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Constructing and tabulating dihedral function fields

Colin Weir, Renate Scheidler, and Everett W. Howe

We present algorithms for constructing and tabulating degree-` dihedral exten-
sions of Fq.x/, where q � 1 mod 2`. We begin with a Kummer-theoretic al-
gorithm for constructing these function fields with prescribed ramification and
fixed quadratic resolvent field. This algorithm is based on the proof of our
main theorem, which gives an exact count for such fields. We then use this
construction method in a tabulation algorithm to construct all degree-` dihedral
extensions of Fq.x/ up to a given discriminant bound, and we present tabulation
data. We also give a formula for the number of degree-` dihedral extensions of
Fq.x/ with discriminant divisor of degree 2.`� 1/, the minimum possible.

1. Introduction

Two important problems in algebraic and algorithmic number theory are the con-
struction of global fields of a fixed discriminant or prescribed ramification — with
its curve analogue of constructing Galois covers of fixed genus — and the tabulation
of global fields with a certain Galois group up to some discriminant or genus bound.
The latter problem goes hand in hand with asymptotic estimates for the number of
such fields; for example, estimates for cubic number fields were first given in [11]
and for quartics in [2]. There is a sizable body of literature on construction, tabu-
lation, and asymptotic counts of number fields; a comprehensive survey of known
results can be found in [6], and extensive tables of data are available at [19].

Far less is known in the function field setting; only the asymptotic counts for
cubic [10] and abelian [39] extensions have been proved. However, there is a
general program described by Ellenberg and Venkatesh [37] for formulating these
asymptotic estimates for both number fields and function fields. In particular, they
point out the “alarming gap between theory and experiment” in asymptotic predic-
tions for number fields. In the case of cubic number fields, this inconsistency led
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Roberts [23] to conjecture the secondary term in the theorem of Davenport and
Heilbronn in [11]. His conjecture was later proved independently by Bhargava,
Shankar, and Tsimerman [3] and by Taniguchi and Thorne [35]. In the function
field setting, however, there is practically no experimental data to potentially iden-
tify a similar such gap. The only known algorithm for constructing all cubic func-
tion fields with a given squarefree discriminant is that of [18], although recently
Pohst [22] showed how to construct all non-Galois cubic extensions of Fq.x/ with
a given discriminant, which also leads to such an algorithm. Tabulation methods
for certain classes of cubic function fields can be found in [26] and [25].

This paper represents a next step toward function field tabulation. We present
a method for constructing all degree-` extensions of Fq.x/ with prescribed ram-
ification and with Galois group isomorphic to the dihedral group of order 2`, in
the case where q � 1 mod 2`. We use a Kummer-theoretic approach inspired by
the methods of Cohen [7; 8] for number fields. This construction method can be
converted into a tabulation algorithm in the usual manner via iteration. However,
we are able to use the automorphism group PGL.2; q/ of Fq.x/ to effect significant
improvements. Note that this technique is unique to the function field setting, as
there are no nontrivial automorphisms of the rational numbers. Exploiting Fq.x/-
automorphisms reduces the number of constructions by a factor of order q3 com-
pared to the naïve approach. We present our improved tabulation procedure along
with numerical data obtained from an implementation in Magma [5]. It is important
to note that in the special case `D 3, our algorithm generates complete tables of
non-Galois cubic function fields over Fq.x/ up to a given discriminant bound.

2. Preliminaries

Let ` be an odd prime and let Fq be a finite field of characteristic coprime to 2`.
We denote by K the rational function field over Fq and by Ksep a separable closure
of K. In this paper, a function field will always mean a subfield L of Ksep that
contains K as a subfield of finite index, and by the Galois group of L we mean the
Galois group of its Galois closure over K.

Suppose F=E is a finite extension of functions fields. Let Places.F / denote the
set of places of F , and let e.P 0jP / and f .P 0jP ) denote the ramification index and
relative degree of a place P 0 2 Places.F / lying over P 2 Places.E/, respectively.
The norm of a place P 0 2 Places.F / is the divisor

NF=E.P
0/ WD f .P 0 jP /P;

and the conorm of P 2 Places.E/ is

ConF=E.P / WD
X

P 0 jP

e.P 0 jP /P 0:
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Then NF=E.ConF=E.P //D ŒF WE�P . These definitions extend additively to divi-
sors. We will also use NF=E to denote the norm map on elements of F . Proposition
7.8 in [24] shows that this is reasonable: The norm of a principal divisor .˛/ of
F is the principal divisor .NF=E.˛// of E. Restricting to the cases where the
characteristic is different from 2 and ` guarantees that for the field extensions we
will consider, there are no wildly ramified places. Thus, for the extensions F=E

we will work with, the different is given by

DiffF=E WD

X
P2Places.E/

X
P 0 jP

.e.P 0 jP /� 1/P 0:

The discriminant divisor of F=E is defined as

�F=E WD NF=E.DiffF=E/D
X

P2Places.E/

X
P 0jP

.e.P 0 jP /� 1/f .P 0 jP /P:

When E D K, we drop E from the notation and simply write �F . Note that
deg�F=E D deg DiffF=E , so one can replace DiffF=E by �F=E in the Hurwitz
genus formula ([32, Theorem 3.4.13]). For these reasons, we will henceforth de-
scribe the ramification of a function field in terms of its discriminant divisor.

Let K` be a degree-` function field with Galois group D`, the dihedral group
with 2` elements, and construct the dihedral extension K2` as the Galois closure
of K` over K:

K2`

K`

2

K2

`

h�i

K

2

h�i

`

(1)

Here K2 is the fixed field of the unique index-2 subgroup C` of D` and K` is the
fixed field of an element of order 2 in D`. We note that there are ` such elements
in D`, which give ` subfields of K2` conjugate to K`. The field K2 is called the
quadratic resolvent field of K`; we write K2 D QuadRes K`: We let � denote a
generator of Gal.K2=K/ and � a generator of Gal.K2`=K2/.

3. Description of all degree-` dihedral function fields

Our first goal is to count the number of `-tuples of conjugate dihedral degree-` func-
tion fields with a given discriminant divisor and quadratic resolvent field. There
is a one-to-one correspondence between nonconjugate dihedral degree-` function
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fields K` and their Galois closures K2`. Consequently, instead of counting degree-
` dihedral extensions, we count the number of dihedral Galois fields K2`. We do so
via construction: Given a quadratic function field K2 and discriminant divisor �,
we construct all degree-` cyclic extensions K2` of K2 such that Gal.K2`=K/DD`
and all conjugate index-2 subfields K` of K2` have discriminant divisor �K`

D�.
Since q � 1 mod `, all cyclic `-extensions of K2 are Kummer extensions — that

is, extensions of the form K2.
p̀
˛/ for some ˛ 2K�

2
n .K�

2
/`. In Section 3A we

give necessary and sufficient conditions on ˛ for K2.
p̀
˛/ to be Galois over K

with group D`. In Section 3B, we use virtual units to decompose K�
2
=.K�

2
/` in a

way that allows us to determine the elements ˛ that correspond to nonisomorphic
dihedral function fields. With this information, in Section 3C we compute the dis-
criminant divisor of K` �K2.

p̀
˛/ in terms of .˛/ and �K2

. Next, in Section 3D
we give a constructive proof of the main theorem: an exact count of the number of
nonconjugate dihedral degree-` extensions of K with a given quadratic resolvent
field K2 and discriminant divisor. We close in Section 3E by showing how to give
explicit equations for the function fields we construct.

3A. Kummer theory. Let ` be a prime and let F be a field that contains the `-th
roots of unity. A degree-` Kummer extension of F is an extension of the form F.�/,
where �` is an element of F nF`.

Theorem 3.1 (See [38, Theorem 5.8.5, Proposition 5.8.7, and Theorem 5.8.12]).
Let ` be a prime and let F be a field that contains the `-th roots of unity.

(1) Let F 0 D F.�/ be a Kummer extension of F , with �` D ˛ 2 F n F`. Then
the minimal polynomial of � is T ` �˛, and F 0 is a degree-` Galois extension
of F .

(2) Every degree-` Galois extension F 0 of F is a Kummer extension.

(3) Let F 0 D F.
p̀
˛/ and F 00 D F.

p̀
ˇ/ be two Kummer extensions of F . Then

F 0 Š F 00 if and only if ˛ D ˇj
 ` for some 
 2 F� and some j 2 Z with
1� j � `� 1.

(4) Suppose F is a function field. Let F 0 D F.
p̀
˛/ be a Kummer extension, let P

be a place of F , and let P 0 be a place of F 0 lying over P . Then

e.P 0 jP /D
`

gcd.`; vP .˛//
;

where vP is the additive valuation associated to P .

Note in particular that statement (3) gives a bijection between the Kummer ex-
tensions of F and the nontrivial cyclic subgroups of F�=.F�/`.

Now suppose we are given an odd prime ` and a prime power q � 1 mod 2`,
and let K be the rational function field over Fq . We construct dihedral degree-`
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function fields over K with a given quadratic resolvent field K2 by starting with the
field K2 and constructing, via Kummer’s theorem, cyclic degree-` extensions of
K2 that are Galois over K with Galois group D`. Our next proposition allows us to
recognize when we have such an extension. Before stating the proposition, we note
that the norm map from K2 to K induces a norm map K�

2
=.K�

2
/`!K�=.K�/`,

and that the inclusion K��K�
2

induces a conorm map K�=.K�/`!K�
2
=.K�

2
/`.

Proposition 3.2. Let K2=K be a quadratic function field and let K2.�/ be a Kum-
mer extension of K2, where �` D ˛ 2K�

2
n .K�

2
/`. Let C be the cyclic subgroup

of K�
2
=.K�

2
/` generated by the class of ˛. If C is contained in the image of the

conorm map, then K2.�/ is a cyclic Galois extension of K; if C is contained in
the kernel of the norm map, then K2.�/ is a Galois extension of K with group D`;
and otherwise, K2.�/ is not a Galois extension of K.

Proof. Since K2 is Galois over K, the group Gal.Ksep=K/ acts on K�
2
=.K�

2
/`,

and this action reflects the action of Gal.Ksep=K/ on the set of Kummer extensions
of K2 in Ksep. Thus, the field LDK2.�/ is Galois over K if and only if !.C /DC

for all ! 2 Gal.Ksep=K/, and this will be the case if and only if �.C /D C for the
nontrivial automorphism � of K2 over K.

Suppose �.C /D C , so that L=K is Galois. Since �2 is the identity on C , we
have �.˛/ D ˛i
 ` for some 
 2 K2 and i D ˙1. Let ! be an element of order
2 in Gal.L=K/, so that ! is a lift of � . If i D 1 then we have .!.�/=�/` D 
 `,
so !.�/D �
 � for some `-th root of unity � 2K; replacing 
 with 
 �, we may
assume that � D 1 and !.�/D �
 . Then

� D !2.�/D !.�/ �!.
 /D �
 �!.
 /

so 1 D NK2=K .
 /. By Hilbert 90, we have 
 D "=�."/ for some " 2 K2. Since
�.˛/D ˛
 `, we find that ˛"` is fixed by � , so the image of ˛ in K�

2
=.K�

2
/` lies in

the image of the conorm. On the other hand, if i D�1 then 
 ` DNK2=K .˛/ 2K.
Since 
 2K2 and K2 is a quadratic extension of K, we must have 
 2K. Thus
the image of ˛ in K�

2
=.K�

2
/` lies in the kernel of the norm. We see that if C is

neither in the image of the conorm nor in the kernel of the norm, then K2.�/ is
not Galois over K; this is the final statement of the proposition.

If C is in the image of the conorm, then ˛ D ˇ
 ` for some ˇ 2K and 
 2K2.
Then K2.�/ is the composition of the quadratic extension K2=K with the Kummer
extension K.

p̀
ˇ/=K, so K2.�/ is Galois over K with cyclic Galois group.

Finally, suppose C is killed by the norm map, so that NK2=K .˛/D 

` for some


 2K. Then �.˛/D 
 `=˛, so �.C /D C , and L is Galois over K. If we again let
! be an element of order 2 in Gal.L=K/, then !.�/D 
 �=� for some `-th root of
unity � 2K. If we let � be a generator of Gal.L=K2/, we find that !�! D ��1,
so Gal.L=K/ŠD`. �
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Elements of K2 whose norms are `-th powers in K have divisors of a specific
type, described below.

Proposition 3.3. Let ˛ 2 K�
2

. If NK2=K .˛/ D 
 ` for some 
 2 K�, then the
principal divisor of ˛ takes the form

.˛/D `E0C

.`�1/=2X
iD1

i.D0i �D0�i/;

where E0 is a divisor of K2, the D0i are squarefree effective divisors of K2 with
pairwise disjoint support, and where �.D0i/DD0

�i for all i . Consequently, every
place of K lying under a place in the support of some D0i splits in K2.

Proof. Let P 0 be a place in the support of the principal divisor .˛/, and set nP D

vP ..˛//. Then by the division algorithm we can uniquely write nP D q`C r for
some q; r 2 Z with jr j � .`� 1/=2. Repeating this for all places in the support of
.˛/, we see that the divisor of ˛ can be written uniquely as

.˛/D `E0C

.`�1/=2X
iD1

i.D0i �D0�i/;

where the D0i are squarefree effective divisors with pairwise disjoint support. Ap-
plying the norm map NK2=K to .˛/, we obtain

.NK2=K .˛//D .˛/C .�.˛//

D `.E0C �.E0//C

.`�1/=2X
iD1

i.D0i �D0�i C �.D
0
i/� �.D

0
�i//:

As NK2=K .˛/D 

`, we see that

i.D0i �D0�i C �.D
0
i/� �.D

0
�i//D 0 for 1� i � .`� 1/=2:

This shows that D0i D 0 if and only if D0
�i D 0. If D0i ¤ 0, then D0i and D0

�i are
effective and have disjoint support, forcing D0i D �.D

0
�i/. �

3B. Virtual unit decomposition. Theorem 3.1 states that elements of K�
2

that gen-
erate the same subgroup of K�

2
=.K�

2
/` produce the same Kummer extension. We

wish to construct distinct dihedral function fields by constructing distinct Kummer
extensions of K2. To that end, we decompose the group K�

2
=.K�

2
/` using a func-

tion field definition of virtual units, as inspired by H. Cohen’s work on number
fields [7]. In particular, we show how to construct a basis for the kernel of the
norm map K�

2
=.K�

2
/`!K�=.K�/`:
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We define the (`-)virtual units of K2 to be the elements of the set

V` D f˛ 2K�2 W .˛/ 2 `Div0 K2g:

The map from V` to Div0 K2 that sends ˛ to .˛/=` induces a map from V` to
.Pic0 K2/Œ`�, the `-torsion of the degree-0 divisor class group of K2; this leads to
the exact sequence

1 �! F�q =.F
�
q /
`
�! V`=.K

�
2 /
`
�! .Pic0 K2/Œ`� �! 0:

We also have an exact sequence

1 �! V`=.K
�
2 /
`
�!K�2 =.K

�
2 /
`
�!K�2 =V` �! 1: (2)

To better understand the final term of this sequence, we set

I` D Prin K2=.Prin K2\ `Div0 K2/

and define a map 'WK�
2
! I` by '.˛/ D .˛/C Prin K2 \ `Div0 K2. Then ' is

surjective and ker' D V`, so K�
2
=V` Š I`. All told, we obtain this diagram of

exact sequences, which represents a virtual unit decomposition:

1

��

1

��

1 // F�q =.F
�
q /
` //

��

F�q =.F
�
q /
` //

��

1

��
1 // V`=.K

�
2
/` //

��

K�
2
=.K�

2
/` //

��

K�
2
=V` //

��

1

0 // .Pic0 K2/Œ`�
//

��

Prin K2=`Prin K2
//

��

I` //

��

0

0 0 0

(3)

The middle vertical sequence here shows that the divisor map from K�
2
=.K�

2
/`

to Prin K2=`Prin K2 has kernel F�q =.F
�
q /
`. However, by Proposition 3.2, Kummer

extensions of K2 that are Galois over K with group D` correspond to nontrivial
cyclic subgroups of the kernel of the norm map from K�

2
=.K�

2
/` to K�=.K�/`.

We now describe how the divisor map behaves on this kernel.
Let H be the group

H D
˚
˛ 2K�2 W NK2=K .˛/ 2 .K

�/`
	
; (4)
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so that H=.K�
2
/` is the kernel of the norm map from K�

2
=.K�

2
/` to K�=.K�/`.

Proposition 3.4. The map

H=.K�2 /
`
�! Prin K2=`Prin K2

(induced from the divisor map) is injective, and its image is the group

J` D
˚
.ˇ/C `Prin K2 2 Prin K2=`Prin K2 W NK2=K ..ˇ// 2 `Prin K

	
:

Proof. Let .H / be the group of divisors of elements in H . First we claim that the
sequence

1 �! .F�q /
`
�!H �! .H / �! 0

is exact. To see this, note that the map sending an element of H to its divisor is
clearly surjective. The kernel of this map is the set H \F�q . Let k 2 F�q and suppose
NK2=K .k/ 2 .K

�/`. Then NK2=K .k/D k�.k/D k2 2 .K�/`. As squaring is an
isomorphism of F�q =.F

�
q /
`, we have k 2 .F�q /

`.
It follows from the exact sequence above that the divisor map

H=.K�2 /
`
�! Prin K2=`Prin K2

is injective. Its image is certainly contained in J`. To complete the proof, we must
show that every element of J` lies in the image of H=.K�

2
/`.

Let .ˇ/C `Prin K2 be an element of J`, where ˇ 2K�
2

satisfies NK2=K ..ˇ// 2

`Prin K, say NK2=K ..ˇ//D `.
 / for some 
 2K�. Then NK2=K .ˇ/D c
 ` for
some c 2 F�q . If we let d D c.`�1/=2, then NK2=K .dˇ/D .c
 /

`, so dˇ is an element
of H whose image in Prin K2=`Prin K2 is .ˇ/C `Prin K2. �

Proposition 3.5. The image of .Pic0 K2/Œ`� in Prin K2=`Prin K2 is contained in J`.

Proof. Suppose D0 2 Div0 K2 represents an element of .Pic0 K2/Œ`�, so that `D0

is a principal divisor, say equal to .˛/ for some ˛ 2 K�
2

. Then the divisor of
NK2=K .˛/ is also an `-multiple of a principal divisor. �

Let U` be the image of H=.K�
2
/` in I`, so that

U` D f.˛/CPrin K2\ `Div0 K2 W ˛ 2H g:

Corollary 3.6. The bottom row of Diagram (3) gives rise to an exact sequence

0 �! .Pic0 K2/Œ`� �!H=.K�2 /
`
�! U` �! 0;

which splits (noncanonically).
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Proof. The sequence is obtained from combining the exact sequence

0 �! .Pic0 K2/Œ`� �! J` �! U` �! 0

of subgroups of the bottom row of Diagram (3) with the isomorphism H=.K�
2
/` Š

J`. The sequence splits because all of the groups are `-torsion. �
This corollary, together with Proposition 3.2, gives us the following theorem:

Theorem 3.7. There is a one-to-one correspondence between Kummer extensions
K2`=K2 such that K2` is Galois over K with group D` and the set of nontrivial
cyclic subgroups of .Pic0 K2/Œ`��U`.

3C. The discriminant divisors of D` extensions. Now that we have established
the correspondence of Theorem 3.7 for D` Kummer extensions K2` DK2.

p̀
˛/ of

K2, it remains to compute the discriminant divisor of K` �K2.
p̀
˛/. In particular,

we compute the discriminant divisor�K`
of K` in terms of .˛/ and�K2

. We begin
by describing the discriminant divisor �K2`=K2

. Our description is simplified by
the introduction of the following terminology.

Suppose ˛ is an element of the group H defined by (4). Let D0
1
, . . . , D0

.`�1/=2
be

the divisors arising from the representation of .˛/ as described in Proposition 3.3.
We define the ramification divisor of ˛ to be the divisor

D01C �.D
0
1/C � � �CD0.`�1/=2C �.D

0
.`�1/=2/

of K2, and the reduced ramification divisor of ˛ to be the divisor

NK2=K .D
0
1C � � �CD0.`�1/=2/

of K. Note that the ramification divisor is the conorm of the reduced ramification
divisor.

Lemma 3.8. Let K2 be a quadratic function field over K. Suppose that K2` D

K2.
p̀
˛/ is a Kummer extension of K2 such that K2`=K is Galois with Galois

group D`. Then
�K2`=K2

D .`� 1/D0;

where D0 is the ramification divisor of ˛.

Proof. By Theorem 3.1, for all places P 0 in the support Supp D0 of the divisor
D0, there is a unique place P 00 of K2` lying over P 0 such that e.P 00 jP 0/ D `.
Furthermore, all other places of K2 are unramified in K2`. �

We now compute the degree of the discriminant divisor �K`
, which will in turn

allow us to compute �K`
itself. To that end, we examine the characters of D`.

For subgroups G of D`, let ‰.G/ denote the induced character of D` obtained
from the trivial character of G (see [27, Chapter 3]). The fields K, K2, K` and
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K2` of Diagram (1) are the fixed fields of the four subgroups D`, C`, C2, and 1,
respectively. The induced characters of these groups are linearly dependent and
satisfy the relation

‰.1/C 2‰.D`/D 2‰.C2/C‰.C`/:

Since the Artin L function of an induced character ‰.G/ is the � function of the
fixed field of G (see [16, Chapter 8]), we obtain

�K2`
.s/�2

K .s/D �
2
K`
.s/�K2

.s/:

From the functional equation of the � function, we have

deg�K2`
C 2 deg�K D 2 deg�K`

C deg�K2
;

and since �K D 0 we find

deg�K2`
D 2 deg�K`

C deg�K2
: (5)

By [32, Corollary 3.4.12(a)] we have DiffK2`
D ConK2`=K2

.DiffK2
/CDiffK2`=K2

.
Applying norms yields

�K2`
D ŒK2` WK2��K2

CNK2=K .�K2`=K2
/:

By Lemma 3.8, we obtain

�K2`=K2
D .`� 1/D0;

where D0 is the ramification divisor of any ˛ that defines K2` as a Kummer exten-
sion of K2. Let M be the reduced ramification divisor of ˛. Then

NK2=K .�K2`=K2
/D 2.`� 1/M;

and (5) can be rewritten as

` deg�K2
C 2.`� 1/ deg M D 2 deg�K`

C deg�K2
:

Thus,

deg�K`
D
`� 1

2
deg�K2

C .`� 1/ deg M:

Using this information we can now compute the discriminant divisor of K`.

Theorem 3.9. With notation as above, we have �K`
D

`�1
2
�K2
C .`� 1/M .

Proof. Let E D `�1
2
�K2
C .`�1/M . First note that the only places of K ramified

in K` are those lying over places in the support of M and �K2
as K2`=K2=K

is only ramified at these places. Moreover, for all places P 2 Supp M and all
P 00 2 Places.K2`/ lying over P , we have e.P 00 jP /D `. Similarly, for all places
P 2 Supp�K2

and all P 00 2 Places.K2`/ lying over P , we have e.P 00 jP /D 2.
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As ŒK2` W K`� D 2 − `, all places P 0 2 Places.K`/ lying over M must have
e.P 0 jP / D `. Also, for all P 0 2 Places.K`/ lying over �K2

, e.P 0 jP / � 2.
Applying the identity X

P 0 jP

e.P 0 jP /f .P 0 jP /D `

to any place P 2 Supp�K2
allows at most .`� 1/=2 places P 0 jP to be ramified.

Thus, �K`
divides E. Since both divisors have the same degree, they must be

equal. �
We note that the above proof in fact gives the complete decomposition of the

ramified places of K`=K.

3D. The number of D` function fields. We now prove the main result, Theorem
3.10, which provides the number of nonconjugate degree-` dihedral extensions K`

of K with fixed discriminant divisor �K`
D � and quadratic resolvent field K2.

We use the correspondence of Theorem 3.7 and the discriminant divisor result of
Theorem 3.9. First, we introduce some more notation.

Let M 2 Div.K/ be a squarefree effective divisor. Set N D # Supp M , and
suppose that every place Pi 2 Supp M , 1� i �N , splits in K2 as Pi DP 0iC�.P

0
i /

with P 0i ¤ �.P
0
i /. We then define a set Q`.M / of formal sums by

Q`.M / WD

(
NX

iD1

ni.P
0
i � �.P

0
i // W ni 2 .Z=`Z/

�

)
:

We can view Q`.M / as a subset of the group

Q`.M /D

NX
iD1

.Z=`Z/.P 0i � �.P
0
i //I

note that the natural map Div0 K2! Pic0 K2 reduces to a homomorphism

�WQ`.M / �! Pic0 K2=`Pic0 K2:

We set
T`.M / WD fE0 2Q`.M / W �.E0/D 0g: (6)

Theorem 3.10. Let K2 be a quadratic function field over K D Fq.x/ with discrim-
inant divisor �K2

, with q � 1 mod 2`. Let r denote the `-rank of Pic0 K2, and let
M be a divisor of K that is either zero or a sum of distinct places of K supported
away from �K2

. Let �D `�1
2
�K2
C .`� 1/M .

(1) If M D 0, then the number of nonconjugate dihedral degree-` function fields
K`=K with discriminant divisor �K`

D� and quadratic resolvent field K2

is .`r � 1/=.`� 1/.
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(2) If M ¤ 0 and some P 2 Supp M is inert in K2=K, then there are no dihe-
dral degree-` function fields K`=K with discriminant divisor �K`

D� and
quadratic resolvent field K2.

(3) Suppose M ¤ 0 and that all Pi 2 Supp M split in K2 as Pi D P 0i C �.P
0
i /

with P 0i ¤ �.P
0
i /. Then the number of nonconjugate dihedral degree-` function

fields with discriminant divisor �K`
D� and quadratic resolvent field K2 is

#T`.M /`r=.`� 1/, where T`.M / is defined by (6).

Proof. Let U`;M denote the subset of U` consisting of those classes

.˛/CPrin K2\ `Div0 K2

such that the reduced ramification divisor of ˛ is equal to M . Note that U`;M is
closed under multiplication by nonzero elements of Z=`Z.

Using the correspondence of Theorem 3.7, the conjugacy classes of dihedral
degree-` function fields with discriminant divisor �K`

D� and quadratic resolvent
field K2 are in one-to-one correspondence with the number of nontrivial cyclic
subgroups of .Pic0 K2/Œ`� � U` that can be generated by elements .A;B/ with
B 2 U`;M .

If M D 0, then U`;M consists of the identity, so BD 0 and A can be any nonzero
class in .Pic0 K2/Œ`�. There are `r�1 such pairs, and they generate .`r�1/=.`�1/

different cyclic subgroups.
If M ¤ 0, then #U`;M D #T`.M /. This is because an element ˛ of H gives

rise to an element of U`;M if and only if its divisor is of the form E0 (up to
multiples of `) for some E0 in T`.M /. Thus, there are #T`.M /`r pairs .A;B/ in
.Pic0 K2/Œ`��U` with B 2U`;M , and there are #T`.M /`r=.`�1/ cyclic subgroups
generated by such pairs. �

3E. Defining equations. In this section, we will write down explicit defining equa-
tions for D` extensions of K constructed as above.

Definition 3.11. Given an integer n > 0 and an element 
 of K, let Cn;
 be the
polynomial

Cn;
 .X /D

bn=2cX
rD0

.�
 /r
n

n� r

�
n� r

r

�
X n�2r

in KŒX �. (Note that the coefficient n
n�r

�
n�r

r

�
is in fact an integer, so the definition

makes sense in positive characteristic; see [30, Sequence A082985].)

The polynomials Cn;
 are scaled versions of the Chebyshev polynomials of the
first kind, and it follows that if u and v are elements of a field extension L of K

that satisfy uv D 
 , then

Cn;
 .uC v/D un
C vn:
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Proposition 3.12. Let ` be an odd prime, let q � 1 mod 2` be a prime power, and
let K2 be a quadratic extension of K D Fq.x/. Let ˛ be an element of K2 nK`

2

such that NK2=K .˛/D 

` for some 
 2K, and let K2` be the Kummer extension

K2.
p̀
˛/, so that K2`=K is Galois with group D`. Then the roots in K2` of the

polynomial
C`;
 .X /�TrK2=K .˛/

are generators for the index-2 subfields of K2`=K.

Proof. Let � be a root of z`�˛, let � be a generator of Gal.K2`=K2/, and let � be
an element of Gal.K2`=K/ that restricts to the nontrivial element of Gal.K2=K/.
Then �.�/ and 
=� are both roots of z`� �.˛/, so � 0.�/D 
=� for some � 0D � i� .
Thus, � C 
=� lies in the fixed field of � 0 (but does not lie in K, for otherwise �
would lie in a quadratic extension of K).

It follows that

C`;
 .� C 
=�/D �
`
C .
=�/` D ˛C �.˛/D TrK2=K .˛/;

so one of the roots of C`;
 .X / � TrK2=K .˛/ generates an index-2 subfield of
K2`=K. Since all of these index-2 subfields are conjugate to one another, the
other roots of the polynomial generate the other fields. �

4. Algorithms and data

4A. Construction algorithm. The correspondence of Theorem 3.7 can be made
explicit, and the proof of Theorem 3.10 is constructive; this leads naturally to
Algorithm 4.1 below. This algorithm takes as input a quadratic function field K2

and an effective squarefree divisor M of K, and outputs all nonconjugate degree-`
dihedral function fields with discriminant divisor `�1

2
�K2
C .`� 1/M and qua-

dratic resolvent field K2. Note that K2 may be the unique degree-2 constant field
extension of K, in which case �K2

D 0.

Algorithm 4.1 (Constructing all D` function fields with a given quadratic resolvent
and given ramification divisor).

Input: A quadratic extension K2 of K, an odd prime `, and a squarefree effective
divisor M of K with support disjoint from that of �K2

.

Output: A set L of defining equations for all the dihedral extensions K` of K

with �K`
D

`�1
2
�K2
C .`� 1/M and with QuadRes K` DK2:

1. Compute fundamental information:

(a) Compute a basis fŒB1�; : : : ; ŒBr �g of .Pic0K2/Œ`� and an element � of F�q nF
�`
q .

(b) Set N  ∅; eventually, N will contain the pairs of places of K2 lying over
the support of M .
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(c) For P 2 Supp M :

i. Ensure P D P 0
0
CP 0

1
in Div K2; upon failure, return the empty set.

ii. N  N [f.P 0
0
;P 0

1
/g.

(d) Use N to compute the set Q`.M /.

2. Compute functions in H representing elements of Q`.M / that map into U`:

(a) Set T  ∅; eventually, T will contain lifts to H of all elements of Q`.M /

(up to the action of .Z=`Z/�) that can be lifted to H .
(b) For E0 2Q`.M / up to the action of .Z=`Z/� such that �.E0/D 0:

i. Find ˇ 2K�
2

such that .ˇ/�E0 mod `.
ii. Repeat ˇ �ˇ until NK2=K .ˇ/ 2 .K

�/`.
iii. T  T [fˇg.

3. Compute virtual units in H :

(a) Set V  ∅; eventually V will contain elements of H \V` whose images
in V`=.K

�
2
/` form a basis for that group.

(b) For ŒBi � in the basis of .Pic0 K2/Œ`� computed in step 1(a):

i. Find �i 2K2 such that .�i/D `Bi .
ii. Repeat �i ��i until NK2=K .�i/ 2 .K

�/`.
iii. V  V [f�ig.

4. Create defining equations:

(a) Set L ∅.
(b) If M D 0 then for all nonzero .zi/ 2 .Z=`Z/

r up to the action of .Z=`Z/�:

i. Compute ˛ WD
Qr

iD1 �
zi

i and 
 2K with 
 ` D NK2=K .˛/:

ii. Let C.X / C`;
 .X /�TrK2=K .˛/, as in Proposition 3.12.
iii. L L[fC.X /g.

(c) If M ¤ 0 then for all ˇ 2 T and for all .zi/ 2 .Z=`Z/
#V :

i. Compute ˛ WD ˇ
Q

i2V �

zi

i and 
 2K with 
 ` D NK2=K .˛/:

ii. Let C.X / C`;
 .X /�TrK2=K .˛/, as in Proposition 3.12.
iii. L L[fC.X /g.

(d) Return L.

Algorithm 4.1 is precisely the construction in the proof of Theorem 3.10, and
thus computes all elements ˛ such that K2.

p̀
˛/ is a Galois dihedral function

field. Notice that the repeat loops in steps 2(b)(ii) and 3(b)(ii) will halt, as by
Proposition 3.4, there is a unique ˇ 2K�

2
with .ˇ/DB0��.B0/�`E0 and ˇ 2H ;

similarly for �.

Remarks 4.2. There are several ways to perform Algorithm 4.1 more efficiently.
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(1) The generators ŒB1�; : : : ; ŒBr � of .Pic0 K2/Œ`� in step 1(a) can be computed
from a set of generators ŒA1�; : : : ; ŒAh� of Pic0 K2 chosen so that the order mi

of ŒAi � is equal to the i -th invariant factor of the group Pic0 K2. Using the ŒAi �,
it is also easy to check whether an element E0 of Q`.M / is in the kernel of
the map �, and, if so, to obtain an element ˇ 2K�

2
such that .ˇ/�E0 mod `,

as is required in step 2(b)(i). We do this as follows: Suppose D0 is a lift of E0

to the degree-0 divisor group of K2. Write ŒD0�D d1ŒA1�C� � �CdhŒAh�. Then
E0 is in the kernel of � if and only if ` divides di whenever mi is divisible
by `. If this is the case, set ei D di=` when ` jmi and ei � di`

�1 mod mi

when ` −mi . Then D0�`.e1A1C� � � ehAh/ is principal, and we can compute
ˇ 2K�

2
with this divisor; this is the desired ˇ.

(2) When K2 has positive genus, it is the function field of an elliptic or hyper-
elliptic curve y2 D f .x/. One could potentially take advantage of faster
arithmetic available for the Jacobians of hyperelliptic curves, instead of the
slower generic arithmetic in Pic0 K2.

Algorithm 4.3 takes as input a pair of effective squarefree divisors D and M

of K with disjoint support and uses Algorithm 4.1 to generate all nonconjugate
degree-` dihedral function fields K` with discriminant divisor `�1

2
DC .`� 1/M .

It takes advantage of the following observation: In order for any degree-` dihe-
dral function fields K` to exist, D must be the discriminant divisor of a quadratic
function field — that is, effective, squarefree, and of even degree. Moreover, all
the places in the support of M must be split over the quadratic resolvent field of
K`, which has discriminant divisor D. If D D 0, then this field is the unique
quadratic constant field extension of K. If D is nonzero, then there are exactly
two quadratic function function fields K2 and K0

2
of discriminant divisor D; they

are in fact twists of one another. Any place P 62 Supp D splits in K2 if and only
if it is inert in K0

2
, and vice versa. Thus, if M is nonzero, only one of K2 and K0

2

needs to be considered in the construction of K`.

Algorithm 4.3 (Constructing all D` function fields from divisors).

Input: An odd prime ` and squarefree effective divisors D and M of K with
disjoint support.

Output: A set L of defining equations for all the degree-` dihedral extensions K`

of K with �K2
DD and �K`

D
`�1

2
DC .`� 1/M .

1. If deg D is even, construct a quadratic field K2 with discriminant divisor D;
otherwise, return “D IS NOT A QUADRATIC DISCRIMINANT DIVISOR”.

2. If D D 0, get L from Algorithm 4.1 with input K2; `;M , return L, and stop.

3. Construct the quadratic twist K0
2

of K2.
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4. If M D 0 then:
(a) Get L1 from Algorithm 4.1 with input K2; `;M .
(b) Get L2 from Algorithm 4.1 with input K0

2
; `;M .

(c) Return L1[L2, and stop.

5. Pick P 2 Supp M .

6. If P D P 0
0
CP 0

1
in Div K2 then set K00

2
 K2; otherwise, set K00

2
 K0

2
.

7. Get L from Algorithm 4.1 with input K00
2
; `;M , return L, and stop.

All finite places P of K correspond to irreducible polynomials fP .x/ 2 Fq Œx�.
Therefore, in step 1 we can easily construct K2 DK.y/ as follows: If D D 0, then
y is simply the square root of a nonsquare in Fq . If D ¤ 0, then K2 is the function
field of the curve

y2
D

Y
P2Supp D

P finite

fP .x/:

4B. Tabulation algorithm. Algorithm 4.1 constructs all degree-` dihedral func-
tion fields with a given discriminant divisor and quadratic resolvent field; by it-
erating this algorithm, we obtain a procedure for tabulating all degree-` dihedral
function fields whose discriminant divisor has degree at most some fixed input
bound B � 0. However, in this context, we can use the automorphism group of
K to significantly reduce the number of quadratic function fields that need to be
considered.

Recall that Aut K D Aut Fq.x/ is isomorphic to PGL.2; q/, the group of frac-
tional linear transformations of x over Fq . The group Aut K also acts on the set
of extension fields of K, and for every � 2 Aut K we have �.�Ki

/ D ��.Ki /.
Therefore, instead of applying Algorithm 4.1 to all suitable K2 and M , we only
need to consider a representative from each orbit of Aut K acting on the set of
suitable quadratic function fields K2. Moreover, for each such field K2 we need
only consider representatives of the action of the stabilizer Stab K2 � PGL.2; q/
on the set of suitable M .

These ideas are captured below in three algorithms. We start with Algorithm 4.4,
which, given an integer B, finds orbit representatives for the set of quadratic func-
tion fields whose discriminant divisors are of degree at most 2B=.`� 1/.

Recall that every quadratic function field K2 can be expressed as K.y/, where
y2 is equal to either a nonsquare in Fq or a squarefree polynomial f .x/ 2 Fq Œx�

of degree 2gC 1 or 2gC 2, where g is the genus of K2. In the former case, K2 is
fixed under PGL.2; q/. In the latter case, the action of � 2 PGL.2; q/ on K2 does
not necessarily preserve the degree of f .x/, but �.K2/ has the same genus as K2;
in fact, the discriminant divisors of K2 and �.K2/ have the same degree, namely
2gC 2.
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In the following algorithm, we will let P .q; `;B; h/ denote the set of noncon-
stant squarefree polynomials f 2 Fq Œx� whose degrees satisfy

ddeg.f /=2e � b2B=.`� 1/c

and whose leading coefficient is either 1 or a fixed nonsquare h 2 Fq .

Algorithm 4.4 (Constructing a list of PGL.2; q/-orbit representatives for quadratic
function fields of bounded discriminant).

Input: A nonnegative integer B, an odd prime `, and a prime power q � 1

mod 2`.

Output: A set R0
B

of pairs .f;S/ such that each f is a squarefree element of
Fq Œx� such that K2 WDKŒy�=.y2�f / has discriminant divisor of degree
at most 2B=.`� 1/, each S is the PGL.2; q/-stabilizer of the class of
f in K�=.K�/2, and such that every quadratic extension K2 of K with
deg�K2

� 2B=.`� 1/ has exactly one PGL.2; q/-orbit representative in
the collection of fields defined by the f .

1. Compute a primitive element h of Fq .

2. Initialize R0
B
 f.h;PGL.2; q//g.

3. Set L.f / 0 for all f 2 P .q; `;B; h/.

4. For all f 2 P .q; `;B; h/:
(a) If L.f /D 0 then

i. S  ∅.
ii. For all � D axCb

cxCd
2 PGL.2; q/:

� f1.x/ .cxC d/2d.degf /=2ef .�.x//.
� If the leading coefficient m of f1 is a square, replace f1 with f1=m;

otherwise, replace f1 with hf1=m.
� L.f1/ 1.
� If f1 D f , then S  S [f�g.

iii. R0
B
 R0

B
[f.f;S/g.

5. Return R0
B

.

Next we have Algorithm 4.5, which constructs minimal polynomials for all
dihedral function fields with discriminant divisors `�1

2
�K2
C .`� 1/M for rep-

resentatives K2 and M obtained from Algorithm 4.4.

Algorithm 4.5 (Tabulating PGL.2; q/-orbit representatives of dihedral function
fields with bounded discriminant).

Input: A nonnegative integer B, an odd prime `, a prime power q � 1 mod 2`,
and the set R0

B
computed by Algorithm 4.4 on input B; `; q.



574 COLIN WEIR, RENATE SCHEIDLER, AND EVERETT W. HOWE

Output: A set RB of triples .L2; �;S
0/ such that each � is an effective divisor of

K of degree at most B, the group S 0 is the PGL.2; q/-stabilizer of �, the
set L2 consists of equations defining D` extensions of K with discrimi-
nant divisor �, and such that every D` extension of K with discriminant
divisor of degree at most B has a unique PGL.2; q/-orbit representative
in the collection of fields defined by the elements of the L2.

1. Initialize RB ∅.

2. For .f;S/ 2R0
B

:

(a) Construct K2 DK.x/Œy�=.y2�f / and compute �K2
.

(b) Compute B0 D
�
B=.`� 1/� .deg�K2

/=2
˘

.
(c) Initialize M ∅; eventually, M will contain all effective squarefree divi-

sors of K with support disjoint from �K2
and degree at most B0.

(d) Compute lists

Lj D fP 2 Places.K/ nSupp�K2
W deg P D j g

for 1� j � B0.
(e) For i from 0 to B0 and for every partition nD Œn1; ::; nr � of i :

i. Generate the set Wn D
˚Pr

kD1 Pk W Pk 2Lnk

	
.

ii. M M[Wn.

(f) Compute the set MS of all pairs .M;S 0/ where each M 2M is a unique
orbit representative of S acting on M and S 0 is the stabilizer of M in S .

(g) For .M;S 0/ 2MS :

i. Get L2 from Algorithm 4.1 on input .K2; `;M /.
ii. Compute �D `�1

2
�K2
C .`� 1/M .

iii. RB RB [f.L2; �;S
0/g.

3. Return RB .

Finally, Algorithm 4.6 reapplies Aut K to each of the constructed minimal poly-
nomials to obtain the full list of degree-` dihedral function fields whose discrimi-
nant divisor has degree bounded by B.

Algorithm 4.6 (Tabulating the full list of dihedral function fields with bounded
discriminant).

Input: A nonnegative integer B, an odd prime `, a prime power q � 1 mod 2`,
and the set RB computed by Algorithm 4.5 on input B; `; q.

Output: A set LB of defining equations for all the dihedral extensions K` of K

with deg�K`
� B.

1. Initialize LB ∅.
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2. For .L; �;S 0/ 2RB:
(a) For all distinct representatives � of cosets in PGL.2; q/=S 0 and for all

C.X / 2L, set LB LB [f.�.C.X //; �.�//g.

3. Return LB .

4C. Numerical results. We implemented our algorithms in Magma [5]. In Table 1,
we provide data for all odd primes `, prime powers q � 1 mod 2`, and multiples
B>`�1 of `�1 such that q2B=.`�1/C1< 229. The column headed K2=� gives the
number of quadratic function fields generated by Algorithm 4.4. The number of
function fields constructed by Algorithm 4.5 is given in the column headed K`=�,
and the total number of nonconjugate dihedral degree-` function fields whose dis-
criminant divisor has degree at most B is listed in the column headed K`. The
running times of Algorithms 4.4, 4.5, and 4.6 are listed in the next three columns.
For each `, q and B, we also computed the value RD .q3�q/T5=.T4CT5CT6/,
where Ti denotes the running time of Algorithm 4:i for i D 4; 5; 6. The quantity
R estimates the improvement factor obtained by our tabulation method relative to
simply iterating Algorithm 4.1 over all possible quadratic function fields without
using the PGL.2; q/ action.

Notice that the improvement factor R is highly varied. For fixed ` and B, R

tends to decrease as q increases although the improvement still remains significant.
Why this decrease occurs is unclear; it may be due to the fact that R is not a
sufficiently refined estimate for the actual running time improvement. Overall, the
running time of Algorithm 4.1 is dominated by the construction of the set Q`.M /

and obtaining functions for the principal divisors in steps 2(b)(i) and 3(b)(i). Data
suggests that as B grows, finding the generators of these principal divisors will
tend to dominate the running time. Using Jacobian arithmetic as opposed to divisor
arithmetic as suggested in part (2) of Remarks 4.2 improved the performance of
our tabulation only very marginally, even for larger parameters.

The entries of columns 4 and 5 of Table 1 differ by a factor that is very close
to ` � 1; in other words, for the data we collected, it looks like the number of
quadratic extensions of K with discriminant degree at most 2B=.`� 1/ is about
`� 1 times as large as the number of D` extensions of K with discriminant degree
at most B. When B D 2.`� 1/ this is explained by the results of the following
section, but we do not know whether it is true in general.

5. A formula for the case B D 2.`� 1/

In this section we give an explicit formula for the number of D` extensions whose
discriminant divisor has degree 2.`� 1/.

First we note that there are no D` extensions with discriminant of degree smaller
than 2.`� 1/. To see this, suppose K` is a D` extension of K with Galois closure
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Running time (seconds)

` q B K2=� K`=� K` Alg. 4.4 Alg. 4.5 Alg. 4.6 R

3 7 4 33 17 2,373 0.9 1.1 0.8 132.0
6 782 472 117,285 25.8 35.2 47.1 109.4
8 35,010 18,149 5,763,093 1,321.5 2,416.9 2,505.1 130.1

13 4 61 33 28,470 13.7 3.2 9.5 264.7
6 4,650 2,564 4,824,534 1,379.5 286.1 1,870.2 176.7

19 4 81 41 130,131 82.8 7.6 44.5 385.4
25 4 109 57 390,300 726.8 17.6 149.1 307.3
31 4 129 65 923,025 821.0 31.7 357.2 779.7
37 4 157 81 1,873,458 1,983.1 56.5 731.7 1,031.9
43 4 177 89 3,417,855 4,040.5 100.2 1,341.9 1,452.3
49 4 205 105 5,763,576 20,544.4 189.6 2,376.5 964.8

5 11 8 45 9 6,655 6.1 1.4 2.7 181.2
12 2,858 949 1,058,695 461.5 102.9 463.5 132.1

31 8 109 33 446,865 821.0 29.2 191.0 834.6
41 8 169 45 1,378,420 3,178.2 80.5 602.0 1,436.2

7 29 12 121 19 219,646 546.8 22.6 94.8 828.9
43 12 177 29 1,086,911 4,000.5 95.2 567.8 1,622.2

11 23 20 93 8 48,829 192.7 10.1 23.8 541.3
13 53 24 217 21 1,340,794 10,935.6 235.8 742.8 2,945.5
23 47 44 189 11 519,961 5,951.6 184.2 364.9 2,940.5

Table 1. Function field counts for all ` and q � 1 mod 2` with q
2B

`�1
C1 < 229,

for B � 2.`� 1/. For each `, q, and B given in the first three columns, we list in
column 4 the number of PGL.2; q/-equivalence classes of quadratic extension of
KD Fq.x/ whose discriminants have degree at most 2B=.`�1/. In column 5, we
list the number of PGL.2; q/-equivalence classes of D` extensions of K whose
discriminants have degree at most B, and in column 6 we list the total number
of such extensions. In the next three columns we give the running times of the
algorithms that computed these quantities, and in the final column we give an
estimate of the improvement in running time obtained by using the PGL.2; q/
action in our computations. (Computations were carried out on one core of a
2GHz Intel Xeon X7550, with 64GB of available RAM.)

K2` and quadratic resolvent K2. Theorem 3.9 gives �K`
D

`�1
2
�K2
C .`� 1/M ,

where M is as in Section 3C. Quadratic extensions have discriminants of even
degree, so deg�K`

is divisible by ` � 1. If deg�K`
were zero, K`=K would

be a constant field extension, and would not have Galois group D`. If deg�K`

were `� 1, then either K2 would have genus 0 and deg M D 0, or K2=K would
be a constant field extension and deg M D 1. In the first case, K2`=K2 would be
unramified and hence a constant field extension, so K`=K would also be a constant
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field extension, a contradiction. In the second case, M would be a single place of
degree 1; since every place in M must split in K2, and since the places of K

that split in a quadratic constant field extension are the places of even degree, we
again have a contradiction. On the other hand, there do exist D` extensions with
discriminant divisor of degree 2.`� 1/, as the following theorem shows.

Theorem 5.1. Let ` be an odd prime and let q be a prime power with q� 1 mod 2`.
For every nonnegative even integer d , let Nd be the number of D` extensions of K

whose discriminant divisors have degree 2.`� 1/ and whose quadratic resolvents
have discriminant divisors of degree d . Let X be the modular curve X1.`/. Then

Nd

q3� q
D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

1

2qC 2
if d D 0,

1 if d D 2,

�2C
2#X.Fq/

`� 1
if d D 4,

0 otherwise:

Remark 5.2. For ` D 3, 5, and 7, the modular curve X1.`/ has genus 0, so for
these values of ` the formula for N4 simplifies to

N4

q3� q
D

2.q� `C 2/

`� 1
:

Equations for X1.`/ for larger values of ` are known. For example, Sutherland [33]
gives equations for all ` � 47; as of this writing, Sutherland’s online tables [34]
extend the results of [33] up to `D 181.

Proof of Theorem 5.1. Theorem 3.9 shows that if K` is a D` extension of K with
quadratic resolvent K2, and if deg�K`

D 2.`� 1/, then deg�K2
is 0, 2, or 4.

Let us count the number of D` extensions K` such that deg�K2
D 0; that is,

such that K2 is the unique quadratic extension of K obtained by extending the
constant field from Fq to Fq2 . In this case, we must have deg M D 2. We know
that every place in M splits in K2, and since the places of K that split in K2 are
precisely the places of even degree, M must consist of a single degree-2 place P .

If ˛ 2K2 gives rise to a D` extension of K, its divisor is of the shape given in
Proposition 3.3, where exactly one of the D0i with i > 0 is nonzero (and consists of
a place of K2 lying over P ). Replacing ˛ by a power if necessary, we may assume
that D0

1
and D0

�1
are the only nonzero D0i , and we can choose which of the two

places above P appears in D0
1

and which in D0
�1

. Since K2 has genus 0, we can
modify ˛ by an `-th power so that the divisor E0 from the proposition is 0. If we
let x be a generator of K, so that K2 Š Fq2.x/, then ˛ D b.x � c/=.x � cq/ for
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some b 2 Fq2 and c 2 Fq2 n Fq , and we see that NK2=K .˛/ D bqC1. Since this
norm is supposed to be an `-th power, b itself must be an `-th power, so we may
replace ˛ by ˛=b. We find that for every degree-2 place P of K, we obtain exactly
one D` extension of K2, so N0 D .q

2� q/=2: This leads to the formula for N0 in
the statement of the theorem.

Now let us count the number of D` extensions K` such that deg�K2
D 2; that

is, such that K2 is a genus-0 extension K2 with constant field Fq . Such extensions
are obtained by adjoining to K a square root of a polynomial f that is either
linear or quadratic with nonzero discriminant; the polynomial is determined by the
extension, if we require that its leading coefficient be either 1 or a fixed nonsquare
element of Fq . These extensions are of two different types: The ramification points
of the cover can either be rational over Fq , or not. There are q2C q extensions of
the first type, and q2� q of the second.

Since deg�K2
D 2, we must have deg M D 1, so M consists of a degree-1

place of K that splits in K2. The number of such places is equal to half of the
number of degree-1 places of K2 that are not ramified in K2=K; this is equal to
.q� 1/=2 for extensions with rational ramification, and .qC 1/=2 for extensions
without rational ramification.

As in the case where K2 was a constant field extension, the Kummer extension
K2`=K2 is completely determined by the divisor M . Thus, the number of K`

whose quadratic resolvents are genus-0 extensions of K with rational ramification
is equal to

.q2
C q/ �

q� 1

2
D

q3� q

2
;

while the number whose quadratic resolvents are genus-0 extensions of K without
rational ramification is equal to

.q2
� q/ �

qC 1

2
D

q3� q

2
:

We thus see that N2 D q3� q:

Finally, we count the number of D` extensions K` such that �K2
D 4; that is,

such that K2 is a genus-1 extension of K. In this case, the degree of M is 0, so
that K2` is an unramified degree-` Galois extension of K2.

Let E be an elliptic curve over Fq and let K2 be its function field. Let Aut E (re-
spectively, Aut0E) denote the automorphism group of E in the category of elliptic
curves (respectively, in the category of curves). Then

Aut0E ŠE.Fq/ÌAut E;

where the subgroup E.Fq/ acts on E by translation [29, Proposition X.5.1].



CONSTRUCTING AND TABULATING DIHEDRAL FUNCTION FIELDS 579

Up to twists, the unramified degree-` Galois extensions of K2 (with constant
field Fq) are in bijection with the index-` subgroups of E.Fq/ (see [28, §VI.6]);
by duality, the number of such families of twists is equal to the number of order-`
subgroups of E.Fq/, which is equal to

#EŒ`�.Fq/� 1

`� 1
:

Exactly one twist z` D f in each family has the property that NK2=K .f / 2 .K
�/`:

Thus,

N4 D

X
E=Fq

#EŒ`�.Fq/� 1

`� 1
� #fdegree-2 maps E! P1 up to isomorphismgI (7)

here we say that two degree-2 maps �1; �2WE! P1 are isomorphic if there is an
˛ 2 Aut0E such that �2 D �1˛.

Given an E=Fq , we will count the number of isomorphism classes of degree-
2 maps E ! P1 in two steps. First, we count the number of .Aut0E/-orbits of
index-2 genus-0 subfields of the function field K2 of E. Then, for each orbit, we
fix an orbit representative L and we count the number of isomorphism classes of
degree-2 maps E! P1 that send the function field K of P1 to L.

Every index-2 genus-0 subfield of K2 is the fixed field of an involution in Aut0E
that induces �1 on the Jacobian of E. The involutions that induce �1 on the
Jacobian are the maps iQ, for Q 2E.Fq/, defined by iQ.P /DQ�P . The fixed
fields of two such involutions iQ1

and iQ2
lie in the same .Aut0E/-orbit if and

only if iQ1
and iQ2

are conjugate in Aut0E; this translates into the condition that
Q2�˛.Q1/ 2 2E.Fq/ for some ˛ 2 Aut E. Thus, the .Aut0E/-orbits of index-2
genus-0 subfields L are in bijection with the orbits of E.Fq/=2E.Fq/ under the
action of Aut E.

Let L be an index-2 genus-0 subfield of K2, corresponding to an involution
iQ. Let SL denote the set of isomorphism classes of degree-2 maps E ! P1

that send the function field K of P1 to the subfield L of K2, and let � be one
such map. The group PGL.2; q/ acts transitively on SL, so to compute #SL it
suffices to compute the stabilizer of � . Tracing through the definitions, we see
that � 2 PGL.2; q/ stabilizes � if and only if there is an automorphism ˛ of E

(as a curve) such that �� D �˛. Furthermore, every automorphism ˛ of E whose
induced automorphism of K2 sends L to itself gives rise to a � that stabilizes the
isomorphism class of � ; also, two such automorphisms ˛1 ¤ ˛2 will give rise to
distinct �, unless ˛�1

1
˛2 D iQ. We find that we have

#f� 2 PGL.2; q/ W � stabilizes �g D .1=2/#f˛ 2 Aut0E W ˛ stabilizes Lg

D .1=2/#f˛ 2 Aut0E W ˛ commutes with iQg:
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We check that an element .P; a/ 2 E.Fq/ ÌAut E Š Aut0E commutes with iQ
if and only if 2P DQ� a.Q/. This shows that for every element of Aut E that
fixes the image of Q in E.Fq/=2E.Fq/, there are #E.Fq/Œ2� choices for P that
give an element of Aut E0 that commutes with iQ. In other words, if we let O be
the .Aut E/-orbit of Q in E.Fq/=2E.Fq/, then

#f˛ 2 Aut0E W ˛ commutes with iQg D #E.Fq/Œ2�
# Aut E

#O
:

Putting this all together, we obtain

#SL

# PGL.2; q/
D

1

#f� 2 PGL.2; q/ W � stabilizes �g

D
2

#f˛ 2 Aut0E W ˛ commutes with iQg

D
2

# Aut E

#O

#E.Fq/Œ2�
:

The total number of degree-2 maps E! P1 (up to isomorphism) is equal to the
sum

P
L SL, where L ranges over a set of representatives for the .Aut E0/-orbits of

index-2 genus-0 subfields of K2. Summing over these L is the same as summing
over the .Aut E/-orbits O of E.Fq/=2E.Fq/. Thus,

#fdegree-2 maps E! P1g=Š

# PGL.2; q/
D

2

# Aut E

1

#E.Fq/Œ2�

X
orbits O

#O

D
2

# Aut E

1

#E.Fq/Œ2�
#.E.Fq/=2E.Fq//

D
2

# Aut E
:

Combining this with (7) gives

N4

# PGL.2; q/
D

X
E=Fq

#EŒ`�.Fq/� 1

`� 1

2

# Aut E

D
2

`� 1

X
E=Fq

X
P2EŒ`�.Fq/nfOg

1

# Aut E

D
2

`� 1

X
.E;P/=Š

1

# Aut.E;P /
: (8)

Let us explain the notation in the final line. The sum is over isomorphism classes of
pairs .E;P /, where E is an elliptic curve over Fq and P is a nonzero `-torsion point
in E.Fq/; two such pairs .E1;P1/ and .E2;P2/ are isomorphic to one another
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when there is an isomorphism E1!E2 that takes P1 to P2. The automorphism
group of a pair .E;P / consists of the automorphisms of E (as an elliptic curve)
that fix P .

From [17, Proposition 3.3 on p. 240 and Proposition 2.3 on p. 233], we find thatX
.E;P/=Š

1

# Aut.E;P /
D #X.Fq/� c;

where X is the modular curve X1.`/ and c is the number of Fq-rational cusps on X .
Since Fq contains the `-th roots of unity, all of the `� 1 geometric cusps of X are
defined over Fq [31, Theorem 1.3.1, p. 12], so we have c D `� 1. Combining this
with (8) gives the formula for N4 stated in the theorem. �

6. Conclusions and future work

It is interesting that the number of degree-` dihedral function fields with a given
quadratic resolvent K2 and discriminant divisor � D `�1

2
�K2

C .` � 1/M be-
haves quite differently depending on whether or not M is trivial. We see from
Theorem 3.10 that when M D 0, the number of such fields with a given resolvent
field K2 depends exclusively on the `-rank r of Pic0 K2. The probability that the
divisor class group of K2 has a certain `-Sylow subgroup is the focus of various
heuristics of Cohen-Lenstra type. These are discussed further in [1], [14], [15],
and [21], and directly relate to the number of D` function fields with M D 0.

When M ¤ 0, the number of degree-` dihedral function fields with given qua-
dratic resolvent field K2 depends additionally on the cardinality of the set T`.M /

defined in Section 3D. The natural map Div0 K2!Pic0 K2=`Pic0 K2 is surjective,
and when # Supp M is greater than r it is reasonable to expect that the map � from
Section 3D is also surjective, so that a random element of Q`.M / will lie in the
kernel of � with probability

1

#.Pic0 K2=`Pic0 K2/
D

1

`r
:

Now, an element of Q`.M / lies in T`.M / if and only if it is in the kernel of �,
so we expect T`.M / to contain about #Q`.M /=`r D .`� 1/# Supp M=`r elements.
From Theorem 3.10, the number of nonconjugate degree-` dihedral function fields
with quadratic resolvent K2 and with discriminant divisor �D `�1

2
DC .`� 1/M

is #T`.M /`r=.`�1/, which we expect to be approximately .`�1/# Supp M�1. Note
that this is independent of r . When # Supp M is sufficiently large, our data seems
to support this heuristic.

In the case when `D 3, our algorithm tabulates all non-Galois cubic function
fields up to a given degree bound on the discriminant divisor. Galois cubics are
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Number of cubic extensions

q B Non-Galois Galois Total qB�2.q2C qC 1/ Ratio

7 4 2,373 85 2,458 2,793 1.136
6 117,285 1,093 118,378 136,857 1.156
8 5,763,093 4,117 5,767,210 6,705,993 1.163

13 4 28,470 274 28,744 30,927 1.076
6 4,824,534 6,826 4,831,360 5,226,663 1.082

19 4 130,131 571 130,702 137,541 1.052

25 4 390,300 976 391,276 406,875 1.040

31 4 923,025 1,489 924,514 954,273 1.032

37 4 1,873,458 2,110 1,875,568 1,926,183 1.027

43 4 3,417,855 2,839 3,420,694 3,500,157 1.023

49 4 5,763,576 3,676 5,767,252 5,884,851 1.020

Table 2. Cubic function field counts compared to asymptotics, for q � 1 mod 3

and B � 4 with qBC1 < 229. For the q and B given in the first two columns, we
list the number of cubic extensions of Fq.x/ with discriminant divisor of degree
at most B, subdivided into the counts of non-Galois and Galois extensions. The
sixth column gives an estimate for the total number derived from the asymptotic
formula (9), and the seventh column gives the ratio between the estimate and the
actual number from column 5.

easy to count, so we can find the total number of cubic extensions of K whose
discriminant divisors have degree at most some fixed bound. On the other hand,
using a result of Datskovsky and Wright [10, Theorem I.1] we can compute an
asymptotic formula for the number of cubic extensions:

lim
B!1
B even

q�B
X

K3=K
deg�K3

�B

1D
q3

.q2� 1/.q� 1/�K .3/
D

q2C qC 1

q2
: (9)

(Note that the term 2 log q in [10, Theorem I.1] should be simply log q.) In Table 2
we compare this asymptotic expression to actual computations. For each q and
B listed in the first two columns, the entry in column 5 gives the total number of
cubic extensions of Fq.x/ with discriminant divisor of degree at most B, broken
down into the number of non-Galois extensions (column 3) and Galois extensions
(column 4). Column 6 gives the estimate from (9), and column 7 gives the ratio of
the estimate to the actual values.

Note that for BD 4 we have explicit formulas for the number of cubic extensions:
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By Theorem 5.1, the number of non-Galois extensions is

.q3
� q/

�
1

2qC 2
C 1C .q� 1/

�
D q4

�
q2C q

2
;

and it is not hard to show that the number of Galois extensions is .3q2C3qC2/=2;

so the total number of cubic extension is q4Cq2CqC1. It follows that for B D 4

the ratio in column 7 is equal to

1C
q3� q� 1

q4C q2C qC 1
:

As in the number field setting, the leading term of the asymptotic expression
overestimates the actual number of cubic function fields, which leads us to believe
that the secondary term has a negative coefficient. An explicit computation of this
secondary term is currently underway by Yongqiang Zhao (private communication,
2012).

One obstacle to generating larger amounts of data is the memory intensive nature
of Algorithm 4.4 as written. One could obtain most of the results by instead looking
for orbit representatives of PGL.2; q/ acting on elliptic and hyperelliptic curves of
genus g by iterating over these curves and computing their invariants. One would
then only need to store a representative for each set of invariants. This would
largely remove the storage requirements of the algorithm; however, it would also
be a slower process as additional time must be spent computing these invariants.

For primes ` > 3, no asymptotic estimates on counts of degree-` function fields
are known; it may be possible to obtain such estimates by generalizing the work
of [9] or adapting the program of [37] to the case q � 1 mod ` by using results
in [13], [15], and [21]. It would be very interesting to see if the “gaps” for the
number field setting referred to in Section 1 occur here as well. This is research in
progress by the first two authors and several others.

We close by noting that our work is readily extendable to the problem of finding
D` extensions of function fields K other than Fq.x/. This should be reasonably
straightforward if one restricts to cases where .Pic0 K/Œ`� is trivial. Work is also
in progress to extend our algorithms to the cases when q 6� 1 mod `. As in [8],
one can construct cyclic function fields by adjoining the `-th roots of unity to K,
applying Kummer theory to the extension field, and finally taking a fixed field by
the Frobenius automorphism of Fq`�1=Fq . We expect that one can combine this
technique with the work above to construct D` function fields with q 6� 1 mod `.
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