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Abstract. A real quadratic congruence function field K = F, (z)(v/D)
typically contains many elements « of large height H(a) = max{|a|, |@|}
and small norm (in absolute value) |N{(a)| = |a@|. A prominent example
for this kind of behavior is the fundamental unit nx whose norm has
absolute value 1, but whose height is often exponential in |D|. Hence it
requires exponential time to even write down 7k, let alone perform com-
putations on ngx. In this paper, we present a shorter representation for
elements a in any quadratic order O = F, [z][V/A] of K. This represen-
tation is analogous to the one for quadratic integers developed by Buch-
mann, Thiel, and Williams, and is polynomially bounded in log |N(a)|,
log deg H(ax), and log|A|. For the fundamental unit nx of K, such a
representation requires O{((log |D|)?) bits of storage. We show how to
perform arithmetic with compact representations and prove that the
problems of principal ideal testing, ideal equivalence, and the discrete
logarithm problem for ideal classes belong to the complexity class NP.

1 Introduction

For a general introduction to the topic of real quadratic congruence function
fields, see [1] and [3]. Let k = F, be a finite field of odd characteristic with q
elements. A quadratic congruence function field over the field k of constants is a
quadratic extension K of the rational function field k(z) with a transcendental
element € K. We say that K is a real quadratic congruence function field (of
odd characteristic) if K is of the form K = k(z)(v/D) = k(z) + k(z)v/D, where
D € k[z] is a squarefree polynomial of even degree whose leading coefficient is a
square in k* = k\ {0}. (This is in analogy to the case of a real quadratic number
field Q(v/D), where D is a positive, squarefree integer). The ring of integers of
K is Og = k[z][v/D] = k[z] + k[z]VD.

In contrast to the number field case, there are two places of K at infinity.
We know from. [9] that the place at infinity P, of k(z) with respect to z splits
in K as B, = P, - P,. Furthermore, the completions of K with respect to P,
and P,, K;I;I and sz, respectively, are isomorphic to k(x)mw = F, ((V/x)), the
field of power series in 1/z. By explicitly taking square roots of D, we see that
K is a subfield of F, ((1/z)). Let 93, be the place which corresponds to the case
where /1 = 1. Then we consider elements of K as Laurent series at B, in the
variable 1/z. Let a € k((1/z)) be a non-zero element. Then a = Y .- ___ c;z* with

i=—00
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cm # 0. Denote by

deg(a) =m the degree of
la} = ¢™ the absolute value of a,
sgn(a) = ¢, the sign of a,
le] = Z ciz'  the principal part of o
i=0
If m is negative, then |a] = 0. We set deg(0) = —oo and |0] = 0.

In analogy to the case of a real quadratic number field, the unit group Ex
of K is of the form Ex = k* x {nk), where ng € K is a fundamental unit of K,
so every unit € € K can be written as € = ey for some ¢ € k* and m € Z. We
choose nx so that |nkx| > 1. Then the positive integer Rx = deg(nk) is called
the regulator of K with respect to Og.

A (quadratic) order O of K is a subring of K that contains k[z] and has K as
its field of quotients. Every order O in K is a free k[z]-module of rank 2 and has
a k[z]-basis of the form {1,v/A} where A = F2D for some non-zero F' € k[z].
If F is chosen to be monic, then it is unique and is called the conductor of O.
Write

O =04 = [1,VA] = k[z] + k[z]VA.
We have O4 C O, if and only if A/A’ is a square in k[z]. The maximal order
(with respect to inclusion) is O, the ring of integers of K.

Let O = O, be a quadratic order of K and let « = A+ BVA € O (A,B €

k[z]). Denote by

a=A+BVA the standard representation of a,
@=A-BVA the conjugate of a,

N(a) = oo = A? — B2A the norm of a,

H(a) = max{|al, [a]} = max{|A|,|BVA|} the height of a.

For o € O and Q € k[z], set H(a/Q) = H(a)/Q.

In general, a quadratic order contains many elements of large height, whose
norm is at the same time comparatively small in absolute value. For example, the
fundamental unit 7 of K often has degree of order |[v/D| (and thus an enormous
height of approximately ql‘/-ﬁI = q‘ll/a des(®) 1), while its norm has absolute value
1. Hence it requires exponential time in log|D| to write down the standard
representation of ng, and any algorithm using the standard representation of
nk has at least exponential running time in log|D)|. It is therefore desirable
to have a shorter representation for elements of K with large height and small
norm (in absolute value) and to be able to determine such a representation
quickly. A representation of this type was first introduced by Buchmann, Thiel
and Williams [2] in the case of real quadratic number fields. The object of this
paper is to describe a similar representation in real quadratic congruence function
fields and to show how to obtain and use it efficiently.
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Theorem 1.1 (Main Theorem) Let O = O, be a quadratic order of K and
let o € O. A compact representation of o is a representation

QO ! [94 2
" ' 3
= II <Aj) (1.1)

Jj=1
where

a9, 1,...,00 € O, Ag,Ay,..., A € k[z],

H(ao) < [N(a)l, Hl(ey) <|AP? for 1<5<1,
| 4ol < VA, 1451 < 14| for 1<5<,

| < max{0,logdeg H(a) — logdeg(A) + 2}, and

2t
[0 7] .
’Yi=H(A—';) €O for 1<i<l.

=1

The computation of a compact representation of a requires no more than O(max
{deg(AQ), log deg H(ax)} arithmetic operations on polynomials in k[z].

Note that

deg(a) = deg ( ) + Zdeg ( ) 2!-3,

The above equality resembles a binary representatlon of ordinary integers, except
that the coefficients are not bits, but small integers.

Suppose that a; = G;+ B;VA for 0 < j < lin (1.1), then |G|, |B;| < H(a;)
(0 £ j <1). Any polynomial F € k{z] requires O(deg(F') log ¢) = O(log |F|) bits
of storage, so if the compact representation of « is stored as the vector

(AaGO’BO’AUaGl’BlaAlv .. '7Gl)Bl!Al) € k[$]31+4,

then it requires O(log | N (a)| +log deg H () log | A|) bits of storage. For example,
for the fundamental unit nx of K, we have |N(nk)| = 1 and logdeg H(nk) =
log R = O(log IDI) (see (2.2) below) , S0 any compact representation of nx re-
quires O((log | D])?) bits of storage, as opposed to up to O (VD)) for the standard
representation.

Since the computation of compact representations involves algorithms on
ideals, we give a brief introduction to the theory of reduced ideals in quadratic
orders in the next section. Section 3 presents the algorithms required for comput-
ing compact representations and analyzes their running times. We show how to
perform basic computations with compact representations in Section 4. Finally,
we prove that three important decision problems concerning ideals belong to the
complexity class NP, namely principal ideal testing, ideal equivalence, and the
discrete logarithm problem for ideal classes.
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2 Ideals

For an overview of the theory of continued fractions and reduced ideals in real
quadratic congruence function fields, refer to [7], [8], and [9]. These sources
discuss ideals in the ring of integers only, but the material can be extended to
any quadratic order. For more on ideals in quadratic orders, see [5].

Let O = O4 be a fixed quadratic order. An (integral O-)ideal a is an additive
subgroup of O such that aa C a for all @ € O. Every ideal in O is a free
k[z]-submodule of O of rank 2, and there exists a k{z]-basis of a of the form
{8Q,SP + SVA} where S,Q, P € k[z] and Q | A — P%. Write

a = S[Q, P+ VA] = k[z](SQ) + k[z](SP + SVA).

A basis {SQ, SP+SV/A} of an ideal a can be made unique up to constant factors
if we replace P by the remainder of P (mod Q) of least non-negative degree. In
this case, if S and @ are chosen to be monic, then we say that a is in adapted
form with adapted basis {SQ, SP+ Sv/A}, where Q | A~ P2, deg(P) < deg(Q),
and sgn(S) = sgn(Q) = 1. a is primitive if S in its basis can be chosen to be 1.

The product of two ideals a, b is the ideal ab consisting of all finite sums
of products a8 where o € a and 8 € b. It is easy to determine a k[z]-basis
for ab from k[z]-bases for a and b, respectively, using Algorithm MULT given
below. The norm of an ideal a = S[Q, P+ v/A] is the monic polynomial N(a) =
S%2Q/sgn(S%Q). An ideal a is principal if it is of the form a = (a) = aO for
some a € O. a is a generator of a. In this case, N(a) = N(a)/sgn(N(a)). Two
ideals a, b are equivalent if there exist non-zero a, 8 € O such that (a)a = (8)b,
or equivalently, if there exists A € K* = K \ {0} such that a = Ab. If a and
b are equivalent ideals, then there exists v € a such that ya = N(b)b and
0 < |v] £ |N(a)| (see [7], Lemma II.3.1). Ideal equivalence partitions the set
of ideals in O into equivalence classes which form a finite group under ideal
multiplication, called the class group of O. The order h', of the class group of
O is the ideal class number of O. For the ideal class number h% of Ok and the
regulator R, the following bounds hold (see [4], pp. 299-307).

(va = D* P17 < B Ry < (Vg +1)*50)72. (22)

An ideal a in O is reduced if a is primitive and there exists a k[z]-basis
{Q, P + VA} of a such that |P — VA| < |Q| < |P + VA]. Such a basis is a
reduced basis of a and is unique up to constant factors. The following lemma
summarizes properties of reduced ideals.

Lemma 2.1 1. Let a = [Q, P + /4] be a primitive ideal. Then a is reduced if
and only if |Q| = [N(a)| < |VA|.
2. Let a be a reduced ideal with reduced basis {Q, P + \/Z} Then the following
properties hold.
(a) |P) = |P+VA| = |VA|.
(b) sgn(P) = sgn(A). In fact, the two highest coefficients of P and VA are
equal.
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(¢) If a = l
and 1 < |Q| < V4.

P+Q\/ZJ’ then |aQ| = |VA|. In particular, 1 < |a| < |VA]

Let a; = [Qo, Py + \/Z] be a primitive ideal and consider the ideal sequence
(4:);cN Where

a; = [Qiz1, Pie1 + \/Z] (2.3)

is recursively defined as follows.

Gy = [MJ

Q
H = ai_lQ,’_l - P'_1 (’L € N) (24)
A-P?
Q= Qi1

Here, the polynomials a; (i € Np) are exactly the partial quotients in the con-
Py + \/Z

tinued fraction expansion of g = ————. The process of obtaining a;,1 from
0
a; (i € N) is called a baby step. For ¢ € N, define
d Y1
a; = P—+@, 91 = 1, 0,’+1 = —.
Qi el
A-PF; . .
Then 0,41 = ié’i where al = \/;—— for i € N by (2.4), and the following
; i i-1

1
properties hold..
Lemma 2.2 Fori € N:

1. 0:41Q0,0:41Q0 € a;.

VA+ P
Qi1

3. 0;410i41 = (_1)1'_8_3’ so deg(Bi1) = deg(Q;) — deg(Qo) + Z deg(a;).
j=1
4. deg(B;11) = deg(8;) + deg(a;—,) fori > 2.

;Gi—1 — B;i,vA
3. 0i+1 = (“-1)1G ! B l\/_ where B_2 = 1, B_1 = 0, Bj_l = aj_lBj_2+

0
B;_3 for1<j<i, and Gi—y = P;B;_) + Q;Bi—3.

2. aip1=0ip100 = a;. In particular, all a; (j € N) are equivalent.

Lemma 2.3 Leta={Q,P + \/Z] be a primitive ideal and let a = a;,a2,4as,...
be the sequence of ideals given by (2.3) and (2.4).

1. a; is reduced for i > max {1,deg(Qo)/2 — deg(A)/4 + 2}.



328

2. If a; is reduced for some j € N, then a; is reduced for all i > j and the
reduced basis of a; is given by (2.3) and (2.4).

3. Suppose a; is reduced for some j € N. Then the sequence (a;)i>; is purely
periodic, i.e. there exists m € N such that a;1,, = a; for all ¢ > j. Further-
more, the entire collection of distinct reduced ideals in the ideal class of a is
finite and is given by {a;,a;41,...,0j4m-1}

Suppose a; = O, then a; = (8;) is a reduced principal ideal for i € N. The
distance of q; is

(Si = 6(a,~) = deg(G,-).
Then L
0 =0, &= ldeg(A) + Zdeg(aj) for i > 2,
2 =

0i+1 = 6; +deg(a;—;) >4, 1<8;41-6: < %deg(A) for i € N.

Note that ideal distances are integers (as opposed to irrational numbers in the
number field case), so we need not resort to rational approximations here. This
means that it is somewhat easier and faster to compute compact representations
in quadratic function fields than it is to obtain them in quadratic number fields.

For any s € Ny, there exists a unique reduced principal ideal a; such that
0 < s < bp+1. We say that ai is the reduced principal ideal below s and write
ar = a(s). For ¢ € N, a; = a(s) if and only if §; < s < §; + deg(4)/2.

3 Algorithms

Let s € N. The key ingredient for computing compact representations is a fast
algorithm for determining from the reduced principal ideal a(s) below s the
‘ideal a(2s). It is possible to find a(2s) by repeatedly applying (2.4), starting at
a; = a(s), but this could require as many as s baby steps and is very inefficient
for large values of s. Instead, we apply the following method which achieves our
goal much faster.

Let a = a(s). Compute the primitive principal ideal ¢ where Sc¢ = a2, using
the algorithm SQUARE given below. ¢ is generally not reduced, but by Lemma
2.3, part 1, we can find a reduced principal ideal t = ac = (a/S)a? after ap-
proximately deg(A)/2 many baby steps. The process of computing t from a is a
giant step. t is “not too far” below 2s but it need not be immediately below 2s,
so we continue to perform baby steps until a(2s) is reached, which will happen
after O(deg(A)) many more baby steps. This is another difference between our
setting and the number field case, where it may happen in rare cases that in
computing t, we might have “overshot” our target ideal a(2s) and thus need to
perform “backward” baby steps in order to reach a{2s). In quadratic number
fields, one needs to check for this possibility after each giant step.
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Before we give a more detailed description and analysis of the required algo-
rithms, a note on running times. We measure the time complexity of our algo-
rithms in terms of polynomial operations over k = F; (additions, subtractions,
multiplications, divisions with remainder, degree comparisons, and assignments).

Our first two algorithms are a method for multiplying two reduced ideals
(see for example Algorithm I1.2.1 in [7] or Section 7 in [8]) and its special case
of squaring a reduced ideal, the only situation required for computing compact
representations. They are followed by ideal reduction (see Algorithm I1.4.1 in
[7] or Section 8 in [8]) and a technique of “doubling” the ideal a(s) below some
s € N to obtain a(2s).

Algorithm MULT

Input: Two reduced ideals a = (Q,, Po), b = (Qs, Ps).
Output: (¢, S) where ¢ = [Q, P+V/A] is a primitive ideal, S € k[z], and Sc = ab.
Algorithm:

1. 8 := ng(Qa,Qb) =: X1Qq (mOd Qs) (Sl,Xl € k[:L‘])
2. S:= gcd(Sl,Pa + Pb) =: X35, + Yz(Pa + Pb) (S, X2, Y € k[x])
(If S; =1, then set X3 :=1,Y,:=0, S:=1).

Q.Q
3 Q:= 32 >
_ p2
4. P .= Pa-’r%(l(XzXl(Pb—Pa)'i')/zD Pa) (mod Q)

Lemma 3.1 Algorithm MULT is correct and performs O(deg A) polynomial op-
erations. Furthermore, |S| < V4, |P| < Q]| < |4

Algorithm SQUARE

Input: A reduced ideal a = [Q, P + \/Z]

Output: (c,S) where ¢ = [Q',P' + VA] is a primitive ideal, S € k[z], and
Sc = a?.

Algorithm:

1. §:= gcd(P,2Q) =:YP (mod Q) (Y € k[z]).
v (@
ro-(2)

_p2
3. P :Z—P+YA QP

Algorithm REDUCE
Input: A primitive ideal a = [Q, P + v/4] in adapted form.

(mod Q).
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Output: (b, )) where b = Aa = [Q', P'+V/A] is reduced and X = giQi——\/Z €K

(G, B € k[z]).
Algorithm:

1. j:=0, B:=P, Qy:=Q, B_y:=1, B_;:=0.
2. While deg(Q;) > deg(A)/2 do { baby steps }
Py +VA A-P?
‘LéT_l— y Pj=a;1Qj-1— P, Q= .
Bj_.l = a,-_lBj._z + Bj...3.
3. Q:=Q;, P:=P;, b:=[Q,P+V4], B:=Bj,,
G+ BJ/A
G:=P;B;_1 + Q;Bj-», A= -———Q—£
Lemma 3.2 Algorithm REDUCE is correct and performs O(deg A) polyno-

mial operations. Furthermore, |Q;|,|P;l < |Qol, |Bj-2| < |Bj-1| < IQOI/I\/ZI
throughout the algorithm, and H(\) < 1.

a1 =

Proof. By Lemma 8.5 of [8], b is reduced and |A| < 1, hence H(A) < 1 as
|A] < 1 always holds. Suppose the algorithm stops after ! iterations of step 2,
i.e. b = aj41. Then |Bj_3| < |Bj_1] follows from |aj_;| > 1 (1 < j < !). Using
techniques similar to those employed in the proofs of Theorem 4.1, Corollary
4.1.1 and Theorem 4.2 of [10], we can show that |@Q;|,|P;} < |Qo| for 0 < j <1

and |Bi-1] < |Qo|/|VA|.
Algorithm DOUBLE

Input: s €N, a(s) = [Q, P + V4], § = §(a(s)).
Output: a(2s) = [Q', P'+VA4] = %a(s)2 where o = G+BVA (G, B, A € k[z]),

d(a(2s)).
Algorithm:

1. (¢, S) := SQUARE(a(s)), ¢ = [Q., P. + VA].
2 (a) j:=0, Po:=P, Qo:=Q, B_y:=1, B_;:=0,
dy := 26 — deg(S) — deg(Qo).
(b) While deg(Q;) > deg(A)/2 do { baby steps }
Increment j by 1;

Py +VA A-P?
aj—1 = [ . 612 J » Pi=a;11Qj-Finy, Qji=——2;
j—1 Q]—l
Bj-1:=a;j_1Bj—2 + Bj_3, dj41:=d; +deg(a;_1).
3. While dj1 + deg(Q;) < 2s do { more baby steps }
Increment j by 1;
P+ VA A-P?
aj_1 = [—’%——J y Pji=a;-1Qi-1 — Pj, Q= 0, L
ij—1 j—1

Bj_l = aj_.lBj_g -+ Bj._3, dj+1 = dj + deg(aj..l).
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4. Q:=Q;, P:=P, a2s):=[Q,P +V4]

8(a(2s)) := dj41 + deg(Q;),

Q2

B:=Bj; .y, G:=P;Bj-1+Q;Bj 3, a:=G+BVA, A:= -
Theorem 3.3 Algorithm DOUBLE is correct and performs O(deg A) polyno-
mial operations. Furthermore, |P;|,|Q;| < |4A| throughout step 2, |F;,|Q;| <
[VA| throughout step 3, 2s — 2deg(4) < d; < dj41 < 25 + deg(A)/2 and
1 < |Bj—2] < |Bj_1] < |APP/? throughout steps 2 and 3, |G| < |AJ?, so
H(a) < |A% and |4] < |4].

Proof. Step 1 is correct and requires O(deg A) polynomial operations, and |S| <
[VA], |P:),1Q.] < |A| by Lemma 3.1. Let a1 = [Qm, Pm + V4] be the ideal
computed at the end of step 2. Then a,,4; is reduced and the bounds for |F;|
and |Q;| (0 < j < m) follow from Lemma 3.2.

Now it is known (see Theorem 9.2 in [8]) that if ap = ¢, then 41 = Opypic =
(Bm+1/9)a(s)? where 2 — deg(A) < deg(fm+1/S) < 0, so 26 + 2 ~ deg(4) <
Om+1 < 26 < 2s. Hence, unless Gm+1 is already the ideal below 2s, more baby
steps are required to increase 6,41 and compute a(2s). This is done in step 3.

Assume the algorithm halts at index j = [, i.e. the last ideal computed in step
3 is a;y1. Then the ideals a2, am43,. .., 8+1 are reduced, whence follow the
bounds on |P;| and |Q;| for m+1 < j < I. Furthermore, since § > s —deg(A)/2,
we have 2s — 2deg(A) < dy < dj < d;j +deg(aj_1) = djt1 < dmp1 < 25 +
deg(Qm) < 2s + deg(A)/2 for 2 € j < m. Now |Bj_2| < |Bj-1| < |B| for
0<j<m-1and |G| <|B||VA]|. Since aj4; = g-l:-l—'-QB;n/Zc by Lemma

0
2.2, part 5, we have a = Bj_; + G1_1VA and A = SQ = Q?/S by step 2 of
Algorithm SQUARE. Then |4| < |Q|* < |A| and

6j+1 = deg(6;+1) — deg(S) + 26

J
= deg(Q;) — deg(Qo) + ) _ deg(ai) — deg(5) + 26

i=1
J
= deg(Q;) + ) _ deg(as) + dp = deg(Q;) + dj+1,
i=1

hence the algorithm stops when j is maximal such that §;11 < 23, so a(2s) =
ai+1. Therefore, deg(a/A) = é141 — 26 < 2(s — §) < deg(A) and |a| < |4]|4] <
|A]2. On the other hand, deg(a/A) > 841 — deg(A)/2 — 26 > 2(s — ) —
deg(4)/2 > — deg(A)/2, 50 |l  |al/|4] > 1/y/]4]. But

ol _ 1@l _ Qi _ 1o
AP~ TQolISP ~ 1QF ~ TsllA’

so [l < |Al|Qi]/|a| < |A[?. Therefore, |G| < |A[?, |B| < |AP/?, and H(a) <
A%
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In order to determine a compact representation for an element a € O, we
first need to compute a k[z]-basis for the principal ideal generated by a.

Algorithm IDEAL

Input: a = A+ BVA € O\ {0} in standard representation (A, B € k[z]).
Output: a = (a) = S[Q, P + VA] (S,Q,P € k[z], Q | A - P?).
Algorithm:

1. S:=gcd(4,B)=XA+YB, (X,Y € klz]).
2 _ p2
2.P:=Y§+XAB A-BA_No

5 9T T e

Lemma 3.4 Algorithm IDEAL is correct and performs O(max {deg(A), deg(B)})
polynomial operations.

Proof. Let a = S[Q, P++/A] where S, Q, and P are computed by the algorithm.
We need to show that a = (a). We have

s? (XQ + g(P + \/Z)) = X(A?-B?A)+ B(YA+ XBA + SVA)

= XA?+YAB+SBVA
= A(XA+YB)+SBVA
= S(A+ BVA)

= Sa,
soa=3S5 (XQ + g(P + \/Z)) € a. Conversely, SQ = %a € (o) and

S(P++vVA)=(YA+XAB)+ (XA+YB)}VA
= (Y + XVA)(A + BVA)
= (Y + XVA)a € (a).

Finally, N(P + VA) = N(Y + XVA)N(a/S) or P> — A = (Y2 — X24)Q, so
Q| A~ P? and {SQ,SP + SvV/A} is a k[z]-basis of ().

We are now prepared to provide the algorithm for computing compact rep-
resentations. Given o € O, we determine a k[z]-basis of (), using the algorithm
IDEAL, before calling the algorithm described below.

Algorithm COMPACT-REPRESENTATION

Input: A non-zero principal ideal a = (a) = S[Q,P + \/Z] (S,Q,P € k[z),
Q|A-P? ac0).
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Output: 1 €N, oag,0y,...,00 €O, Ao, As,..., Al € klz] such that
l 2!-d
(4 9)] 127}
o= — -
Ao JI;II (Aj)

is a compact representation of a.
Algorithm:

1. (b,7) = REDUC’E( a), b=[Q', P +VA).

S

. . - deg(p) deg(p)

c— Jj—1 =AU — o\/
2.l.—m1n{]€No|2 >deg( ) , 8g:= o

Cl(So) = O, Ag = Q’, Qg = 'VQS, € = 1.
3. Forj:=1tol do

where p = 'y%;

85 = 28]'_1

(aj, Aj, a(sj)) = DOUBLE(Q(SJ_l))
oy
om(2)3.

4. Replace ap by € 'sgn(a)ap where € = sgn <;110>
0
Theorem 3.5 Algorithm COMPACT-REPRESENTATION is correct and per-
forms O (max{deg(A4), logdeg H(a)}) polynomial operations.

Proof. We have b = (va/S) = (p), so p € O. By Lemma 2.2, part 3, we have
¥y = £Q'/Q, so S/y = £5Q7/Q' = £ap/Ap. Hence there there exists ¢ € k*
such that & = cpag/Ae. Furthermore, since H(y) < 1 by Lemma 3.2, we have
H(ao) = ISIIQIH () < ISIIQ| = [N(a)/IS| < N(a)] and |4o| = Q'] < VA.

If I = 0, then deg(p) < deg(A)/2, so since b = (p) is a reduced ideal with
distance §(b) = deg(p), we must have (p) = O, p € k*, the loop in step 4 is
never executed, and pag/Ag is the compact representation of a up to sign.

Suppose ! > 1, then 2!7! > deg(p)/ deg(4) > 2!72, so deg(A4)/2 > sp >
deg(A)/4 > 0. We have §(0) = 0 < 355 < §(O) + deg(A)/2, so setting a(so) to
be O in step 2 is correct. Let vo = 1, v; = (a;/A;)v?_; for 1 < j <L Then

v = f[ (3—1) g vooa(si) = () (05,

i=1
hence v; € O for 0 < j < I. By Theorem 3.3, H(ej) < |A|? and |4;] < |4]|.
Furthermore, since (p) is the reduced principal ideal below deg(p) = s;, we have
(p) = a(s1) = (), so a and (ag/Ag)y; differ only in sign. Now ¢; = sgn(v;) for
0 < j <1, so after step 4, the compact representation of a has the correct sign.

Flna,lly, if 1 > 1, then ! < logdeg(p) — logdeg(A) + 2, and since |p| < H(p) <

H(v)H(a)/|S| < H(a), we have | < max{0,logdeg H(a) —logdeg(A) + 2}, and
step 4 requires O(log deg H(a)) many doubling steps.
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4 Applications

Lemma 4.1 Let a € O\ {0} be given in compact representation. Using no more
than O(max {deg(A), log deg H(a)}) polynomial operations, we can compute

a compact representation of @,

the degree of a,

the sign of a,

a k[z]-basis of the principal ideal (),
the norm of a.

Svds Lo o

If B € O\ {0} is also given in compact representation, we can

6. compute a compact representation of af,
7. determine whether § divides o and if yes, compute a compact representation
of /B,

8. determine whether o = f3.

using no more than O(max{deg(A4),logdeg H(a),logdeg H(3)}) polynomial op-
erations.

Proof. 1-3 is obvious. For 4, write @ = (ap/Ao)p. Use step 3 of algorithm
COMPACT-REPRESENTATION to successively compute k[z}-bases of the ide-
als a(sg), a(s1), ..., a{s;) = (p). Then compute b = IDEAL(cg). Finally, use
Algorithm MULT to compute a k[z]-basis {SQ, SP + Sv/A} for the ideal (p)b.
Then Ao(a) = (p)b, so Ap must divide S. Hence (a) = (S/40)[Q,P + VA]. In
5, to obtain N(a), compute a(so),...,a(s;) as before. If a(s;) = S[Q, P + V4],
then N () is equal to N(ap)QS? /N (Ao) up to sign.

For 6-8, compute k[z]-bases {SQ,SP + SVA} and {S'Q", S'P' + S'\/A} of
() and (B), respectively. To obtain a compact representation of the product a8,
compute a k[z]-basis of the ideal (o) using Algorithm MULT and apply Algo-
rithm COMPACT-REPRESENTATION to this basis. Then match the sign of
the compact representation to be equal to sgn(af) = sgn(a)sgn(8). To compute
a-compact representation of the quotient, observe that (8) = S'[Q’, —P' + VA).
Use Algorithm MULT to compute a k[z]-basis of the product ideal (af), say
(aB) = 8"[Q",P" + VA]. Now 8 | e if and only if N(B) | aB. Since the ideal
[Q", P" ++/A] is primitive, this happens if and only if Q'S | S”. Check whether
this is true. If yes, apply Algorithm COMPACT-REPRESENTATION to the
ideal (a/B) = (8"/Q'S™)[Q", P" + V/A] and again, match the sign to be equal
to that of /8. Finally, for 8, note that ¢ = § if and only if sgn{a) = sgn(s),
B | @, and deg(a) = deg(B).

Henceforth, we only consider the case O = Ok, i.e. A = D.

Lemma 4.2 Every principal ideal in Ok has a generator o such that deg H(a)
< max {(,/g + 1)38D)-2 deg N(e)}.
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Proof. Clear for the zero ideal. Let a be a non-zero principal ideal with a gen-
erator 3 with |8| > 1. There exists m € Z such that 0 < deg(3) + mRk < Rg.
Then a = An} is also a generator of a and deg(a) < Rx < (/g + 1)48(D)~2 by
(2.2). Furthermore, since @ = N(a)/a, we have deg{a) < deg N(a).

We conclude with an investigation of three important computational ques-
tions regarding ideals. Recall that a decision problem is said to belong to the class
NP if and only if a certificate for the problem can be verified in time polynomial
to the size of the input.

Theorem 4.3 The following problems belong to NP.

(PIT) Principal Ideal Testing.
Instance: An ideal a in Ok, given in adapted form.
Question: Is a principal?

(EI) Ideal Equivalence.
Instance: Two ideals a, b in Ok, given in adapted form.
Question: Are a and b equivalent?

(DLP) Discrete Logarithm Problem for Ideal Classes.
Instance: Two ideals a, b in Ok, given in adapted form.
Question: Are a* and b equivalent for some | € Ny.

Proof. The size of an ideal a = S[Q, P + v/D] in Ok is linear in log S|, log|Q),
log |P|, and log|D|. By Lemma 4.2, there exist a generator a of a such that
deg H(a) < max{|D], deg(Q5%)}.

For (PIT), a compact representation of such a generator « of a is a certificate,
as its size is polynomially bounded by log |N(a)| = log|QS?|, log|D|, and | <
max{log | D|,log deg(QS?)}. Simply compute the adapted representation of the
ideal (o) as in Lemma 4.1, part 4, and compare it with the basis of a.

For (EI), an element +y € a given in compact representation such that va =
N(b)b and 0 < |y| < |N(a)| represents a certificate. First, find a k[z]-basis of
the ideal (v). From this basis and the basis for a, compute an adapted k{z]-basis
for the ideal (v)a and compare it with the adapted basis of N(b)b.

Finally, a discrete logarithm, i.e. a pair (v,l) € a x {0,1,...,h% — 1} such
that ya! = N(b)b and 0 < |y| < |N(a)| is a certificate. By (2.2), the size of
l is bounded by log|D|. Using a technique analogous to the repeated squaring
method used for exponentiation of integers (see for example [6], p. 442), we can
compute an adapted k{z]-basis of the ideal o', using no more than O(log!) ideal
multiplications and squarings. Then we proceed in a fashion similar to (EI).
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