Implementation of a Key Exchange Protocol Using Real Quadratic Fields

Extended Abstract

Renate Scheidler

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada R3T 2N2

Johannes A. Buchmann
FB-10 Informatik
Universität des Saarlandes
6600 Saarbrücken
West Germany

Hugh C. Williams

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba

Canada R3T 2N2

Implementation of a Key Exchange Protocol Using Real Quadratic Fields

Extended Abstract

1. Introduction

In [1] Buchmann and Williams introduced a key exchange protocol which is based on the Diffie-Hellman protocol (see [2]). However, instead of employing arithmetic in the multiplicative group F^* of a finite field F (or any finite Abelian group G), it uses a finite subset of an infinite Abelian group which itself is not a subgroup, namely the set of reduced principal ideals in a real quadratic field. As the authors presented the scheme and its security without analyzing its actual implementation, we will here discuss the algorithms required for implementing the protocol.

Let $D \in \mathbb{Z}_+$ be a squarefree integer, $K = \mathbb{Q} + \mathbb{Q}\sqrt{D}$ the real quadratic number field generated by \sqrt{D} , and $\mathbb{Q} = \mathbb{Z} + \mathbb{Z}\frac{\sigma - 1 + \sqrt{D}}{\sigma}$ the maximal real quadratic order in K, where $\sigma = \begin{cases} 1 & \text{if } D \equiv 2, 3 \pmod{4} \\ 2 & \text{if } D \equiv 1 \pmod{4} \end{cases}$.

A subset \mathbf{a} of \mathbf{O} is called an *ideal* in \mathbf{O} if both $\mathbf{a} + \mathbf{a}$ and $\mathbf{O} \cdot \mathbf{a}$ are subsets of \mathbf{a} . An ideal is said to be *primitive* if it has no rational prime divisors. Each primitive ideal \mathbf{a} in \mathbf{O} has a representation

$$\mathbf{a} = \begin{bmatrix} \underline{Q} \\ \underline{\sigma} \end{bmatrix}, \frac{P + \sqrt{D}}{\sigma} = \mathbf{Z} \frac{\underline{Q}}{\sigma} + \mathbf{Z} \frac{P + \sqrt{D}}{\sigma},$$

where $P, Q \in \mathbb{Z}$, Q is a divisor of $D - P^2$ (see [5]). Let $\Delta = \frac{4}{\sigma^2}D$ denote the discriminant of K, set $d = \lfloor \sqrt{D} \rfloor$.

A principal ideal \mathbf{a} of \mathbf{O} is an ideal of the form $\mathbf{a} = \frac{1}{\alpha} \mathbf{O}$, $\alpha \in K$ -{0}. Denote by \mathbf{P} the set of primitive principal ideals in \mathbf{O} . An ideal $\mathbf{a} = \frac{1}{\alpha} \mathbf{O} \in \mathbf{P}$ is reduced if and only if α is a minimum in \mathbf{O} , i.e. if $\alpha > 0$ and there exists no $\beta \in \mathbf{O}$ -{0} such that $|\beta| < \alpha$ and $|\beta'| < \alpha$. Since the set { $\log \alpha \mid \alpha$ is a minimum in \mathbf{O} } is discrete in the real numbers \mathbf{R} , the minima in \mathbf{O} can be arranged in a sequence $(\alpha_j)_{j\in \mathbf{Z}}$ such that $\alpha_j < \alpha_{j+1}$ for all $j \in \mathbf{Z}$. If we define $\mathbf{a}_j = \frac{1}{\alpha_j} \mathbf{O}$ for all $j \in \mathbf{Z}$, then the set \Re consisting of all reduced ideals in \mathbf{P} is finite and can be written as $\Re = \{\mathbf{a}_1, ..., \mathbf{a}_l\}$ where $l \in \mathbf{Z}_+$.

Define an (exponential) distance between two ideals $a, b \in \Re$ as follows:

 $\lambda(\mathbf{a}, \mathbf{b}) = \alpha$ where $\alpha \in K > 0$ is such that $\mathbf{b} = \frac{1}{\alpha} \mathbf{a}$ and log α is minimal.

(The logarithm of this distance function is exactly the distance as defined in [1] and [4].) Similarly, let the distance between an ideal $a \in \Re$ and a positive real number x be

 $\lambda(a, x) = \frac{e^x}{\alpha}$ where $\alpha \in K^{>0}$ is such that $a = \frac{1}{\alpha} O$ and $|x| - \log \alpha I$ is minimal.

Throughout our protocol the inequalities $\eta^{-\frac{1}{4}} < \lambda(a, b)$, $\lambda(a, x) < \eta^{\frac{1}{4}}$ will be satisfied for all $a, b \in \Re$, $x \in \mathbb{R}_+$, where η is the fundamental unit of K.

Lemma 1: Let $\mathbf{b} \in \mathfrak{R}$ and write $\mathbf{b} = \mathbf{b}_j$, $\mathbf{b}_k = \left[\frac{Q_{k-1}}{\sigma}, \frac{P_{k-1} + \sqrt{D}}{\sigma}\right]$ for $k \ge j$. Then the following is true:

a) $\mathbf{b}_k \in \Re$ and $0 < P_k \le d$, $0 < Q_k \le 2d$ for $k \ge j$,

b)
$$1 + \frac{1}{\sqrt{\Delta}} < \lambda(\mathbf{b}_{j+1}, \mathbf{b}_j) < \sqrt{\Delta},$$

c)
$$\lambda(\mathbf{b}_{j+2},\mathbf{b}_j) > 2$$
,

d) If
$$\mathbf{b} = \frac{1}{\beta}\mathbf{O}$$
, $\beta \in K_{>0}$, then $\lambda(\mathbf{b}, x) = \frac{e^x}{\beta}$,

e)
$$\lambda(\mathbf{b}_k, \mathbf{b}_j) = \frac{\lambda(\mathbf{b}_k, x)}{\lambda(\mathbf{b}_j, x)}$$
 for any $x \in \mathbf{R}_+, k \ge j$.

Since principal ideal generators and distances are generally irrational numbers, we need to use approximations in our protocol. Denote by $\mathbf{a}(x)$ the reduced ideal closest to $x \in \mathbf{R}_+$, i.e. $|\log \lambda(\mathbf{a}(x), x)| < |\log \lambda(\mathbf{b}, x)|$ for any $\mathbf{b} \in \Re$, $\mathbf{b} \neq \mathbf{a}$, and by $\hat{\mathbf{a}}(x)$ the ideal actually computed by our algorithm. Define $\mathbf{a}_+(x)$ to be the reduced ideal such that its distance to x is maximal and < 1. Similarly, $\lambda(\mathbf{a}_-(x), x) > 1$ and minimal. Let $\lambda_1(x) = \lambda(\mathbf{a}(x), x)$, $\lambda_2(x) = \lambda(\hat{\mathbf{a}}(x), x)$. Denote by $\hat{\lambda}(\mathbf{a}, x)$ the approximation of $\lambda(\mathbf{a}, x)$ computed by our algorithm; write $\hat{\lambda}(\mathbf{a}, x) = \frac{M(\mathbf{a}, x)}{2^p}$ where $M(\mathbf{a}, x) \in \mathbf{Z}_+$ and $p \in \mathbf{Z}_+$ is a precision constant to be determined later. $\hat{\lambda}_1(x)$, $M_1(x)$, $\hat{\lambda}_2(x)$, $M_2(x)$ are defined analogously to $\hat{\lambda}(x)$ and M(x) with respect to $\lambda_1(x)$ and $\lambda_2(x)$. Set

$$G = 1 + \frac{1}{15(d+1)}$$
, $\gamma = \lceil G^{-1}2^p \rceil$, $\chi = 1 + \frac{1}{2^{p-1}}$.

The protocol can be outlined as follows: Two communication partners A and B agree publicly on a small number $c \in \mathbb{R}_+$ and an initial ideal $\hat{a}(c)$ with approximate distance $M_2(c)$ from c. A secretly chooses $a \in \{1,...,d\}$, computes $\hat{a}(ac)$ and $M_2(ac)$ from $\hat{a}(c)$ and $M_2(c)$, and sends both to B. Similarly, B secretly chooses $b \in \{1,...,d\}$, calculates $\hat{a}(bc)$ and $M_2(bc)$, and transmits both to A. Now both communication partners are able to determine an ideal $\hat{a}(abc)$. Although this ideal need not be the same for A and B (due to

their different approximation errors in the computation), a little additional work will enable them to agree on a common ideal which is the secret key.

As pointed out in [1], we expect $l = |\Re| >> D^{\frac{1}{2} - \varepsilon}$ for arbitrary ε if D is chosen correctly and sufficiently large. This shows that an exhaustive search attack is infeasible. The authors conjecture that breaking the protocol enables one to factor. In [1] it is proved that solving the discrete logarithm problem for reduced principal ideals in real quadratic ordersgiven $a \in \Re$ find $\lambda(a, x)$ - in polynomial time implies being able to both break the scheme and factor D in polynomial time.

Throughout the protocol we will assume $M(a, x) \ge \gamma$ for all $a \in \Re$ and $x \in \mathbb{R}_+$. Any number $\theta \in K$ is approximated by $\hat{\theta} \in \mathbb{Q}$ such that $\chi^{-1}\theta \le \hat{\theta} \le \chi\theta$.

2. The Algorithms

For our protocol we need to perform arithmetic in both P and \Re . Our first algorithm enables us to compute any reduced ideal a_k from a given reduced ideal a_j by simply going through \Re "step by step".

Algorithm 1 (Neighbouring in \Re): Input: $a_j \in \Re$.

Output: The neighbours $a_{j+1}, a_{j-1} \in \Re$ and ψ_+, ψ_- such that $a_{j\pm 1} = \psi_{\pm} a_j$.

Algorithm: a_{j+1} is obtained by computing one iteration in the continued fraction expansion of the irrational number $\frac{P_{j-1} + \sqrt{D}}{Q_{j-1}}$. The algorithm for a_{j-1} is the inverse of the algorithm for a_{j+1} . In particular:

$$q_{j-1} = \left\lfloor \frac{P_{j-1} + d}{Q_{j-1}} \right\rfloor, \quad P_j = q_{j-1}Q_{j-1} - P_{j-1}, \quad Q_j = \frac{D - P_j^2}{Q_{j-1}}, \quad \psi_+ = \frac{\sqrt{D} - P_j}{Q_j},$$

$$\psi_+ = \frac{\sqrt{D} - P_j}{Q_j},$$

$$Q_{j-2} = \frac{D \cdot P_{j-1}^2}{Q_{j-1}}, \qquad q_{j-2} = \left \lfloor \frac{P_{j-1} + d}{Q_{j-2}} \right \rfloor, \ P_{j-2} = q_{j-2} \, Q_{j-2} \cdot P_{j-1}, \qquad \psi_- = \frac{\sqrt{D} + P_{j-1}}{Q_{j-2}}.$$

Algorithm 2 (Multiplication in P): Input: $a, a' \in P$.

Output: $U \in \mathbb{Z}_{\geq 0}$, $c \in \mathbb{P}$ such that aa' = Uc.

Algorithm: See [3], [4].

<u>Lemma 2</u>: If $a = a_s$, $a = a_t$ such that a_{s-1} , $a_{t-1} \in \Re$, then Algorithm 2 performs $O(\log D)$ arithmetic operations on numbers of input size $O(\log D)$.

Proof: By Lemma 1 all input numbers are polynomially bounded in D. The algorithm performs a fixed number of arithmetic operations plus two applications of the Extended Euclidean Algorithm which has complexity $O(\log D)$.

Algorithm 3 (Reduction in P): Input:
$$\mathbf{c} = \left[\frac{Q}{\sigma}, \frac{P + \sqrt{D}}{\sigma} \right] \in \mathbf{P}$$
.

Output: $\mathbf{b} \in \Re$, $G, B \in \mathbf{Z}_{\geq 0}$ such that $\theta = \frac{G + B\sqrt{D}}{C}$ and $\mathbf{b} = \theta \mathbf{c}$.

Algorithm: The algorithm is very similar to Algorithm 1 and uses again the continued fraction expansion of $\frac{P + \sqrt{D}}{O}$ (see [3]).

Lemma 3: If $\mathbf{c} = \frac{1}{U} \mathbf{a}_S \mathbf{a}_I$ where \mathbf{a}_S , \mathbf{a}_I are as in Lemma 2, then Algorithm 3 performs $O(\log D)$ arithmetic operations on numbers of input size $O(\log D)$.

Proof: By [5], Algorithm 2, and Lemma 1, the maximum number of iterations is $O(\log D)$. The bound on the input size follows from Lemma 1 and results in [4]. \blacklozenge

Algorithm 4: Input: $\hat{\mathbf{a}}(x)$, $\hat{\mathbf{a}}(y) \in \Re$, $M_2(x)$, $M_2(y)$ for $x, y \in \mathbb{R}_+$.

Output: $\hat{\mathbf{a}}(x+y) \in \Re, M_2(x+y)$.

Algorithm: First use Algorithm 2 to compute $U \in \mathbf{Z}$, $\mathbf{c} = \begin{bmatrix} \underline{Q} \\ \sigma \end{bmatrix}$, $\frac{P + \sqrt{D}}{\sigma} \end{bmatrix} \in \mathbf{P}$ such that $(U)\mathbf{c} = \mathbf{\hat{a}}(x)\mathbf{\hat{a}}(y)$. Then compute $\mathbf{b} = \begin{bmatrix} \underline{Q}' \\ \sigma \end{bmatrix}$, $\frac{P' + \sqrt{D}}{\sigma} \in \mathbb{R}$ and $G, B \in \mathbf{Z}_{\geq 0}$ such that $\mathbf{b} = \theta \mathbf{c}$, $\theta = \frac{G + B\sqrt{D}}{Q}$ using Algorithm 3. Finally apply Algorithm 1 to \mathbf{b} a certain number of times to obtain $\mathbf{\hat{a}}(x+y) = \zeta \mathbf{b} = \frac{\zeta \theta}{U} \mathbf{\hat{a}}(x)\mathbf{\hat{a}}(y)$. Set

$$M_2(x+y) = \left\lceil \frac{\hat{\zeta} \hat{\theta} M_2(x) M_2(y)}{2^p U} \right\rceil,$$

where $\hat{\zeta}$, $\hat{\theta}$ are rational approximations to ζ , θ , respectively.

Lemma 4: If $\hat{\mathbf{a}}(x) = \mathbf{a}_S$, $\hat{\mathbf{a}}(y) = \mathbf{a}_t$ such that \mathbf{a}_{S-1} , $\mathbf{a}_{t-1} \in \Re$, then Algorithm 4 performs $O(\log D)$ arithmetic operations on inputs of size $O(\log D)$.

Proof:By Lemma 2, computing c takes $O(\log D)$ arithmetic operations on inputs of size $O(\log D)$. By Lemma 3, the same is true for the computation of b. From Lemma 1 it can be proved that, in obtaining $\hat{a}(x+y)$ from b, all numbers involved are polynomially bounded in D and $\hat{a}(x+y)$ can be obtained from b in $O(\log D)$ iterations. \bullet

Both communication partners can determine the key by using the following algorithm which is based on the idea of a standard exponentiation method:

Algorithm 5: Input: $\hat{a}(x) \in \Re$ for $x \in \mathbb{R}_+$, $M_2(x)$, $y \in \mathbb{Z}_+$.

Output: $\mathbf{a}(xy)$, $M_2(xy)$.

Algorithm: 1) Determine the binary decomposition $y = \sum_{i=0}^{l} b_i 2^{l-i}$ of $y, b_i \in \{0,1\}, b_0 = 1$.

- 2) Set $a(z_0) = a(x)$.
- 3) for i = 1 to l do
 - a) Compute $\hat{\mathbf{a}}(2z_{i-1})$, $M_2(2z_{i-1})$ using Algorithm 4.

Set
$$\hat{\mathbf{a}}(z_i) := \hat{\mathbf{a}}(2z_{i-1}), M_2(z_i) := M_2(2z_{i-1}).$$

b) if $b_i = 1$ then compute $\hat{a}(z_i + x)$, $M_2(z_i + x)$ using Algorithm 4.

Set
$$\hat{\mathbf{a}}(z_i) := \hat{\mathbf{a}}(z_i + x), \ \mathbf{M}_2(z_i) := \mathbf{M}_2(z_i + x).$$

4) Set $\hat{\mathbf{a}}(xy) := \hat{\mathbf{a}}(z_l)$, $M_2(xy) = M_2(z_l)$.

<u>Lemma 5</u>: If $\mathbf{\hat{a}}(x) = \mathbf{a}_S$ such that $\mathbf{a}_{S-1} \in \mathbb{R}$ and y is polynomially bounded in D, then Algorithm 5 performs $O((\log D)^2)$ arithmetic operations on inputs of size $O(\log D)$.

Proof: For each iteration, steps 3a and 3b each perform $O(\log D)$ operations on numbers of input size $O(\log D)$ by Lemma 4. So the number of operations needed for step 3 is $O(\log D) = O((\log D)^2)$.

3. The Protocol

Algorithm 6 (Initial values): Input: $r \in \{2,...,d\}$.

Output: $a \in \Re$, $M \in \mathbb{Z}_+$, such that the ideal a and its distance M can be used as initial values for the protocol.

Algorithm: Set $\mathbf{a} = \mathbf{\hat{a}}(c) = \mathbf{O}$, $\mathbf{M} = \mathbf{M}_2(c) = \lceil 2pr \rceil$, where $c = \log r$. Then $\mathbf{M} \ge 2p+1 > \gamma$. Since $1 + \frac{1}{\sqrt{\Delta}} < r = \lambda_2(c) < \sqrt{\Delta}$, we have $\mathbf{a} = \mathbf{a}_{-}(c)$.

In order to find a unique key ideal, all approximation errors $\rho_2(x) = \frac{\hat{\lambda}_2(x)}{\lambda_2(x)}$ $(x \in \mathbb{R}_+)$ in Algorithms 4, 5, and 6 must be close to 1, i. e. p must be sufficiently large.

Theorem 1: Let $a, b \in \{1,...,d\}$, $\hat{\mathbf{a}}(c)$, $\mathbf{M}_2(c)$ as in Algorithm 6. Let $\hat{\mathbf{a}}(abc)$ be computed by applying Algorithm 5 first to $\hat{\mathbf{a}}(c)$, $\mathbf{M}_2(c)$, and b to obtain $\hat{\mathbf{a}}(bc)$ and $\mathbf{M}_2(bc)$, then to $\hat{\mathbf{a}}(bc)$, $\mathbf{M}_2(bc)$, and a to obtain $\hat{\mathbf{a}}(abc)$ and $\mathbf{M}_2(abc)$. If $2P \ge 1280d(d^2-1)$, then $\hat{\mathbf{a}}(abc) \in \{\mathbf{a}_-(abc), \mathbf{a}_+(abc)\}$ and $\mathbf{M}_2(abc) \ge \gamma$.

The uniqueness of the key ideal is guaranteed by the following Lemma:

Lemma 6: Let p, a, b, c, a(c), $M_2(c)$ be as in Theorem 1. Set x = abc.

If
$$\lambda_1(x) > G^2$$
 or $\lambda_1(x) < G^{-2}$ then $\hat{\mathbf{a}}(x) = \mathbf{a}_-(x)$.

If $G^{-2} \le \lambda_1(x) \le G^2$ then a(x) can be determined from a(x).

Proof: Omit the argument x for brevity. If $\lambda_1 > G^2$ or $\lambda_1 < G^{-2}$ then $\hat{\lambda}_2 > G$ and hence $\lambda_2 = \frac{\hat{\lambda}_2}{\rho_2} > 1$, so $\hat{a} = a$.

If $G^{-2} \le \lambda_1 \le G^2$, then by Theorem 1 $\mathbf{\hat{a}} \in \{\mathbf{a}_+, \mathbf{a}_-\}$, so $\mathbf{a} = \mathbf{\hat{a}}$ or \mathbf{a} is one of the neighbours of $\mathbf{\hat{a}}$. From Theorem 1 it can be proved that $G^{-1} \le \rho_2 \le G$ and hence $G^{-3} \le \hat{\lambda}_1 < \frac{1+2^{-p}}{1-G^32p}G^3$. So both communication partners can determine an ideal \mathbf{b} which is either $\mathbf{\hat{a}}$ or a neighbour of $\mathbf{\hat{a}}$ such that $G^{-3} \le \hat{\lambda}(\mathbf{b}, abc) < \frac{1+2^{-p}}{1-G^32p}G^3$. Then it can be shown that $\frac{1}{1+\frac{1}{\sqrt{\Delta}}} < \lambda(\mathbf{\hat{a}}, \mathbf{b}) < 1+\frac{1}{\sqrt{\Delta}}$ therefore by Lemma 1: $\mathbf{\hat{a}} = \mathbf{a}$.

We are now equipped to set up the protocol. We assume $2^p \ge 1280d(d^2 - 1)$.

Protocol:

The two communication partners Alice and Bob perform the following steps:

- 1) Both Alice and Bob agree on D and a small positive integer r. They compute $\mathbf{a} = \mathbf{a}(c)$, $M = M_2(c) \ge \gamma$ using Algorithm 6 where $c = \log r$. D, a, and M can be made public.
- 2) Alice secretly chooses $a \in \{1,...,d\}$ and from a, M computes $\hat{a}(ac)$, $M_2(ac) \ge \gamma$ using Algorithm 5. She sends both to Bob.
- 3) Bob secretly chooses $b \in \{1,...,d\}$ and from a, M computes a(bc), $M_2(bc) \ge \gamma$ using Algorithm 5. He sends both to Alice.
- 4) From $\hat{\mathbf{a}}(ac)$, $M_2(ac)$, and b, Bob computes $\hat{\mathbf{a}}(abc)$ and its two neighbours as well as their approximate distances (i.e. M values) using Algorithms 5 and 1. If he finds among these an ideal \mathbf{b} such that $\frac{2p}{G^3} \leq \mathbf{M}(\mathbf{b}, abc) < \frac{(1+2p)G^3}{1-2pG^3}$, then $\mathbf{b} = \mathbf{a}(abc)$. In this case he sends

'0' back to Alice. If he cannot find such an ideal, then by Lemma 6 he can compute $a_{-}(abc)$. In this case he sends '1' to Alice.

- 5) From $\hat{\mathbf{a}}(bc)$, $M_2(bc)$, and a, Alice computes $\hat{\mathbf{a}}(abc)$, $M_2(abc)$ using Algorithm 5. If she received '0' from Bob, then she computes the neighbours of $\hat{\mathbf{a}}(abc)$ and their M values and attempts to compute $\mathbf{a}(abc)$. If successful, she sends '0' back to Bob. The common key is then $\mathbf{a}(abc)$. Otherwise the ideal $\hat{\mathbf{a}}(abc)$ she computed is $\mathbf{a}_{-}(abc)$. In this case she sends '1' to Bob. If Alice received '1' from Bob, then he was unable to determine $\mathbf{a}(abc)$, so we must have $\lambda_1(abc) < G^{-2}$ or $\lambda_1(abc) > G^2$ by Lemma 6, in which case the ideal $\hat{\mathbf{a}}(abc)$ computed by Alice is $\mathbf{a}_{-}(abc)$. This is then the key. In this case she sends '1' back to Bob.
- 6) If Bob receives the same bit he sent, then the ideal he computed in step 4 is the key. The only other possibility is that he sent '0' and received '1'. In this case Alice was unable to determine $\mathbf{a}(abc)$. The key is then the ideal $\mathbf{\hat{a}}(abc) = \mathbf{a}_{-}(abc)$ initially computed by Bob.

References:

- [1] J. A. Buchmann, H. C. Williams, A key exchange system based on real quadratic fields, extended abstract, to appear in: Proceedings of CRYPTO '89.
- [2] W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, vol. 22, 1976.
- [3] R. A. Mollin, H. C. Williams, Computation of the class number of a real quadratic field, to appear in: Advances in the Theory of Computation and Computational Mathematics (1987).
- [4] A. J. Stephens, H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. of Comp. vol. 50, no. 182, April 1988.

[5] H. C. Williams, M. C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm, Math. of Comp. vol. 48, no. 177, January 1987.