in
Jac(E) whose order divides d. For brevity, we write J [d] = Jac(Fq)[d].

We let πq ∈ G denote the absolute q-th power Frobenius automorphism defined
via πq(α) = αq for all α ∈ Fq. Note that the action of πq extends to J and to J [d].
If E/Fq is a finite extension, i.e. E = Fqn for some n ∈ N, then let πq,n denote the
restriction of πq to Fqn . Then the Galois group Gal(Fqn/Fq) is a cyclic group of
order n generated by πq,n. The action of πq,n once again extends to Jac(Fqn) and
to Jac(Fqn)[d].

Galois representations. Details about the following discussion can be found on pp.
180ff. of [28]. Let d be any positive integer coprime to q. By p. 180 of [28] (Corollary
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to Theorem 11.12), J [d] is isomorphic to 2g copies of Z/dZ, so the maximal d-rank
that is possible4 for any extension Kn/Fqn is 2g. However, since J [d] is a finite
subgroup of J that is invariant under the action of G on J , the field of rationality
of J [d], i.e. the smallest extension E/Fq with J [d] ⊆ Jac(E), is a finite extension
of Fq whose degree over Fq is our desired value nd from question 1 above; that is,
Jac(Fqnd )[d] ∼= (Z/dZ)2g.

If Aut(J [d]) denotes the group of automorphisms of J [d], then the exact sequence

(5.1) (0) → Gal(Fq/Fqnd ) → G → Aut(J [d])

gives rise to an injection Gal(Fqnd /Fq) ∼= G/Gal(Fq/Fqnd ) → Aut(J [d]). Since
J [d] ∼= (Z/dZ)2g, we have Aut(J [d]) ⊆ Gl2g(Z/dZ), the group of non-singular
matrices over Z/dZ. Thus, we obtain an injection

(5.2) ρd : Gal(Fqnd /Fq) → Gl2g(Z/dZ) .

Since ρd is injective and πq,nd
is a generator of Gal(Fqnd /Fq), nd is equal to the

order of the matrix Md = ρd(πq,nd
). Hence, in order to find nd, it suffices to find

the image Md of πq,nd
under the Galois representation ρd and compute its order in

Gl2g(Z/dZ). Note that this order is invariant under similarity, so if A = S−1MdS
for some S ∈ GL2g(Z/dZ), then obviously, ord(A) = ord(Md). Our goal is therefore
to find a normal form A of Md that is explicitly computable and for which ord(A)
is easy to find. We choose for A the primary rational canonical form of Md, which
can be determined from the minimal polynomial of πq,nd

.

Primary rational canonical form. The following material can be found for example
in Section 4, Chapter VII, of [16]. Let V be a vector space over some field k and φ
a linear transformation on V. We say that φ acts cyclically on a subspace W of V if
W is spanned by the set {φi(v) | i ≥ 0} for some v ∈ V ; in this case, W is said to be
φ-cyclic. Recall that the minimal polynomial of φ is the unique monic polynomial
Gφ(t) ∈ k[t] of minimal degree with Gφ(φ) = 0; it divides all other polynomials F
with F (φ) = 0, including the characteristic polynomial Fφ of φ.

For any monic polynomial f(t) = tr +ar−1t
r−1 + · · ·+a0 ∈ k[t], the r× r matrix

Af =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
· ·
· ·
0 0 0 0 · · · 0 1

−a0 −a1 −a2 −a3 · · · −ar−2 −ar−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is called the companion matrix of f(t). Theorem 4.3, p. 358, of [16] states that φ
acts cyclically on a subspace W of V if and only if W has an ordered basis relative
to which the matrix associated to the restriction φ|W of φ to W is the companion
matrix of the minimal polynomial of φ|W . In general, φ will not act cyclically on
V, but we have the following decomposition theorem (see Theorem 4.2 on p. 356,
Theorem 4.6 on p. 360, and Theorem 5.2 on p. 367, of [16]):

4We note that when l divides q, i.e. l is equal to the characteristic of Fq , then the maximal
l-rank of J is only g, and all l-ranks between 1 and g are possible. The theory behind this scenario
is very different from the case where l does not divide q which we consider here; see [39] and [26],
for example.
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Theorem 5.1. Let φ : V → V be a linear transformation of a vector space V over a
field k. Then there exist distinct monic irreducible polynomials P1, P2, . . . , Ps ∈ k[t]
with the following properties:

1. For each i with 1 ≤ i ≤ s, there exists ki ∈ N and φ-cyclic subspaces
Vi1, Vi2, . . . , Viki

such that V is the direct sum of the Vij (1 ≤ i ≤ s, 1 ≤
j ≤ ki).

2. For each i with 1 ≤ i ≤ s and each j with 1 ≤ j ≤ ki, the minimal
polynomial of the restriction of φ to Vij is of the form P

mij

i where the
integers mij satisfy mi1 ≥ mi2 ≥ · · · ≥ miki

≥ 1.
3. V has a basis relative to which the matrix of φ is of the form

Aφ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11

A12 0
. . .

0
Asks

⎞
⎟⎟⎟⎟⎟⎟⎠

where Aij is the companion matrix of P
mij

i for 1 ≤ i ≤ s and 1 ≤ j ≤ ki.
4. The minimal polynomial of φ is Gφ = Pm11

1 Pm21
2 · · ·Pms1

s .
5. The characteristic polynomial of φ is Fφ = Pm1

1 Pm2
2 · · ·Pms

s where mi =∑ki

j=1 mij for 1 ≤ i ≤ s.

The polynomials P
mij

i (1 ≤ i ≤ s, 1 ≤ j ≤ ki) are uniquely determined by V
and φ and are called the elementary divisors of φ. The matrix Aφ is said to be in
primary rational canonical form.

Note that if Aφ has finite order in Gldim(V )(k), then

ord(Aφ) = lcm{ord(Aij | 1 ≤ i ≤ s, 1 ≤ j ≤ ki},

which is easy to compute if dim(V ) is not too large and each companion matrix
has sufficiently small order.

Let d = l be a prime not dividing q. Our goal is to apply the above theorem to the
Frobenius φ = πq,nl

acting on the 2g-dimensional vector space Jac(Fqnl )[l] over the
finite field Fl of order l. Unfortunately, we generally cannot easily find the matrix
Aπq,nl

. However, we can compute the characteristic polynomial Fπq,nl
of πq,nl

. By
factoring Fπq,nl

, we can find all the polynomials Pi as given in Theorem 5.1, and
hence determine all possible candidates for the matrix Aπq,nl

. To find Fπq,nl
, we

need the L-polynomial of K/Fq.

The L-polynomial of K/Fq. A more in-depth discussion of the L-polynomial of a
function field can be found on pp. 51-55 of [28]. The zeta function of a function
field K/Fq is the function ζ(s) =

∑
d
q−s deg(d) where d runs through all the divisors

of K/Fq. If we set t = q−s, then for all s with �(s) > 1,

ζ(s) = Z(t) =
∑

d

tdeg(d) =
L(t)

(1 − t)(1 − qt)
,

where L(t) = a0 + a1t + · · · + a2gt
2g is the L-polynomial of K. It is a polynomial

of degree 2g with integer coefficients satisfying a0 = 1 and qg−iai = a2g−i for
0 ≤ i ≤ g − 1.
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Let d = ln be a prime power coprime to q. The exact sequence (5.1) specifies a
homomorphism from G to Gl2g(Z/lnZ). The action of G on J [ln] extends to the
Tate module which is the inverse limit

Tl(J ) = lim
←−
n

J [ln] ,

and consequently, we obtain a homomorphism from G to Gl2g(Zl), where Zl denotes
the l-adic integers. Note that applying reduction modulo l to this homomorphism
yields the map ρl of (5.2) (with d = l).

Let Fπq
(t) be the characteristic polynomial of the action of the absolute Frobe-

nius πq on Tl(J ). Then Fπq
(t) = t2gL(t−1) (see for example [23], p. 144). Again

applying reduction modulo l, we see that Fπq
(t) ≡ Fπq,nl

(t) (mod l), and we obtain

(5.3) Fπq,nl
(t) ≡ t2gL(t−1) (mod l) .

Since Fπq,nl
(t) has coefficients in Fl, the L-polynomial of K/Fq uniquely determines

Fπq,nl
(t).

5.2. Algorithms for increasing the l-rank. Let l be a prime not dividing q (in
our previous context, l = 3). Then Jac(Fqnl )[l] ∼= (Z/lZ)2g is a 2g-dimensional
vector space over the finite field Fl, and the action of the q-th power Frobenius
πq,nl

on Jac(Fqnl )[l] (which we also denote by πq,nl
) is a linear map on this space.

By Section 5.1, the parameter nl of question 1 above is equal to the order of the
matrix Aπq,nl

in primary rational canonical form corresponding to the image Ml

of πq,nl
under the injection (5.2). The following theorem answers question 1 which

asked for an effective way to compute (an upper bound on) nl.

Theorem 5.2. Let L(t) be the L-polynomial of K/Fq, and set F (t) ≡ t2gL(t−1)
(mod l), F (t) ∈ Fl[t]. Let F = Pm1

1 Pm2
2 · · ·Pms

s be the factorization of F into
distinct monic irreducibles in Fl[t] and define a set S as follows:

S ={(Pmij

i ) | 1 ≤ i ≤ s, 1 ≤ j ≤ ki, mi1 ≥ · · · ≥ miki
≥ 1,(5.4)

and
ki∑

j=1

mij = mi for 1 ≤ i ≤ s} .

For any tuple P = (Pmij

i ) ∈ S, define the matrix

(5.5) AP =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11

A12 0
. . .

0
Asks

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Aij is the companion matrix of P
mij

i . Then b = max{ord(AP) | P ∈ S} is
an upper bound on nl, and is equal to nl if F (t) is square-free.

Proof. By (5.3) we have F (t) = Fπq,nl
(t), so by Theorem 5.1, the set S consists of all

possible choices for the elementary divisors of πq,nl
. Hence, the collection of matrices

AP,P ∈ S, represents all possible choices for the matrix Aπq,nl
corresponding to

πq,nl
as described in Theorem 5.1. Since nl = ord(Aπq,nl

), b is an upper bound on
nl. If F (t) is square-free, then mi = 1 for 1 ≤ i ≤ s, so S contains only the one
tuple P = (P1, P2, . . . , Ps). Hence AP = Aπq,nl

, and hence b = nl. �
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If the set S of (5.4) is not too large, i.e. there are not too many choices for
the elementary divisors of πq,nl

, then it is feasible to compute the bound b on nl

of Theorem 5.2 via an exhaustive search on S. Computationally, this will not be
costly compared to the effort of determining the L-polynomial of K/Fq which is far
more difficult and dominates the run-time of this approach.

The following is an algorithmic description of Theorem 5.2:

Algorithm 5.3.
Input: A prime power q, a hyperelliptic function field K/Fq of genus g, and

a prime l not dividing q.
Output: The minimal integer nl such that the extension Knl

/Fqnl has l-rank
2g or, if this is impossible, an upper bound b on nl.

Algorithm:
1. Compute the L-polynomial L(t) of K/Fq.
2. Set F (t) ≡ t2gL(t−1) (mod l), F (t) ∈ Fl[t].
3. Find the factorization F = Pm1

1 Pm2
2 . . . Pms

s of F (t) into distinct monic
irreducible polynomials in Fl[t].

4. Compute the set S of (5.4).
5. Set b = max{ord(AP) | P ∈ S} with AP given in (5.5).
6. If mi = 1 for 1 ≤ i ≤ s, output nl = b, else indicate that it is impossible to

find nl and output the upper bound b on nl.

For clarity, we have given the simplest description of this technique. One can
speed up step 5 considerably by considering the effect that repeated factors of a
polynomial have on the order of its companion matrix. In particular, if P is an
irreducible polynomial in Fl[t] and n = ord(AP ), then for any k ∈ N, AP k has
order nl�logl k�. However, we again point out that step 5 is not the bottleneck in the
computation, so the previous algorithm is sufficient for any practical application.

Example 5.4. Consider q = 373, the hyperelliptic function field K = F373(x,
√

D)
of genus 4 with

D(x) = x9 +245x8 +175x7 +340x6 +122x5 +70x4 +196x3 +210x2 +316x+337 ,

and l = 3. Using Magma, it is possible to determine that the zeta function of K is
ζ(t) = L(t)/(373 t2 − 374 t + 1) with

L(t) = 3734 t8 + 33 · 3733 t7 + 347 · 3732 t6 − 3785 · 373 t5 − 188703 t4 − 3785 t3

+ 347 t2 + 33 t + 1 .

In step 2 of Algorithm 5.3, we obtain

F (t) = t8 + 2 t6 + t5 + t3 + 2 t2 + 1 .

This polynomial is irreducible over F3, so the set S of (5.4) is S = {F}, and we
simply calculate the order of the companion matrix AF which is 41. We conclude
that K/F373 has 3-rank 0, and the same is true for every extension Kn/F373n with
n < 41. Furthermore, Jac(F37341) has has full 3-rank 2 · 4 = 8.

Example 5.4 obviously represents the best possible outcome for Algorithm 5.3.
We provide another example where the outcome is not as conclusive, which will also
be useful shortly in describing how to derive partial information about the l-rank
from factors t − 1 of the characteristic polynomial.
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Example 5.5. Consider q = 179, the hyperelliptic function field K = F179(x,
√

D)
of genus 4 with

D(x) = x9 + 151 x8 + 168 x7 + 10 x6 + 32 x5 + 141 x4 + 110 x3 + 35 x2 + 160 x + 2 ,

and l = 3. Again, with the aid of Magma, it is possible to determine that ζ(t) =
L(t)/(179 t2 − 180 t + 1) is the zeta function of K with

L(t) = 1794 t8 − 17 · 1793 t7 + 315 · 1792 t6 − 3041 · 179 t5 + 56275 t4 − 3041 t3

+ 315 t2 − 17 t + 1 .

Step 2 of Algorithm 5.3 yields

F (t) = t8 + t7 + t5 + t4 + 2 t3 + 2 t + 1 .

Over F3, F (t) factors as F = P1P2P
2
3 P4 where

P1 = t + 1, P2 = t + 2, P3 = t2 + 1, P4 = t2 + t + 2 ,

so the set S of (5.4) is

S = { (P1, P2, P3, P3, P4), (P1, P2, P
2
3 , P4) } .

The companion matrices of P1, P2, P3, P
2
3 , P4 have orders 2, 1, 4, 12, and 8, respec-

tively, so the two matrices AP, P ∈ S, have respective orders 8 and 24, producing
b = 24 in step 5 of Algorithm 5.3. We conclude that Jac(F17924) has 3-rank 8.

Let V21 be the subspace of Jac(F179) corresponding to P2 = t−1 as described in
Theorem 5.1. Then πn3 restricted to V21 has eigenvalue 1 and is hence the identity.
Therefore, V21 = F179, so Jac(F179) has 3-rank at least 1. In fact, it has 3-rank
exactly 1, as no higher power of t − 1 divides F (t).

We now demonstrate how to derive additional information about the l-rank of
extensions Kn of a hyperelliptic function field K using factors of the form t − 1 of
F (t). Suppose K/Fq already has positive l-rank at least r ∈ N; for example, l = 3
and K/Fq was constructed using one of the methods discussed in Sections 3 and 4.
Then Jac(Fq) ∼= (Z/lZ)r × H for some suitable finite Abelian group H, and t − 1
must divide the characteristic polynomial F (t) of πq,nl

at least r times. Using the
notation of Theorem 5.1, write Pi = t− 1 and vt−1(F ) = mi for a suitable index i.
Then the diagonal mi × mi block submatrix Ai corresponding to the elementary
divisors (t − 1)mij , 1 ≤ j ≤ ki, is

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ai1

Ai2 0
. . .

0
Aiki

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Aij is the companion matrix of (t−1)mij , 1 ≤ j ≤ ki. Note that each Aij has
1 as its only eigenvalue, with an eigenspace of dimension 1. Since K/Fq has l-rank
at least r, the eigenspace of Ai corresponding to its only eigenvalue 1 has dimension
at least r. It follows that there must be at least r matrices Aij , so ki ≥ r. Thus r

is a lower bound on the number of terms in the sum
∑ki

j=1 mij = mi appearing in
(5.4). This additional restriction can be taken into account when determining the
set S in step 4 of Algorithm 5.3. In particular, if r = mi, then ki = r and mij = 1
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for 1 ≤ j ≤ ki, so Ai = Imi
, the mi × mi identity matrix, in which case Jac(Fq)

has l-rank exactly mi.
We now provide an answer to question 2, i.e. by how much the base field must

be extended to guarantee an increase in l-rank.

Theorem 5.6. Let L(t) be the L-polynomial of K/Fq, and set F (t) ≡ t2gL(t−1)
(mod l), F (t) ∈ Fl[t]. Suppose F (t) has an irreducible factor P (t) ∈ Fl[t], different
from t−1. Let n be the order of the companion matrix AP of P in Gldeg(P )(Fl). Then
the l-rank of Kn exceeds the l-rank of any proper subfield of Kn by at least deg(P ).

Proof. Without loss of generality, assume that P is monic. Then some power P k

of P is an elementary divisor of πq,nl
. Since P is irreducible, it has deg(P ) distinct

roots αi, 1 ≤ i ≤ deg(P ). Let n be the order of α1 in Fq(α1)∗. Since all the αi are
Galois conjugates, each αi also has order n in Fq(αi)∗.

Now since P k has the same roots as P, the matrix AP k has the same eigenvalues
as AP , and since αi 	= 1 for 1 ≤ i ≤ deg(P ), πq,nl

does not act trivially on the
eigenspaces of AP k . Furthermore, each αi corresponds to a distinct eigenspace Vi

of AP k of dimension 1. Since αn
i = 1 for 1 ≤ i ≤ deg(P ), the only eigenvalue of

the matrix An
P k is 1, and the Vi are independent subspaces that are invariant under

An
P k . Hence, An

P k has only one eigenvalue of 1 with an eigenspace W =
⊕deg(P )

i=1 Vi

of dimension deg(P ).
Since n = ord(AP k), n is the minimal positive exponent such that πn

q,nl
acts

trivially on any non-trivial subspace of W. Therefore, W ⊆ Jac(Fqn) \ Jac(E) for
any subfield E of Fqn . Since W has dimension deg(P ), it follows that the l-rank of
Jac(Fqn) exceeds the l-rank of Jac(E) by at least deg(P ). �

It is important to note here that if we have different non-trivial irreducible factors
of the same degree, we can draw the same conclusion about each factor indepen-
dently. Since these factors correspond to disjoint subspaces, we may combine the
contributions of all the factors to the process of increasing the l-rank. We will pro-
vide an illustrative example for this reasoning, but once again, we first formulate
the previous theorem as an algorithm:

Algorithm 5.7.
Input: A prime power q, a hyperelliptic function field K/Fq of genus g, and

a prime l not dividing q.
Output: Integers n, m so that the l-rank of Kn exceeds the l-rank of any

proper subfield of Kn by at least m, or possibly no output.
Algorithm:
1. Compute the L-polynomial L(t) of K/Fq.
2. Set F (t) ≡ t2gL(t−1) (mod l), F (t) ∈ Fl[t].
3. Find the factorization F = Pm1

1 Pm2
2 . . . Pms

s of F (t) into distinct monic
irreducible polynomials in Fl[t].

4. Find an index i ∈ {1, 2, . . . , s} such that Pi 	= t− 1. If no such index exists,
abort. Else set m = deg(Pi).

5. Compute the order n of the companion matrix of Pi in Glm(Fl).
6. Output n, m.

Example 5.8. We revisit Example 5.5. Recall that the characteristic polynomial
factored over F3 as F = P1P2P

2
3 P4 where

P1 = t + 1, P2 = t + 2, P3 = t2 + 1, P4 = t2 + t + 2 .
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F (t) has three irreducible factors P1, P2, P4 with exponent 1. The corresponding
orders of the companion matrices AP1 , AP2 and AP4 are 2, 1 and 8, respectively.
We already saw how the factor P2 = t− 1 established that Jac(F179) has 3-rank 1.
Since ord(AP1) = 2, by Theorem 5.6, the 3-rank of Jac(F1792) exceeds the 3-rank of
Jac(F179) by at least deg(P1) = 1, so Jac(F1792) has 3-rank at least 2. In fact, none
of A2

P4
, A2

P3
, and A2

P 2
3

have 1 as an eigenvalue, so Jac(F1792) has 3-rank exactly 2.
Since ord(AP4) = 8, Theorem 5.6 shows that the 3-rank of Jac(F1798) exceeds the
rank of any proper subfield by at least 2. Since F1798 contains F1792 as a subfield,
and since Jac(F1792) has 3-rank 2, we conclude that Jac(F1798) has 3-rank at least 4.

It is possible to deduce even more. Note that the matrix Aπ179,n3 consists of
the companion matrices AP1 , AP2 , either AP3 twice or AP 2

3
, and AP4 . In the case

where AP3 appears twice, A8
π179,n3

= I8, the 8 × 8 identity matrix, in which case
Jac(F1798) has full 3-rank 8. In the other case, where AP 2

3
is the third companion

matrix in Aπ179,n3 , we note that A4
P 2

3
has 1 as an eigenvalue of multiplicity 4, with

a 2-dimensional eigenspace. So the 3-rank of Jac(F1794) exceeds that of Jac(E) for
any subfield E of F1794 by at least 2. Hence, Jac(F1794) has 3-rank at least 4, and
with Theorem 5.6, we see that Jac(F1798) has 3-rank at least 6.

6. Numerical results

We have implemented our generalizations of the Craig, Shanks/Weinberger se-
ries, Shanks series, and Diaz y Diaz methods for searching for high 3-rank hyper-
elliptic function fields. Our algorithms were implemented in C++ using the NTL
number theory library [35] for polynomial and finite field arithmetic. We used
the GNU C++ compiler version 3.2, and the computations described below were
performed on a Pentium IV 2.4 GHz computer running Linux.

The group structures of our imaginary hyperelliptic function fields were com-
puted using a slight modification of Algorithm 4.1 of [5]. Instead of the fixed set
of generators required by Algorithm 4.1, we used a sequence of low-degree prime
ideals and iteratively compute the subgroup generated by the first ideal, then the
first two, the first three, etc. This algorithm is based on the baby-step giant-step
technique, and runs in time O(2r

√
|Jac(Fq)|), where r is the number of prime ideals

required to generate the entire Jacobian. Using the methods of [36], one computes
a lower bound H on |Jac(Fq)| such that H < |Jac(Fq)| < 2H. As soon as the order
of the subgroup generated by the low-degree prime ideals is greater than H, then
the the entire Jacobian is computed and the algorithm terminates. Note that, as
the bound on |Jac(Fq)| is unconditionally correct, the group structures we compute
are also unconditionally correct and the 3-ranks quoted below are exact, not just
lower bounds.

The same algorithm was used to compute the group structure of our real hy-
perelliptic function fields. Principality and equivalence testing were handled by
computing the set of all reduced principal ideals and using table look-up. As all
the examples we encountered had non-trivial ideal class groups, and in general
high 3-ranks, the regulators were sufficiently small that this approach worked well.
Again, the class groups, and hence the 3-ranks, computed are unconditionally cor-
rect.

We summarize the results of our computations below.
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6.1. Craig method. As mentioned in Section 4.3, this method produces huge
function fields. In fact, we ran the technique using all 24 admissible primes q <
10, 000 — the smallest of these is q = 307 — and obtained a total of 98, 614, 830
hyperelliptic function fields, each of which had genus 23. So our smallest example
had a Jacobian of size roughly 30723 ≈ 1058, which is much too large to compute
the 3-rank using known methods.

6.2. Shanks/Weinberger method. We tested the Shanks/Weinberger method
using q = 5, 11, 17, and 23 to construct imaginary hyperelliptic function fields
Fq(x,

√
−3P (x)) with P (x) = A(x)6 + 4B(x)6, P (x) square-free, and sgn(A)6 	=

−4 sgn(B)6 when |A| = |B|. For q = 5, we used all A(x) with 1 ≤ deg(A(x)) ≤ 3
and all B(x) with 1 ≤ deg(B(x)) ≤ 2, and for q = 11 we used 1 ≤ deg(A(x)),
deg(B(x)) ≤ 2. For q = 17 and 23, we used the same bounds on A(x) and B(x),
but only the first 100 polynomials of each degree.

Using the algorithm outlined above, we computed the class group for each func-
tion field of unique discriminant generated. As described in Section 4.1, these
function fields are guaranteed to have 3-rank at least 2 under the condition that
P (x) is irreducible. Our computations suggest that this irreducibility condition is
unnecessary, as all our examples had 3-rank at least 2. For each value of q we found
numerous examples with 3-rank as large as 5. For q = 5 and 17 we found examples
with 3-rank 4 and genus as low as 8 for q = 5 and 5 for q = 17. For q = 11 and 23
we found examples with 3-rank 5 and genus as low as 5. For more details, see [3].

6.3. Shanks series method. We tested the Shanks series method using q = 5, 11,
and 17 to construct imaginary hyperelliptic function fields Fq(x,

√
−3∆(w)) with

∆(w) = (3w2 − 12w + 18)2 − 2w3 square-free. For q = 5, we used all w ∈ Fq[x]
with 1 ≤ deg(w) ≤ 6, for q = 11 we used 1 ≤ deg(w) ≤ 4, and for q = 17 we used
1 ≤ deg(w) ≤ 3. As pointed out in Section 4.2, all four Shanks series produce the
same function fields, so we only considered Series 1. For each value of q we found
numerous examples with 3-rank as large as 4. For q = 5 the smallest examples with
3-rank 4 had genus 11, and for q = 11 and 17 they had genus 5. For more detail see
[3].

6.4. Diaz y Diaz method. We tested the Diaz y Diaz method for generating
hyperelliptic function fields with 3-rank at least 2 (Algorithm 3.6) and 3 (Algo-
rithm 3.9) using q = 5, 7, 11, 13, and 17. In Table 1, we summarize the algorithm
parameters used for each value of q and give the number of fields with 3-rank at
least 2 found by Algorithm 3.6. In our implementation, we considered polynomials
A with deg A ≤ max(deg A). We used all monic polynomials A of degree d when
d ≤ all(A), and when d > all(A), we used the first num(A) monic polynomials
of degree d for which all irreducible factors of degree larger than 2 occurred with
multiplicity at most 1, as previous experiments indicated that polynomials A of
this form were more likely to yield fields with 3-rank at least 3 after running Algo-
rithm 3.9. For q = 7 and q = 17, the value num(A) varied depending on deg(A).
For example, as listed in Table 1, we used 1000 different A polynomials of degree
4 and 40 of degree 6 for q = 17. Note that deg(A) = 5 does not yield any exam-
ples when q ≡ −1 (mod 3) by Lemma 3.3 and Corollary 3.5. Finally, the column
denoted by 3-rank ≥ 2 contains the number of fields with 3-rank at least 2 output
by Algorithm 3.6 for each value of q.
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Table 1. Number of fields with 3-rank at least 2 from the Diaz y
Diaz method.

q max(deg A) all(A) num(A) 3-rank ≥ 2

5 7 6 1000 15469080
7 7 4 50 (5), 20 (6), 10 (7) 42083084

11 6 4 50 31152109
13 5 3 20 30664584
17 6 3 1000 (4), 40 (6) 57636366

Table 2. 3-rank statistics from the Diaz y Diaz method.

q 3-rank Total min g First D(x)

5 3 7664 5 2x12 + 3x9 + x3 + 1

4 298 8 3x17 + x16 + 3x14 + 3x13 + 2x12 + 3x10 + 4x6

+x5 + 2x4 + 3x2 + x + 3

7 3 905362 4 3x9 + 2x6 + x4 + 6x2 + 2x + 4

4 320132 4 3x9 + 3x6 + x3 + 5

5 35736 5 5x12 + 3x11 + 4x10 + x9 + 2x7 + 4x6 + 6x5

+2x2 + 2x + 4

6 1048 7 3x15 + x14 + 3x12 + 4x11 + x10 + 2x9 + 5x8 + 4x7

+2x6 + 6x5 + x4 + 4x3 + 5x2 + x + 4

7 6 10 3x21 + x18 + 4x15 + x12 + 5x9 + 2x6 + 5x3 + 4

11 3 20175 4 7x9 + 9x8 + 8x5 + 10x4 + 10x2 + 10x + 10

4 797 5 10x12 + 3x10 + 3x8 + 2x6 + 3x4 + x2 + 6

5 71 5 7x12 + 2

13 3 363395 4 9x9 + x5 + 3x4 + 4x3 + 5x2 + 10

4 141884 4 9x9 + 11x6 + 4x3 + 5

5 16732 4 9x9 + 4x6 + 3x3 + 5

6 685 5 5x12 + x9 + 11x6 + 9x3 + 10

7 1 7 9x15 + 3x14 + 9x13 + 5x12 + 4x11 + 2x10 + 9x9

+3x8 + 9x7 + x6 + 4x5 + 5x4 + 12x3 + 2x2

+12x + 5

17 3 2490 4 13x9 + 15x8 + 2x7 + 15x6 + 4x5 + x4 + 5x3

+8x2 + 7x + 8

4 51 5 13x11 + 12x10 + 6x9 + 8x8 + 10x7 + 14x6 + 9x5

+11x4 + 12x3 + 11x2 + 16x + 12

As Table 1 shows, Algorithm 3.6 produced an enormous number of fields with
3-rank at least 2; usually in the tens of millions. As a result, we only computed the
class group structures for the fields output by Algorithm 3.9 that have 3-rank at
least 3. Our data is summarized in Table 2. For each value of q, we give the total
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number of hyperelliptic function fields found over Fq having the specified 3-rank
(Total), the minimum genus of all such fields found (min g), and the discriminant
of the first such field output by our algorithm with minimum genus (First D(x)).

Each of q = 5, 11, and 17 are congruent to −1 mod 3, so the results of Lemma 3.4
and Corollary 3.5 restrict the search space in Algorithm 3.6. As a result, the
algorithm runs much faster in these cases, but produces fewer fields of high 3-rank.
Nevertheless, the Diaz y Diaz algorithms produced high 3-rank fields with the lowest
genus of all the methods we implemented.

Table 3. 3-ranks obtained from lifting the base field. Entries
marked with an asterisk satisfy N3 = n3.

3-rank

q D g 3-rank over Fq2 N3

5 3x12 + 3x10 + 2x6 + 3x2 + 3 5 2 3 24∗

2x12 + 3x9 + x3 + 1 5 3 5 18

3x17 + x16 + 3x14 + 3x13 + 2x12 + 3x10 8 4 8 168∗

+4x6 + x5 + 2x4 + 3x2 + x + 3

7 3x9 + 2x6 + x4 + 6x2 + 2x + 4 4 3 4 18

3x9 + 3x6 + x3 + 5 4 4 5 6∗

3x13 + 4x12 + 6x10 + x9 + 2x8 + 6x7 + x6 6 5 5 84∗

+4x5 + x4 + x3 + x2 + 3x

3x15 + x14 + 3x12 + 4x11 + x10 + 2x9 + 5x8 7 6 6 84∗

+4x7 + 2x6 + 6x5 + x4 + 4x3 + 5x2 + x + 4

3x21 + x18 + 4x15 + x12 + 5x9 + 2x6 10 7 7 15∗

+5x3 + 4

11 7x6 + 5x5 + 7x4 + 2x3 + 7x2 + 5x + 10 2 2 3 6∗

7x9 + 9x8 + 8x5 + 10x4 + 10x2 + 10x + 10 4 3 6 8∗

10x12 + 3x10 + 3x8 + 2x6 + 3x4 + x2 + 6 5 4 7 6∗

7x12 + 2 5 5 9 6∗

13 9x9 + x5 + 3x4 + 4x3 + 5x2 + 10 4 3 4 18

9x9 + 11x6 + 4x3 + 5 4 4 6 6∗

9x9 + 4x6 + 3x3 + 5 4 5 7 6∗

5x12 + x9 + 11x6 + 9x3 + 10 5 6 7 6∗

9x15 + 3x14 + 9x13 + 5x12 + 4x11 + 2x10 7 7 7 84∗

+9x9 + 3x8 + 9x7 + x6 + 4x5 + 5x4 + 12x3

+2x2 + 12x + 5

17 11x6 + 8x5 + 10x4 + x3 + 11x2 + 9x + 5 2 2 3 6∗

13x9 + 15x8 + 2x7 + 15x6 + 4x5 + x4 + 5x3 4 3 6 6∗

+8x2 + 7x + 8

13x11 + 12x10 + 6x9 + 8x8 + 10x7 + 14x6 5 4 ≥ 5 18

+9x5 + 11x4 + 12x3 + 11x2 + 16x + 12
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6.5. Increasing the field of constants. We applied the methods of Section 5 to
the imaginary hyperelliptic function fields with odd degree D and smallest genus
that we found for each 3-rank, in an effort to find fields with reasonably small class
groups with even larger 3-rank. The results are presented in Table 3. The first
four columns give the 3-rank of the hyperelliptic function field of discriminant D
with genus g over Fq. By 3-rank over Fq2 we denote the 3-rank of the resulting field
when the base field is lifted to Fq2 , and N3 denotes the extension degree required to
ensure that the function field over FqN3 has 3-rank equal to 2g (so N3 is an upper
bound on n3 in the notation of Section 5).

The addition of the 3-rank over Fq2 made it possible to determine the sum of
the dimensions of the eigenspaces for the collections of squares of the companion
matrices. In some of the examples, this additional piece of information allowed
for the complete determination of the original companion matrices. When it was
possible to determine the degree of the minimal extension field required to obtain
full 3-rank, i.e. N3 = n3, these entries were marked with asterisks.

As is to be expected, the size of N3 is strongly correlated to the gap between
the 3-rank over Fq and the maximal 3-rank that is obtainable, namely 2g; when
this gap was large, N3 was also large. The only times this gap was smaller than
expected corresponded to cases where the 3-rank increased dramatically by passing
to Fq2 , and hence the missing part of the 3-rank that remained was small. As the
table indicates, this approach provides extremely tight and small bounds for N3

when the 3-rank of the associated Jacobian is large with respect to the genus.

7. Conclusion

Our efforts to generalize existing methods for generating quadratic number fields
with high 3-rank to the hyperelliptic function field setting have proved to be quite
successful. In particular, the Shanks/Weinberger, Shanks series, and Diaz y Diaz
methods all routinely produce relatively low-genus function fields over Fq with 3-
rank as large as 5 when q ≡ −1 (mod 3), and 3-rank as large as 7 when q ≡
1 (mod 3). The techniques of Section 5 allow us to compute the extension degree
of Fq such that the 3-rank of a given function field defined over Fq is maximal —
no equivalent technique is known in number fields.

One method that has proved successful in the number field case that we did not
attempt to generalize is that of Belabas [4]. His method is especially well-suited
for determining quadratic fields of minimal discriminant with a given 3-rank. For
example, he determined that Q(

√
−5393946914743) is the smallest such field with

3-rank 5. Generalizing this method to hyperelliptic function fields is not at all
straightforward, involving the derivation of hyperelliptic function field analogues
of the Davenport-Heilbronn Theorem [9] and related theory of binary cubic forms.
This is work in progress.

Another method that could be employed in the case of hyperelliptic function
fields is to find hyperelliptic curves defined over Q whose torsion subgroups have
large 3-rank and reduce them modulo a prime p. For example, parameterized fam-
ilies of genus two and three curves over Q whose torsion subgroups have 3-rank as
high as 3 are presented in [15], so the same curves considered over Fp would also
have 3-rank up to 3. Although such examples would not have as high 3-rank as
those produced by the Diaz y Diaz method, they would have smaller genus than
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any of the examples with 3-rank equal to three produced by our method, and would
be especially good candidates for the constant field extension method.

Except for Section 5, we have restricted to hyperelliptic function fields of odd
characteristic; the method in Section 5 applies to fields of characteristic 2 as well.
As mentioned in Section 2.2, the main results on d-torsion on which the Diaz y Diaz
method relies can in principle be adapted to even characteristic, but this task is non-
trivial and the subject of further research. We also did not explore constructions
of hyperelliptic function fields of high l-rank over characteristic l, since this would
require a completely different approach that is well beyond the scope of this paper.

Other than the methods for increasing the l-rank based on enlarging the base
field presented in Section 5, our algorithms deal exclusively with the problem of
finding hyperelliptic function fields with high 3-rank. However, the theoretical
background from which the Diaz y Diaz method is derived is presented in terms of
searching for examples with high l rank for any odd prime l (see Section 2.3). It
should be possible to develop explicit algorithms using these results to search for
examples with high l-rank for l > 3. It would be useful to improve the efficiency
of Algorithm 3.6, for example by reducing the set of polynomials F considered in
computing R(V, T ), in order to achieve this goal and to improve the efficiency in
the case l = 3 as well.

Finally, we have not commented on the question of when any of the fields we
constructed were escalatory or non-escalatory. Finding simple criteria under which
certain parameterized families such as the Shanks and Shanks-Weinberger are es-
calatory or non-escalatory, or even necessary and sufficient conditions under which
any hyperelliptic function field is escalatory or non-escalatory, is the subject of
future work.
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(1924), 153-206. MR1544651

3. M. L. Bauer, M. J. Jacobson, Jr., Y. Lee and R. Scheidler, Construction of Hyperelliptic
Function Fields of High Three-Rank. University of Calgary Yellow Series 849. Available at
www.math.ucalgary.ca/files/publications/3443849.pdf.

4. K. Belabas, On quadratic fields with large 3-rank. Math. Comp. 73 (2004), 2061-2074.
MR2059751 (2005c:11132)

5. J. Buchmann, M. J. Jacobson, Jr., and E. Teske, On some computational problems in finite
abelian groups. Math. Comp. 66 (1997), 1663–1687. MR1432126 (98a:11185)

6. H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number fields. In Number
Theory (Noordwijkerhout, 1983), Lect. Notes Math. 1068, 33–62, Springer, Berlin, 1984.
MR756082 (85j:11144)

7. M. Craig, A type of class group for imaginary quadratic fields. Acta Arith. XXII (1973),
449-459. MR0318098 (47:6647)

8. M. Craig, A Construction for irregular discriminants. Osaka J. Math. 14 (1977), 365-402.
MR0450226 (56:8522)

9. H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields (ii), Proc.
Roy. Soc. London A 322 (1971), 405-420. MR0491593 (58:10816)

10. F. Diaz y Diaz, On some families of imaginary quadratic fields. Math. Comp. 32 (1978),
637-650. MR0485775 (58:5582)

11. F. Diaz y Diaz, D. Shanks and H. C. Williams, Quadratic fields with 3-rank equal to 4. Math.
Comp. 33 (1979), 836-840. MR521299 (80i:12004)

http://www.ams.org/mathscinet-getitem?mr=2184814
http://www.ams.org/mathscinet-getitem?mr=2184814
http://www.ams.org/mathscinet-getitem?mr=1544651
http://www.ams.org/mathscinet-getitem?mr=2059751
http://www.ams.org/mathscinet-getitem?mr=2059751
http://www.ams.org/mathscinet-getitem?mr=1432126
http://www.ams.org/mathscinet-getitem?mr=1432126
http://www.ams.org/mathscinet-getitem?mr=756082
http://www.ams.org/mathscinet-getitem?mr=756082
http://www.ams.org/mathscinet-getitem?mr=0318098
http://www.ams.org/mathscinet-getitem?mr=0318098
http://www.ams.org/mathscinet-getitem?mr=0450226
http://www.ams.org/mathscinet-getitem?mr=0450226
http://www.ams.org/mathscinet-getitem?mr=0491593
http://www.ams.org/mathscinet-getitem?mr=0491593
http://www.ams.org/mathscinet-getitem?mr=0485775
http://www.ams.org/mathscinet-getitem?mr=0485775
http://www.ams.org/mathscinet-getitem?mr=521299
http://www.ams.org/mathscinet-getitem?mr=521299


HYPERELLIPTIC FUNCTION FIELDS OF HIGH THREE-RANK 529

12. G. W.-W. Fung, Computational Problems in Complex Cubic Fields. Doctoral Dissertation,
University of Manitoba, 1990.

13. E. Friedman and L. C. Washington, On the distribution of divisor class groups of curves over
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