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of rank two Drinfeld modules over finite fields
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Abstract. We present algorithms for computing j-invariants, modular poly-
nomials and explicit isogenies for ordinary rank 2 Drinfeld modules over finite
fields and describe how Drinfeld modular polynomials can be used to compute
isogeny graphs and endomorphism rings of ordinary rank 2 Drinfeld modules.
Our technique for computing Drinfeld modular polynomials is based on the tra-
ditional analytic approach for obtaining classical modular polynomials. Our
ideas for generating isogeny graphs and finding endomorphism rings for rank
2 Drinfeld modules closely follows the work of Kohel and Fouquet. All our
algorithms were implemented in SAGE and numerical examples are included.

1. Introduction and motivation

Drinfeld modules represent the function field analogue of the theory of com-
plex multiplication for number fields. They were introduced as “elliptic modules”
by Drinfeld [13] in the 1970s in the course of proving the Langlands conjectures
for the general linear group GL(2) over global function fields. Drinfeld modules of
rank 2 in particular exhibit surprisingly similar behaviour to elliptic curves: they
are classified as ordinary or supersingular, support isogenies and their duals, and
their endomorphism rings have an analogous structure. Their isomorphism classes
are parameterized by j-invariants which are the roots of the corresponding Drinfeld
modular polynomial, and the ordinary components of their isogeny graphs take the
shape of a volcano. The rich analytic and algebraic theory of Drinfeld modules
has undergone extensive investigation; see, for example, Gekeler [20–24,26], Goss
[27–29] and Hayes [33] for a by-no-means complete list of references. However, as
far as the authors are aware, little if anything about Drinfeld modules has been
explored from a computational perspective. Along with [39,40], this paper repre-
sents a first systematic foray in this direction, in the hope that complementing the
theoretical exploration of Drinfeld modules with algorithms and concrete numeri-
cal data will lead to a better understanding of these objects and their behaviour.
Motivated by significant advances over the past two decades on computing modular
polynomials and endomorphism rings of elliptic curves, we explore the analogous
algorithmic aspects of rank 2 Drinfeld modules over finite fields.
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Similar to the setting of elliptic curves, the �-th Drinfeld modular polynomial
parameterizes pairs of �-isogenous Drinfeld modules in terms of their j-invariants.
There is a sizable body of literature on computing j-functions and modular polyno-
mials for elliptic curves — see [9,14,15] to cite just a few sources — and Sutherland
has computed an extensive database of them [45]. However, except for a few spo-
radic small examples [3,43], no analogous computations have been performed for
Drinfeld modules. Our main contribution is a pair of explicit algorithms for comput-
ing rank 2 Drinfeld module j-invariants and Drinfeld modular polynomials, based
on their description in [3] combined with the traditional analytic approach for com-
puting classical j-invariants and modular polynomials. The first of these algorithms
computes the Laurent series expansion of the j-function up to arbitrary precision.
This expansion is then employed to compute the Drinfeld modular polynomial.
Not surprisingly, as in the classical case, the main challenge here is rapid coefficient
growth. However, the precise growth rate appears to be different from the classical
setting, representing one instance where Drinfeld modules exhibit subtle and rather
mysterious differences in behaviour compared to their elliptic curve counterparts.
We also present a technique for computing explicit isogenies of Drinfeld modules.
It is based on symbolic computation and is entirely different from elliptic curve
techniques such as Vélu’s formulas [48] for which we know of no Drinfeld module
analogue. Another symbolic approach described herein efficiently computes dual
isogenies of Drinfeld modules.

Isogeny graphs are closely related to modular polynomials and play a prominent
role in computing the endomorphism ring of an elliptic curve [4,36] and in point
counting [16,17]. Algorithms involving isogeny graphs associated to elliptic curves
can be found in [6,16,17,36,38,47] and other sources, but the concept is entirely
new in the Drinfeld module setting. We describe isogeny graphs of rank 2 Drinfeld
modules which turn out to be structurally virtually identical to their elliptic curve
counterparts; in particular, their ordinary components are volcanoes whose shape
is determined by a result analogous to Kohel’s Theorem [36, Prop. 23]. Follow-
ing the methods of [16,36], we describe how isogeny volcanos and endomorphism
rings of ordinary rank 2 Drinfeld modules can be computed from Drinfeld modular
polynomials.

All our algorithms are accompanied by a comprehensive analysis of their as-
ymptotic run time and storage requirements. We also provide an exact precision
analysis of our method for computing j-invariants and determine the precise accu-
racy required to compute modular polynomials. We implemented our algorithms
in SAGE [44] and provide numerical examples here; in the interest of space, these
examples are much smaller than what our algorithms can generally handle and are
included predominantly for illustrative purposes. Our source code is available on
GitHub at [7]. Any underlying theoretical results on Drinfeld modules that were
required in our algorithmic exploration and have not appeared in previous litera-
ture were carefully and rigorously adapted from the classical to the Drinfeld module
setting; detailed descriptions and proofs can be found in the first author’s doctoral
dissertation [8].

Although our algorithms borrow extensively from methodology for elliptic
curves, their basic computational building blocks and complexity analysis tools
are quite different from the classical setting. Our computations involve non-prime
finite fields and polynomials over finite fields, so all our estimates are governed by
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a non-archimedean discrete valuation, rather than the standard archimedean ab-
solute value. On a more mundane level, there is only one positive integer of any
given absolute value, whereas for any n ∈ N, there are qn monic polynomials in
Fq[T ] of absolute value qn. Most importantly, there are subtle theoretical differ-
ences between elliptic curves and Drinfeld modules, such as unexpected parameter
dependencies. For example, the Frobenius norm for an elliptic curve over Fp is p,
regardless of the curve, whilst in the rank 2 Drinfeld module case, this quantity
depends on the leading coefficient of the Drinfeld module. Arguably the most sig-
nificant difference is the fact that the coefficients of the Drinfeld j-function and the
Drinfeld modular polynomial depend on the size of the base field and seem to grow
notably faster than their classical counterparts, which has significant ramifications
for complexity estimates.

2. Background on Drinfeld modules

We only consider the simplest setting of rank 2 Drinfeld modules over finite
fields; the reader is referred to [30, Ch. 4] for a comprehensive treatment of Drinfeld
modules of arbitrary rank over more general fields. Throughout, we adopt the
following notation that is widely used in the literature on Drinfeld modules:

— Fq is a finite field of order q;
— A = Fq[T ] is the polynomial ring in the indeterminate T over Fq;
— A+ ⊂ A is the set of monic polynomials in A;
— |a| = qdegT (a) for any non-zero a ∈ A;
— P is a fixed monic irreducible polynomial in A of degree d;
— L = A/PA ∼= Fqd ;

— τ is the q-th power Frobenius map on some fixed algebraic closure L of L,
defined via τ (α) = αq for all α ∈ L;

— L{τ} is the ring of twisted polynomials in τ over L with the commutation
rule τα = αqτ for α ∈ L.

A Drinfeld module over L is an Fq-algebra homomorphism

ϕ : A → L{τ} , a �→ ϕa ,

satisfying the following two conditions:

(1) For all a ∈ A, the constant term of ϕa is the image of a (also denoted a
for simplicity) under the natural map from A into L;

(2) ϕa �∈ L for some a ∈ A, i.e. ϕ(A) �⊂ L.

As is standard in the literature, the image ϕ(a) of any a ∈ A is denoted ϕa.
The Fq-algebra homomorphic property implies that ϕ is uniquely defined by the
image ϕT of T . The rank of ϕ is the degree of ϕT as a polynomial in τ . In our
computations, we will focus exclusively on Drinfeld modules of rank r = 2.

Since the constant coefficient of any image ϕa is a, we see that Drinfeld modules
are injective maps. The term module in this context arises from the action of A
on L defined via aα = ϕa(α) for a ∈ A and α ∈ L. This imposes an A-module
structure on L different from the normal one.

In the most general context, Drinfeld modules are defined over any extension L
of Fq with a fixed Fq-algebra homomorphism from A into L called a structure map.
Here, we only consider the simplest case L = A/PA, where the structure map is
reduction modulo P . In our discussion of the analytic theory later on, we will also
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require Drinfeld modules over an algebraically closed, complete extension field C
of Fq(T ), where the structure map is inclusion.

For any rank r Drinfeld module ϕ over L and any non-zero a ∈ A, the roots of
the polynomial ϕa ∈ L{τ} in some fixed algebraic closure L of L form the a-torsion
points of ϕ, denoted

ϕ[a] = kerϕa = {λ ∈ L | ϕa(λ) = 0} .

They form a free A/aA-module of rank r when P does not divide a and rank less
than r otherwise.

Let ϕ, ψ be Drinfeld modules over L. A morphism (over L) from ϕ to ψ,
denoted u : ϕ −→ ψ, is a polynomial u(τ ) ∈ L{τ} such that

uϕa = ψau

for all a ∈ A. Since ϕ and ψ are Fq-algebra homomorphisms, u is a morphism if and
only if uϕT = ψTu. It is important to note that, throughout this paper, morphisms
will be defined over L unless specifically stated otherwise; the generalization to
morphisms over L is straightforward. An endomorphism is a morphism from a
Drinfeld module to itself. An invertible morphism is an isomorphism; it is simply
a non-zero element of L. Isomorphism imposes an equivalence relation on the set
of Drinfeld modules over L of fixed rank.

A non-zero morphism of Drinfeld modules is an isogeny. It is easy to see that
isogenies preserve the rank of a Drinfeld module. Every isogeny u : ϕ −→ ψ has a
unique dual isogeny û : ψ −→ ϕ such that

(2.1) ûu = ϕn , uû = ψn

for some non-zero n ∈ A that is unique up to multiples in F∗
q . Consequently, isogeny

is an equivalence relation on the set of Drinfeld modules over L of a fixed rank, with
every isogeny class partitioned into isomorphism classes. Two Drinfeld modules are
isogenous if there exists an isogeny from one to the other.

For the remainder of this section, we restrict to Drinfeld modules of rank 2,
which we write in the form

(2.2) ϕ = (g,Δ) where ϕT = T + gτ +Δτ2 ,

with g ∈ L and Δ ∈ L∗. The j-invariant of ϕ is the quantity

j = j(ϕ) =
gq+1

Δ
∈ L .

Every j ∈ L occurs as the j-invariant of some rank 2 Drinfeld module ϕ; for example,
ϕ = (0,Δ) when j = 0 and ϕ = (1, j−1) otherwise. Two rank 2 Drinfeld modules
over L are isomorphic over L if and only if they have the same j-invariant. Thus,
the elements of L are in one-to-one correspondence with the L-isomorphism classes
of rank 2 Drinfeld modules over L. Note that in contrast to the j-invariant of an
elliptic curve y2 = x3+Ax+B of discriminant Δ, defined to be j = −1728(4A)3/Δ,
the exponent q + 1 of g in the numerator of a rank 2 Drinfeld module j-invariant
depends on the size of the base field. We will see that this dependence on q recurs
as a fundamental distinction between rank 2 Drinfeld modules and elliptic curves
throughout both theory and computation.

A rank 2 Drinfeld module ϕ is said to be supersingular if its P -torsion ϕ[P ]
is trivial and ordinary otherwise; in the latter case, ϕ[P ] is isomorphic to A/PA
as an A-module. The Hasse invariant H(ϕ) ∈ A of ϕ is the coefficient of τd in
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the polynomial ϕP (mod P ). It vanishes if and only if ϕ is supersingular. Drinfeld
modules ϕ with j(ϕ) = 0 are ordinary if and only if P has even degree ([20,
Thm. 5.9]).

Let u : ϕ → ψ be an isogeny of rank 2 Drinfeld modules, with dual isogeny û
as given in (2.1). Then ϕn and ψn are analogues of the multiplication-by-n maps
for elliptic curves. The polynomial n ∈ A is the (isogeny) degree of u (and of û),
and satisfies degτ (u) = degτ (û) = degT (n). The isomorphisms from ϕ to ψ are
precisely the isogenies of constant degree n ∈ F∗

q , i.e. the elements of L∗. For any
n ∈ A, two rank 2 Drinfeld modules ϕ, ψ over L are n-isogenous if there exists an
n-isogeny between them, i.e. an isogeny u : ϕ → ψ of degree n ∈ A.

As a concrete family of examples, we provide an explicit characterization and
construction for isogenies of a given linear degree n on rank 2 Drinfeld modules.
The special case n = T was handled previously by Schweizer [43].

Proposition 2.1. Let n ∈ A be linear and monic, and let g ∈ L and Δ, α ∈ L∗.
Then u = τ − α ∈ L{τ} is an n-isogeny on the rank 2 Drinfeld module ϕ = (g,Δ)
over L if and only if Δαq+1 + gα + n = 0. In this case, u maps ϕ to the Drinfeld

module ψ = (g′,Δ′) over L, with g′ = gq − αΔ+ αq2Δq and Δ′ = Δq. Moreover,
the dual isogeny of u is û = Δτ + g +Δαq.

Proof. Suppose first that u = τ − α is an n-isogeny on the rank 2 Drinfeld
module ϕ = (g,Δ). Then the dual isogeny of u is of the form û = Δτ + β for some
β ∈ L. Comparing coefficients in the identity ϕn = ûu yields β = g+Δαq = −n/α,
so Δαq+1 + gα+ n = 0 as asserted.

Conversely, suppose Δαq+1 + gα + n = 0. Put u = τ − α, ϕ = (g,Δ) and

ψ = (g′,Δ′) where g′ = gq − αΔ + αq2Δq and Δ′ = Δq ∈ L∗. Then ϕ, ψ are
Drinfeld modules over L and u ∈ L{τ}. It is easy to verify that uϕn = ψnu, so u is
an n-isogeny on ϕ whose dual is again readily seen to be û = Δτ + g +Δαq. �

Example 2.2. We provide three small numerical examples that illustrate Prop-
osition 2.1. Let q = 3, P (T ) = T 5 + 2T + 1 and L = A/PA.

(1) The T -isogeny u = τ −α with α = T 3+2T +2 sends the Drinfeld module
ϕ = (T 2, T 3) over L to the Drinfeld module ψ = (2T 4 + T 2, 2T 4 + T + 2)
over L. Its dual is û = T 3τ + T 4 + T 2 + T . Here, T 3α4 + T 2α+ T = 0.

(2) The (T + 1)-isogeny u = τ − α with α = T 2 + 2 maps ϕ = (T 2, T 2 + 2T )
to ψ = (2T 4 +2T +2, 2T 3 + T 2 +2T ). Its dual is û = (T 2 +2T )τ + T 4 +
T 3 + T 2 + T , and we have (T 2 + 2T )α4 + T 2α+ T + 1 = 0.

(3) The polynomial u = τ − α with α = T 3 + T is a (T + 2)-isogeny from
ϕ = (T 3, T 4 + 1) to ψ = (2T 4 + 1, T 4 + T 3 + T 2 + 1) with dual û =
(T 4+1)τ +T 3+2T 2+2T +1, and we have (T 4+1)α4+T 3α+T +2 = 0.

We revisit such explicit symbolic isogeny computation in Section 8. Another
method of constructing isogenies of Drinfeld modules over finite fields is given in
[49, Sec. 2] using kernel lattices.

Just like elliptic curves, Drinfeld modules have a comprehensive analytic theory.
Here, the analogue of the complex numbers is the algebraically closed complete
field C = (K∞)∞, obtained by taking the completion of K = Fq(T ) at the infinite
place, then taking the algebraic closure of the resulting complete field, and finally
taking the completion at the infinite place again. The theory of Drinfeld modules
over C is described, for instance, in [30], [32, Ch. 4] or [42, Ch. 13]. A detailed
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discussion of the coefficients g and Δ of a rank 2 Drinfeld module over C can be
found in [22,23,25] and [27].

The coefficients g and Δ of a rank 2 Drinfeld module ϕ = (g,Δ) over C are
Drinfeld modular forms of respective weights q−1 and q2−1 (see, for example, [23]),
hence the j-invariant j = gq+1/Δ of ϕ is a modular function. As such, all these
quantities have Laurent series expansions, the Drinfeld module analogue of Fourier
expansions. A detailed derivation of these expansions was given in [8, Section 5.4].
Here, the canonical uniformizer corresponding to the classical quantity exp(2πiz)
is the function

t = t(z) =
1

πz

∏
a∈A\{0}

(
1− z

a

)−1

,

where π̄ serves as a normalizing factor analogous to the complex number 2πi in the
classical case; see [30, Ch. 3] for a detailed computation of π. For brevity, put

(2.3) ta = t(az) (a ∈ A \ {0}) .
By [23] (see [3, Theorem 1.2] for the explicit expressions given here), the normalized
coefficients ḡ, Δ̄ of ϕ have t-expansions

ḡ(z) = π̄1−qg(z) = 1− [1]
∑

a∈A+

tq−1
a ,

Δ̄(z) = π̄1−q2Δ(z) = −ḡq
∑

a∈A+

tq−1
a − [2]

∑
a∈A+

tq
2−1

a +
∑

a∈A+

tq
2−q

a ,
(2.4)

where we recall that A+ is the set of all monic polynomials in A and

(2.5) [i] = T qi − T ∈ A (i ∈ N)

is the product of all monic irreducible polynomials in A whose degree divides i. The
expansions in (2.4) only contain powers of t whose exponent is divisible by q − 1.
Putting

s = tq−1 ,

the t-expansions of ḡ and Δ̄ over A are in fact s-expansions given as follows:

ḡ(s) = 1− [1]s− [1]sq
2−q+1 + [1]sq

2 − [1] ([1] + α) sq
2+1 + . . . ,

Δ̄(s) = −s+ sq − [1]sq+1 − sq
2−q+1 + sq

2 − ([1]− [1]q + α) sq
2+1 + . . . ,

with α = 1 if q = 2 and α = 0 otherwise. The s-expansion of j(z) is thus of the
form

(2.6) j(s) =
ḡ(s)q+1

Δ̄(s)
=

∞∑
i=0

ais
i−1 , ai ∈ A , a0 = −1 .

The strong dependence of the s-expansions of g, Δ and j on q, the size of the base
field, represents a subtle distinction from the elliptic curve scenario. Moreover, as q
grows, these power series become sparser.

Similar to the classical setting, the j-invariant of a rank 2 Drinfeld module
over C gives rise to a modular polynomial; see [1] for an analytic treatment of these
objects. For n ∈ A, the n-th Drinfeld modular polynomial Φn(X, j) is the minimal
polynomial of j(nz) over the function field C(j). Its coefficients are power series
in s over A. The roots of Φn(X, j) are precisely the j-invariants of rank 2 Drinfeld
modules that are n-isogenous over C via an isogeny whose kernel is isomorphic to
A/nA as an A-submodule of C. As a polynomial in two variables X,Y , Φn(X,Y )
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has coefficients in A and is symmetric in X and Y , i.e. Φn(X,Y ) = Φn(Y,X). In
our context, we restrict to the case where n = � is a monic irreducible polynomial.
In this case, Φ�(X,Y ) has degree qdegT (�) +1 in both X and Y , with leading terms

XqdegT (�)+1

and Y qdegT (�)+1

. We compute the coefficients of Φ�(X,Y ) in A from the
identity

(2.7) Φ�(j(�z), j(z)) = 0 ,

where the s-expansions of j(z) and j(�z) over A are evaluated to sufficiently high
precision. A complete analogue of Deuring’s Lifting Theorem for elliptic curves
holds for Drinfeld modules as well, see [2, Thm. 3.4]. Hence, two rank 2 Drin-
feld modules over L are �-isogenous if and only if Φ�(X,Y ) vanishes over L when
evaluated at their two respective j-invariants.

3. Endomorphism rings and isogeny graphs in rank 2

As in the classical setting, the endomorphisms of a Drinfeld module ϕ over L
form a ring under addition and composition, called the endomorphism ring of ϕ
and denoted EndL(ϕ). By identifying A with ϕ(A), we see that EndL(ϕ) contains
an embedded copy of A. Endomorphisms and isogenies of rank 2 Drinfeld modules
over L = A/PA were investigated in detail by Gekeler in [20,24,26]; see also Yu
[49]. They showed that EndL(ϕ) is a free A-module of rank at most 4 that contains
the qd-th power Frobenius

F = τd ,

where d = degT (P ). By [34] (see also [8, Thm. 6.3.9] for a proof of this identity),
the characteristic polynomial of F is

(3.1) Pϕ(X) = X2 − (−1)d
(
Δ

P

)−1

q−1

H(ϕ)X + (−1)d
(
Δ

P

)−1

q−1

P ∈ A[X],

where H(ϕ) is the Hasse invariant of ϕ and (Δ/P )q−1 ≡ Δ(qd−1)/(q−1) (mod P ) is
the (q−1)-st power residue symbol of Δ in L. Fast algorithms for computing Pϕ(X)
can be found in [39,40]. Note that the constant coefficient of Pϕ(X) depends on ϕ
which represents another difference to elliptic curves over a prime field Fp, where
this term is always p, independent of the curve. By [24, Thm. 3.5], two Drinfeld
modules ϕ and ψ over L are isogenous if and only if Pϕ(X) = Pψ(X).

An imaginary quadratic function field is a quadratic extension of Fq(T ) in which
the infinite place of Fq(T ) is either ramified or inert. In analogy to the elliptic curve
setting, when ϕ is ordinary, the roots of Pϕ(X) define an order in an imaginary
quadratic function field K/Fq(T ) called the Frobenius order and denoted A[F ].
Then EndL(ϕ) is isomorphic to an order Oϕ of K, called the endomorphism order
of ϕ, that contains A[F ]. Moreover, all endomorphisms of an ordinary rank 2
Drinfeld module over L are defined over L. Hence, in order to characterize the
endomorphism ring of an ordinary rank 2 Drinfeld module ϕ, it suffices to identify
the conductor of the associated endomorphism order Oϕ in K, i.e. the unique monic
polynomial fϕ such that Oϕ = A + fϕOK, where OK is the maximal order of K.
Note that fϕ divides the conductor fF of A[F ].

For completeness, we mention that if ϕ is ordinary with j(ϕ) = 0 (i.e. P has
even degree), then Oϕ = Fq2 [T ] and K = Fq2(T ) [2, Rem. 3.3]. Moreover, the
endomorphism ring of a supersingular rank 2 Drinfeld module ϕ is isomorphic to
either an imaginary quadratic order or a maximal order in a quaternion algebra; see
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[49, Props. 4 and 5] and [8, Thm. 6.4.2] for details and proofs. The full endomor-
phism ring of ϕ, i.e. the ring of endomorphisms of ϕ defined over L, is a maximal
quaternion order if and only if ϕ is supersingular; see [20, Thm. 5.3].

In his doctoral dissertation [36], Kohel gave an algorithm for finding the endo-
morphism ring of an elliptic curve E over a finite field. When E is ordinary, the
algorithm finds, for each prime � dividing the Frobenius conductor, the exact power
of � dividing the conductor of the endomorphism order of E. This is accomplished
by following a suitable path of �-isogenies starting at E and ending at an elliptic
curve whose endomorphism order is the Frobenius order. Following Kohel’s char-
acterization of all possible isogeny configurations and paths, Fouquet in her thesis
[16] (see also [17]) described the complete �-isogeny graph containing E and first
coined the term volcano to visualize its structure. A careful and thorough anal-
ysis of Kohel’s and Fouquet’s reasoning, undertaken in [8, Chap. 7], reveals that
the entire isogeny graph framework carries over to the setting of rank 2 Drinfeld
modules.

For a monic irreducible polynomial � ∈ A distinct from P , the �-isogeny graph
G�(L) is defined as follows. The vertex set of G�(L) is L, interpreted as the set of
j-invariants — or equivalently, L-isomorphism classes — of rank 2 Drinfeld modules
over L. For any two vertices j, j′ ∈ L, an edge from j to j′ is placed in G�(L) if and
only if Φ�(j, j

′) = 0, and the number of edges from j to j′ is the multiplicity of j as
a root of Φ�(X, j′). In this way, G�(L) is a disconnected directed graph that may
contain loops and multiple edges. Each connected component of G�(L) contains
j-invariants of exclusively ordinary or supersingular Drinfeld modules.

Henceforth, we only consider the ordinary connected components of G�(L) not
containing 0. Here, the edge multiplicities between any two vertices are symmet-
ric, so we consider edges undirected by virtue of identifying each �-isogeny with
its dual. In any such component G, two j-invariants are adjacent if and only if
the corresponding endomorphism orders are equal or the conductor of one is the
product of � and the conductor of the other. Then G takes on the beautiful shape
of a volcano. The subgraph C of G consisting of the �-isogenies joining isomorphism
classes of Drinfeld modules with identical endomorphism orders is a (possibly de-
generate) cycle called the crater of G. Its length is equal to the order of the ideal
class of a prime ideal lying above � in any of the endomorphism orders associated
to vertices in C. Each vertex in C is the root of a (possibly degenerate) complete
tree of the same height, called a side of G. The leaf nodes comprise the floor of G.
The vertices at level i correspond precisely to those endomorphism orders whose
conductor has �-adic valuation i. Thus, vertices on the crater C correspond to
endomorphism orders whose conductor is not a multiple of �, and endomorphism
orders of vertices on the floor of G have conductors whose �-adic valuation matches
that of the conductor of the Frobenius order. The number of neighbours of each
vertex j in G is precisely the number of roots of Φ�(X, j) in L which is 0, 1, 2 or
|�| + 1, where |�| = qdegT (�); see [8, Table 7.3, p. 174] for details. As a result, the
graph G is almost regular; if G \ C is non-empty, then every internal vertex of G
has degree |�|+ 1. An example can be found in Figure 7.1.

All Drinfeld modules whose j-invariants are contained inG are isogenous over L.
So the number of vertices in G is bounded above by the size of the corresponding
isogeny class, which is equal to the Hurwitz class number of the associated Frobenius
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order A[F ] ([49, Cor. to Prop. 7] and [26, Prop. 6.8]). This is the quantity

(3.2) H(A[F ]) =
∑
f |fF

h(Of ) = h(OK)
∑
f |fF

|f |
∏
Q|f

(
1− χK(Q)

|Q|

)
.

Here, fF is the Frobenius conductor, Of is the order of conductor f in K, h(Of )
is its ideal class number, OK is the maximal order of K, χK(Q) ∈ {−1, 0, 1} is the
Kronecker symbol of Q (see, for example, [26, Sec. 7.6]), and the product in (3.2)
runs over all the monic irreducible divisors Q of f . The second identity in (3.2)
uses the fact that all orders in K have unit group F∗

q , as K is imaginary. Since
|Q| ≥ q, |χK(Q)| ≤ 1 for every Q dividing f , and the number of Q dividing f is at
most degT (f), each term under the sum in (3.2) is bounded above by (q+1)degT (f).
Moreover, for each i with 0 ≤ i ≤ degT (fF ), the number of monic factors of fF of

degree i is at most
(
degT (fF )

i

)
. It follows that∑

f |fF

|f |
∏
Q|f

(
1− χK(Q)

|Q|

)
≤

∑
f |fF

(q + 1)degT (f)

≤
degT (fF )∑

i=0

(
degT (fF )

i

)
(q + 1)i

= (q + 2)degT (fF ) .

By [42, Props. 14.6 and 14.7], we have h(OK) = 21−ch(K) where h(K) is the degree
zero divisor class number of K and c is the parity of d = degT (P ), i.e. c = 0 if
d is even and c = 1 if d is odd. The upper Hasse-Weil bound (see, for example,
[42, Prop. 5.11]) asserts that h(K) ≤ (

√
q + 1)2g, where g is the genus of K. Since

d = 2deg(fF ) + 2g + 2− c, we obtain

H(A[F ]) ≤ 21−c(
√
q + 1)2g(q + 2)degT (fF )

< 21−c(
√
q + 1)2g+2degT (fF )

= 21−c(
√
q + 1)d−2+c .(3.3)

This estimate is an improvement over [8, Thm. 8.4.3].

4. Analyzing algorithms for Drinfeld modules

The remainder of this paper is devoted to computational aspects of rank 2
Drinfeld modules. In the next several sections, we present four algorithms for
rank 2 Drinfeld modules that compute, respectively:

(1) the s-expansion of the j-function over C to a given precision (Section 5);
(2) the �-th Drinfeld modular polynomial (Section 6);
(3) the collection of all isogenies of a given degree between two given rank 2

Drinfeld modules over L (Section 8);
(4) the dual isogeny of any given isogeny over L (Section 9).

In Section 7, we also describe how the modulo P reduction of the �-th Drinfeld
modular polynomial can be utilized to generate the full isogeny volcano and com-
pute the endomorphism ring of an ordinary rank 2 Drinfeld module over L with
non-zero j-invariant. Asymptotic run time and memory estimates are provided for
all our procedures. All our algorithms were implemented in SAGE [44]; the code
is available at [7]. We include a number of supporting numerical examples here.
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We explain briefly how to measure the asymptotic time and space complexity
of our algorithms. For consistency, we state all complexity results in terms of
operations (for time) and elements (for space) in Fq. Recall that |a| = qdegT (a) for
any non-zero a ∈ A. Our run times and space requirements are written as functions
of q, |P |, |n|, degT (P ) = d and degT (n), where n is the degree of the isogeny under
consideration. For our asymptotics, we assume |P | → ∞ or |n| → ∞ or both; this
includes the case q → ∞. The complexity of Algorithm 5.1 is also a function of the
precision N of the approximation to the j-invariant computed. We leave explicit
dependencies on q in our formulas, so our O-constants are true constants, with no
hidden dependencies on any parameters, including q.

In our algorithms, we perform arithmetic in the rings R = Fq,L, A, and the
ring of truncated power series in s over A. We denote by M(n) the number of
Fq-operations required to multiply two polynomials of degree n with coefficients
in Fq; so M(n) = O(n2) for naive multiplication and M(n) = O(n logn) for fast
arithmetic [31]. Using Newton iteration, this is also the cost of polynomial division
with remainder when the numerator has degree n [19, Thm. 9.6]. One multiplica-
tion and one division in L each have cost O(M(d)) where d = degT (P ). Computing
q-th powers of polynomials over Fq is free; for elements in L, this operation has
cost O(M(d)). Multiplying two truncated power series over A of degree N in s
for which each coefficient in A has T -degree bounded by n has cost M(N)M(n).
Evaluating a polynomial of degree n over some coefficient ring R can be done in
O(n) operations over R using Horner’s method. We denote the number of Fq-
operations needed to find a root of a polynomial of degree n over L ∼= Fqd by
R(n, d). Rabin’s probabilistic algorithm [41] for example accomplishes this in an
expected O(M(d)nd log d log log d log q) Fq-operations. Finally, every element of L
requires storage of d elements in Fq.

5. Computing the j-function over C

For a Laurent series in s over A given by

f(s) =

∞∑
i=m

cis
i (m ∈ Z, ci ∈ A, cm �= 0) ,

an approximation of f(s) to precision N ∈ Z is a Laurent polynomial fN (s) ∈
A[s, s−1] such that the coefficients of si in fN (s) and f(s) agree for m ≤ i ≤ N .
We use the notation fN (s) ≡ f(s) (mod sN+1), keeping in mind that negative
powers of s may appear in this congruence.

In this section, we present an algorithm for computing an approximation jN (s)
to any precision N of the Laurent series expansion (2.6) of j(s), along with an
exact precision analysis and an asymptotic complexity estimate. The desired ap-
proximation jN (s) is obtained by generating approximations ḡN+2(s) of ḡ(s) and
Δ̄N+2(s) of Δ̄(s) from (2.4), and then computing the first N + 2 coefficients of the

quotient ḡq+1
N+2/Δ̄N+2. In order to find ḡN+2(s) and Δ̄N+2(s), we need to ascertain

how many terms tq−1
a , tq

2−1
a , tq

2−q
a , with a ∈ A+, need to be included in the sums

appearing in (2.4). To that end, we use the results of [23, Sect. 4] to find the
s-expansion of tq−1

a and determine the truncation point.
When a = 1, we have tq−1

a = tq−1 = s, so let a ∈ A be monic and non-constant.
Then ta = t|a|fa(t)

−1, where fa(X) is the a-th inverse cyclotomic polynomial.
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Putting ha(s) = fa(t), we obtain

(5.1) tq−1
a =

s|a|

ha(s)q−1
=

s|a|ha(s)

1− (1− ha(s))q
= s|a|ha(s)

∞∑
i=0

(1− ha(s))
qi .

Let m = degT (a). Then

(5.2) ha(s) =
m∑
i=0

βis
qm−qi

q−1 ∈ A[s] ,

where

β0 = a, βi =
βq
i−1 − βi−1

[i]
(1 ≤ i ≤ m) ,

with [i] given by (2.5). We have βm = 1 and degT (βi) ≤ (m− i)qi for 0 ≤ i ≤ m.
A computationally more efficient way to compute the polynomials βi is as follows.
Write a =

∑m
k=0AkT

k with Ak ∈ Fq and Am = 1. Then

(5.3) βi =

m∑
k=i

Akfi,k (0 ≤ i ≤ m) ,

where

(5.4) f0,k = T k , fi,k =
fq
i−1,k − fi−1,k

[i]
(1 ≤ i ≤ k − 1) , fk,k = 1 ,

for 0 ≤ k ≤ m. We have degT (fi,k) = (k− i)qi for 0 ≤ i ≤ k ≤ m; see [8, Appendix
A.2] for a proof of (5.3) and the degree formula. Note that the polynomials fi,k
only depend on q and are independent of a, hence they can be precomputed.

By [23, Eq. (10.10)], we have∑
a∈A+

degT (a)=m

tq−1
a = s

q2m+1+1
q+1 + higher order terms .

Hence, in order to obtain approximations of ḡ and Δ̄ to sufficient precision, we
need to include in the computation of ḡN+2 and Δ̄N+2 all monic polynomials a of
degree m such that (q2m+1 + 1)/(q + 1) ≤ N + 2. This yields an optimal degree
bound of

(5.5) λ =

⌊
logq

(
q(N + 2) +N + 1

)
− 1

2

⌋
.

By (2.4), approximations of ḡ and Δ̄ to precision N + 2 are thus given by

ḡN+2(s) ≡ 1− [1]
∑

a∈A+

degT (a)≤λ

tq−1
a (mod sN+3) ,(5.6)

Δ̄N+2(s) ≡ −ḡqN+2

∑
a∈A+

degT (a)≤λ

tq−1
a − [2]

∑
a∈A+

degT (a)≤λ

tq
2−1

a

+
∑

a∈A+

degT (a)≤λ

tq
2−q

a (mod sN+3) .
(5.7)
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Algorithm 5.1 computes an approximation of j(s) to any given precision N . Its
cost is analyzed in Theorem 5.1. We assume that the polynomials fi,k in (5.4) have
been precomputed.

Algorithm 5.1 Computing an approximation to the j-function

Input: A prime power q and a non-negative integer N .
Output: An approximation jN (s) of the j-function j(s) to precision N .
1: Compute λ as given in (5.5).
2: for all monic polynomials a ∈ A with deg(a) ≤ λ do
3: Compute ha(s) using (5.2) and (5.3).
4: Compute tq−1

a ← s|a|ha(s)/ha(s)
q (mod sN+3).

5: Compute tq
2−q

a ← (tq−1
a )q (mod sN+3).

6: Compute tq
2−1

a ← tq−1
a tq

2−q
a (mod sN+3).

7: end for
8: Compute ḡN+2 using (5.6).

9: Compute ḡq+1
N+2 ← ḡN+2ḡ

q
N+2 (mod sN+3).

10: Compute Δ̄N+2 using (5.7).

11: Compute jN (s) ← ḡq+1
N+2/Δ̄N+2 (mod sN+3).

12: return jN (s).

Theorem 5.1. Algorithm 5.1 computes the j-invariant to precision N in

O
(√

NM(N)2 +M(N)M(qN)
)

operations in Fq and requires storage of O(qN2) elements of Fq, as q,N −→ ∞.
Here, M(n) is the number of Fq-operations required to multiply two polynomials in
Fq[T ] of degree n.

Proof. The first summand in the run time estimate arises from steps 2-7 and
the second summand from steps 9-11; the cost of step 8 is negligible in light of
step 4. Again following [23], we note that the coefficient of si in the power series
expansions of ha(s) and ta has degree at most i in T ; the same is thus true for
ha(s)

−q (since the constant term of ha(s) is 1) and for powers of ta. The coefficient
of si in the power series expansions of ḡ, ḡq, ḡq+1, Δ̄/s, s/Δ̄ and j has degree at
most qi in T ; see [3].

The most expensive among steps 2-7 is step 6 which uses the result from step 4;
the cost of steps 3 and 5 is negligible in comparison. Here, we multiply two truncated
power series of precision N+2, each of whose coefficients has degree at most N+2,
for a total cost of M(N + 2)2 operations in Fq. The number of loop iterations is
the same as the number of monic polynomials in A of T -degree at most λ, i.e.

λ∑
i=0

qi =
qλ+1 − 1

q − 1
,

which is bounded, up to a constant, by
√
N . Hence the overall cost of steps 2-7 is

O(
√
NM(N)2) operations in Fq.
For the product ḡN+2ḡ

q
N+2 (mod sN+3) in step 9, we multiply two truncated

power series of length N +3, where the largest degree of any coefficient is q(N +2).
So this step requiresO(M(N)M(qN)) operations in Fq. The most expensive term to
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compute in step 10 is the middle term in (5.7), also with a cost of O(M(N)M(qN))
operations in Fq. The division step 11 has same cost as step 10.

Finally, Algorithm 5.1 stores truncated power series of precision at most N +2
with coefficients whose T -degree is at most q(N + 1). The total space requirement
is thus O(qN2) elements in Fq. �

Note that O(qN2) is in fact the size of the output of Algorithm 5.1. Our
computations show that the bound λ in (5.5) is optimal; including only polynomials
of degree ≤ λ− 1 produced errors in the coefficients of jN (s).

We implemented Algorithm 5.1 in SAGE [44] and used it to compute j-functions
over Fq for all prime powers q ≤ 100. For the primes q = 2, 3, 5, 7, we used a degree
bound of λ = 2, whereas for all other prime powers q ≤ 100, we used λ = 1. Note
that over F7, the algorithm produces the j-invariant to precision 2099 when the
bound λ = 2 is used. For our largest prime q = 97, λ = 1 guarantees correctness
to precision 9311. Thus, very few polynomials a ∈ A+ are needed to obtain jN (s)
to quite high precision. Table 5.1 lists the j-functions to precision 9 for the primes
q = 2, 3, 5 and to precision 13 for q = 7. Note the increasing level of sparsity, as q
increases, of both j(s) as a Laurent series in s and of its coefficients as polynomials
in T .

Table 5.1. j-function approximations for q = 2,3,5, and 7

q j-function

2

s−1 + (T 2 + T + 1) + (T 4 + T 2)s+ (T 6 + T 5 + T 4 + T 3 + T 2 + T )s2

+(T 8 + T 6 + T 5 + T 3 + 1)s4 + (T 4 + T 2)s5 + (T 6 + T 5 + T 3 + T 2)s6

+(T 4 + T 2)s7 + (T 4 + T 2)s8 + (T 8 + T 2)s9 + . . .

3

2s−1 + (T 3 + 2T ) + 2s+ (T 9 + T 3 + T )s2 + (2T 12 + T 10 + T 4 + 2T 2 + 2)s3

+(T 9 + 2T 3)s4 + (T 12 + 2T 10 + 2T 6 + T 4)s5 + (T 15 + T 13 + T 11 + T 9

+2T 7 + 2T 5 + 2T 3 + 2T )s6 + (2T 18 + T 12 + T 10 + 2T 4)s9 + . . .

5
4s−1 + (T 5 + 4T ) + 4s3 + (T 25 + T 5 + 3T )s4 + (4T 30 + T 26 + T 6 + 4T 2)s5

+4s7 + (T 25 + 2T 5 + 2T )s8 + (3T 30 + 2T 26 + 4T 10 + 4T 6 + 2T 2)s9 + · · ·

7
6s−1 + (T 7 + 6T ) + 6s5 + (T 49 + T 7 + 5T )s6 + (6T 56 + T 50 + T 8 + 6T 2)s7

+6s11 + (T 49 + 2T 7 + 4T )s12 + (5T 56 + 2T 50 + 6T 14 + 4T 8 + 4T 2)s13 + · · ·

6. Computing Drinfeld modular polynomials

As in the analytic approach for computing classical modular polynomials —
see, for example, the comments by Cohen [10] and Elkies [14] — the main obstacle
to computing Drinfeld modular polynomials is the rapid growth of the size of the
coefficients of both the j-function and the modular polynomial, along with the
large number of coefficients of j(s) required in the computation of the �-th modular
polynomial Φ�(X,Y ) as |�| increases. Storage space for Φ�(X,Y ) is an additional
resource issue that must be taken into account.

Throughout this section, let � ∈ A be a monic irreducible polynomial distinct
from P . Our algorithm for computing the rank 2 Drinfeld modular polynomial
Φ�(X,Y ) over L is based on the method of Bae-Lee [3] which uses the coefficients
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of the j-invariant’s s-expansion, combined with linear algebra. It follows the clas-
sical idea of obtaining the coefficients of Φ�(X,Y ) from (2.7), where the quantities
j(z) and j(�z) in (2.7) are replaced by respective approximations to sufficient preci-
sion in s. Our main contributions here include analyses of the required precision for
the Laurent series expansion of j and of the complexity, along with a SAGE imple-
mentation of the algorithm. To the best of our knowledge, this is the only general
approach for computing Drinfeld modular polynomials to date; special cases were
completed in [43] (� = T , 2 ≤ q ≤ 5), [3, Example 4.6] (� = T , q = 3) and [3, Ex-
ample 4.7] (deg(�) = 1, q = 2). An analysis for computing modular polynomials
attached to higher rank Drinfeld modules was given in [5], along with computations
for rank 3 over F3 and the polynomial � = T .

We give a brief account of the construction in [3]. For brevity, put

L =
(|�|+ 1)(|�|+ 2)

2
.

Writing

(6.1) Φ�(X,Y ) = X |�|+1 + Y |�|+1 +

|�|∑
μ=0

μ∑
ν=0

wμ,νX
μY ν +

|�|∑
μ=1

μ−1∑
ν=0

wμ,νX
νY μ ,

we need to compute the L coefficients wμ,ν ∈ A for 0 ≤ ν ≤ μ ≤ |�|. Expand-
ing (2.7) using (6.1) yields a linear system of L equations whose unknowns are
the quantities wμ,ν and whose coefficients are polynomials in the coefficients of the
s-expansions of j(z), j(�z) and their powers. Write these s-expansions as

j(�z) =
∞∑
i=0

bis
i−|�| , j(z)e =

∞∑
i=0

ai(e)s
i−e , j(�z)e =

∞∑
i=0

bi(e)s
i−e|�|

for 1 ≤ e ≤ |�|+1, and recall the s-expansion of j(s) given in (2.6). Then ai(1) = ai
and bi(1) = bi for all i ≥ 0. The quantities ai(e) and bi(e) can be recursively
obtained as

(6.2) ai(e) =

i∑
k=0

ak(e− 1)ai−k , bi(e) =

i∑
k=0

bk(e− 1)bi−k

for e ≥ 1. Define the sets

W = {(μ, ν) | |�| ≥ μ ≥ 0, μ ≥ ν ≥ 0} ,

V = {(k, h) | 0 ≤ k ≤ |�|, k ≤ h ≤ |�|} ,

both of cardinality L. Here, W is the set of all pairs (μ, ν) for which we need to
compute wμ,ν and V is the set of all pairs (k, h) that give the indices i = k|�| + h
of the coefficients ai(e) and bi(e) appearing in this computation.

For notational convenience, put ai = 0 for i < 0. Then the aforementioned
linear system can be written in matrix-vector form as Mx = y. Here, x is the
column vector consisting of the unknown polynomials wμ,ν ∈ A where (μ, ν) runs
through the pairs in W in reverse lexicographic order, and y = (yi)1≤i≤L is the
column vector consisting of the polynomials

bk|�|+h(|�|+ 1) + ak|�|+h−|�|2+1(|�|+ 1) ,

where (k, h) runs through the pairs in V in lexicographic order. The matrix
M = (mij) is given as follows. Let (k, h) be the i-th element in V in lexicographic
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order and (μ, ν) the j-th element in W in reverse lexicographic order. Then

mi,j =

{
ck|�|+h−|�|2−|�|+μ|�|+ν(ν, μ) + ck|�|+h−|�|2−|�|+ν|�|+μ(μ, ν) if μ �= ν,

ck|�|+h−|�|2−|�|+μ|�|+ν(ν, μ) if μ = ν,

where

cn(μ, ν) =

⎧⎪⎪⎨
⎪⎪⎩

0 if n < 0 ,
n∑

l=0

al(μ)bn−l(ν) if n ≥ 0 ,

with particular values c0(0, 0) = 1 and cn(μ, 0) = an(μ), cn(0, ν) = bn(ν) for n ≥ 0.
Then M is a lower triangular square matrix of size L whose diagonal entries are
all ±1 as c0(μ, ν) = (−1)μ+ν . Hence, the unknown coefficients wμ,ν of Φ�(X,Y )
can be determined iteratively via forward substitution:

w|�|,|�| =
y1

m1,1
,

w|�|,|�|−1 =
y2 −m2,1w|�|,|�|

m2,2
,

...

w0,0 =
yL −

(
mL,1w|�|,|�| +mL,2w|�|,|�|−1 + · · ·+mL,L−1w1,0

)
mL,L

.

(6.3)

The formulas in (6.3) involve the coefficients ai(e), bi(e) for 0 ≤ i ≤ |�|2 + |�|
and 1 ≤ e ≤ |�| + 1. By (6.2), it is thus sufficient to precompute ai and bi for
0 ≤ i ≤ |�|2+|�|, so we generate approximations of the s-expansions of j(z) and j(�z)
to respective precisions |�|2 + |�| − 1 and |�|2. The former can be obtained via

Algorithm 5.1. For the latter, we replace s = s(z) in j(z) by s(�z) = tq−1
� as given

in (5.1) (with a = �) and evaluate the expression

s|�|j(�z) =
s|�|

tq−1
�

∞∑
i=0

ait
(q−1)i
� = h�(s)

q−1
∞∑
i=0

ai

(
s|�|h�(s)

∞∑
k=0

(1− h�(s))
rk

)i

modulo s|�|
2+|�|+1. Algorithm 6.1 presents the procedure described above in algo-

rithmic form.

Theorem 6.1. Algorithm 6.1 computes the coefficients wμ,ν of the modular
polynomial Φ�(X,Y ) as given in (6.1) in

O
(
|�|6M(q|�|2)

)
Fq-operations and requires storage of O(q|�|6) elements of Fq, as |�| −→ ∞. Here,
M(n) is the number of Fq-operations required to multiply two polynomials in Fq[T ]
of degree n.

Proof. We will see that the run time and required space are dominated by
steps 5-15. By [3, Lem. 3.1], we have degT (ai(e)) ≤ qi; similarly, degT (bi(e))
≤ qi for all i ≥ 0 and e ≥ 1. It follows that the cost of each exponentia-
tion in steps 2 and 3 is O

(
M(|�|2)M(q|�|2)

)
operations in Fq, for a total cost of

O
(
|�|M(|�|2)M(q|�|2)

)
operations in Fq for steps 1-4. For 1 ≤ e ≤ |�| + 1 and
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Algorithm 6.1 Computing the modular polynomial Φ�(X,Y )

Input: A prime power q, a monic irreducible polynomial � ∈ Fq[T ], an approxi-

mation
∑|�|2+|�|

i=0 ais
i−1 of j(z) to precision |�|2 + |�| − 1, and an approximation∑|�|2+|�|

i=0 bis
i−|�| of j(�z) to precision |�|2.

Output: The coefficients wμ,ν of the modular polynomial Φ�(X,Y ) as given
in (6.1).

1: for e = 2 to |�|+ 1 do

2: Compute j(z)e ≡
∑|�|2+|�|

i=0 ai(e)s
i−e (mod s|�|

2+�) via (6.2)

3: Compute j(�z)e ≡
∑|�|2+|�|

i=0 bi(e)s
i−e|�| (mod s|�|

2+1) via (6.2).
4: end for
5: for μ = 0 to |�| do
6: for ν = 0 to |�| do
7: c0(μ, ν) ← (−1)μ+ν

8: for i = 1 to |�|2 + |�| do
9: ci(μ, ν) ← 0

10: for n = 0 to i do
11: ci(μ, ν) ← ci(μ, ν) + an(μ)bi−n(ν)
12: end for
13: end for
14: end for
15: end for
16: Construct the ordered sets

W = {(μ, ν) | |�| ≥ μ ≥ 0, μ ≥ ν ≥ 0} in reverse lexicographic order
V = {(k, h) | 0 ≤ k ≤ |�|, k ≤ h ≤ |�|} in lexicographic order

17: for i = 1 to (|�|+ 1)(|�|+ 2)/2 do
18: Let (k, h) be the i-th element in V (in lexicographic order).
19: if k|�|+ h < |�|2 − 1 then
20: yi ←− bk|�|+h(|�|+ 1)
21: else
22: yi ←− bk|�|+h(|�|+ 1) + ak|�|+h−|�|2+1(|�|+ 1).
23: end if
24: end for
25: for i = 1 to (|�|+ 1)(|�|+ 2)/2 do
26: for j = 1 to i do
27: Let (k, h) be the i-th element in V (in lexicographic order)
28: Let (μ, ν) be the j-th element in W (in reverse lexicographic order).
29: if μ = ν then
30: mi,j ← ck|�|+h−|�|2−|�|+μ|�|+μ(μ, μ)
31: else
32: mi,j ← ck|�|+h−|�|2−|�|+μ|�|+ν(ν, μ) + ck|�|+h−|�|2−|�|+ν|�|+μ(μ, ν)
33: end if
34: end for
35: end for
36: Compute wμ,ν , (μ, ν) ∈ W (in reverse lexicographic order) via (6.3)
37: return wμ,ν , 0 ≤ ν ≤ μ ≤ |�|.
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0 ≤ i ≤ |�|2 + |�|, each coefficient ai(e), bi(e) requires storage of qi + 1 elements of
Fq. So steps 1-4 require space

2 (|�|+ 1)

|�|2+|�|∑
i=0

(qi+ 1) = O(q|�|5) .

The innermost loop (steps 10-12) inside steps 5-15 executes

(|�|+ 1)2(|�|2 + |�|)(|�|2 + |�|+ 1)/2

times, and each iteration performs multiplication of two polynomials of degree
at most q(|�|2 + |�|), for a total cost of O(|�|6M(q|�|2) operations in Fq. Since
degT (an(μ)) ≤ qn and degT (bi−n(ν)) ≤ q(i−n), we see that degT (ci(μ, ν)) ≤ qi for
0 ≤ μ, ν ≤ |�| and 0 ≤ i ≤ |�|2 + |�|. It follows that we store (|�|+1)2(|�|2 + |�|+ 1)
polynomials ci(μ, ν) in steps 5-15, each of degree at most q(|�|2 + |�|). The total
storage requirement for these steps is thus O(q|�|6) elements in Fq.

Steps 16-24 and 25-35 require negligible run time and storage compared to
steps 5-15. Step 36 computes (|�| + 1)2 quantities wμ,ν , among which w0,0 is the
most costly, requiring (|�|+ 1)(|�|+ 2)/2− 1 polynomial multiplications and addi-
tions. Moreover, for all i, j, we have degT (mi,j) ≤ q(|�|2 + |�|) and degT (wμ,ν) ≤
q|�|(|�|+ 1)2/2 by (6.4) below (see [3, Cor. 3.8]). Hence, these loops require a total
of O(|�|4M(q|�|3)) operations in Fq and storage of O(q|�|6) elements in Fq. For
both schoolbook and fast multiplication, this run time estimate does not exceed
O(|�|6M(q|�|)2). �

On first glance, the complexity of Algorithm 6.1 as determined in Theorem 6.1
looks significantly higher than the asymptotic run time estimates for computing
classical modular polynomials. Assuming fast multiplication techniques, it amounts
to O(q|�|8+ε) operations in Fq. In contrast, Elkies [14] estimated the run time of
the analytic method for computing the classical �-th modular polynomial to be
O(�4+ε) arithmetic operations; this estimate was subsequently refined to O(�4.5+ε)
bit operations by Charles-Lauter [9]. Enge [15] and Bröker-Lauter-Sutherland [6]
introduced methods with expected run time O(�3+ε) under reasonable assumptions.
The reason for this significant discrepancy between classical and Drinfeld modular
polynomial computation arises from the different growth rates of the coefficients of
Φ�(X,Y ) and of j and its powers in the two settings.

In the elliptic curve setting, a lower bound of Ω(
√
ei) on the bit length of the

i-th Fourier coefficient of j(z)e is given in [9], whereas for Drinfeld modules, the
analogous coefficients are estimated to have a degree that grows as qi. For e and i of
magnitudes � and �2, respectively, the classical bound is of order �3/2, whereas in the
Drinfeld module setting, the maximum coefficient degree is obtained for i = |�|2+|�|
(independent of e) and has degree of order q|�|2. Moreover, the s-expansions of ḡ
and Δ̄ seem to grow sparser as q increases, and sparsity was not taken into account
in our run time estimates.

Another major difference is in the behaviour of the modular polynomial itself.
The logarithmic height of the Drinfeld modular polynomial Φ�(X,Y ) is the quantity

H = max
(μ,ν)∈W

{degT (wμ,ν)} ;
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it is the natural analogue of the classical logarithmic height. Bae-Lee [3] proved

(6.4)
|�|
q

≤ H ≤ q|�|(|�|+ 1)2

2
,

which necessitates up toO(q|�|5) elements in Fq to store Φ�(X,Y ). In stark contrast,
the logarithmic height of the classical �-th modular polynomial is asymptotic to
6� log(�) (see Cohen [10]). This yields an upper bound of order B = �3 (discounting
log factors) on the size of this polynomial, so the complex analytic approach for
computing the modular polynomial has run time O(B1.5+ε) and the algorithms
of [15] and [6] are essentially optimal, with a quasilinear run time of O(B1+ε).
Assuming the corresponding best known approximate coefficient bound of |�|3 as
given in (6.4) estimates the size of the �-th Drinfeld modular polynomial as B = |�|5
and the run time of Algorithm 6.1 as O(B1.6+ε). Exact degree bounds on the
coefficients of Φ�(X,Y ) are not known. Our computations strongly suggest that at
least for linear �, we have H = q(|�|2 + |�|).

Example 6.2 lists three Drinfeld modular polynomials produced by our SAGE
implementation of Algorithm 6.1. Recall from Section 2 that, for � �= P , two
rank 2 Drinfeld modules over L are �-isogenous over L if and only if the modular
polynomial Φ�(X,Y ) vanishes in L when evaluated at their respective j-invariants.

Example 6.2. Let q = 3, P (T ) = T 5 + 2T + 1 and L = F3[T ]/PF3[T ].

(1) Recall from Example 2.2 that the rank 2 Drinfeld modules ϕ = (T 2, T 3)
and ψ = (2T 4 + T 2, 2T 4 + T + 2) are isogenous via the T -isogeny u =
τ − (T 3 + 2T + 2). The two respective j-invariants are j(ϕ) = T + 2 and
j(ψ) = 2T 4 + T 3 + 2T 2 + T + 2. Over L, we have

ΦT (X,T + 2) = X4 + (2T 3 + 1)X3 + (T 3 + 2T 2 + 1)X2

+ (T 3 + 2T 2 + T + 1)X + 2T 3 + T 2 + 2T + 1 .

The four roots of ΦT (X, j(ϕ)) in L are

T 4 + T 2 + T + 2 , T 4 + T 3 + 2T 2 ,

2T 4 + 2T 3 + T 2 + T + 1 , 2T 4 + T 3 + 2T 2 + T + 2 = j(ψ) .

Hence, ΦT (j(ψ), j(ϕ)) = 0, which verifies that ψ is T -isogenous to ϕ.
(2) The rank 2 Drinfeld module ϕ = (T 2, T 2 + 2T ) is (T + 1)-isogenous to

ψ = (2T 4+2T+2, 2T 3+T 2+2T ) via the (T+1)-isogeny u = τ−(T 2+2).
The two respective j-invariants are j(ϕ) = T 2 and j(ψ) = T 4 +2T 3 +T 2.
The polynomial

ΦT+1(X,T 2) = X4 + (2T 4 + T 3 + 2T + 1)X3 + (2T 4 + 2T 3 + 2T 2)X2

+ (2T 3 + 2T 2 + 2T + 1)X + T 2

over L has two roots in L, namely 2T 3 + T and j(ψ) = T 4 + 2T 3 + T 2.
(3) From Example 2.2, ϕ = (T 3, T 4 +1) and ψ = (2T 4 +1, T 4 +T 3 +T 2 +1)

are (T + 2)-isogenous via u = τ − (T 3 + T ). We have

j(ϕ) = T 4 + T 3 + T 2 + 2T + 2 ,

j(ψ) = 2T 4 + 2T 3 + 2T + 2 ,
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and

ΦT+2(X, j(ϕ)) = X4 + (T 4 + 2T 3 + 2T 2 + 1)X3 + (2T 4 + T + 2)X2

+ (2T 4 + T 3 + 2T 2 + T )X + T 4 + T 2 + 2T .

This polynomial has four roots in L, namely

2T 2 + 2 , T 4 + T 2 + 2T + 2 ,

2T 4 + 2T 3 + T 2 + 2T + 2 , 2T 4 + 2T 3 + 2T + 2 = j(ψ) .

In Example 6.2, we observed the vanishing of the modular polynomial Φ� on
the pairs of �-isogenous j-invariants introduced independently in Example 2.2. This
serves as a check on the correctness of our algorithms. Using Algorithm 6.1, we
computed all the Drinfeld modular polynomials for the following parameters:

(1) � = T and all prime powers q with 2 ≤ q ≤ 25;
(2) � = T + ε with ε ∈ F∗

q for all primes q with 2 ≤ q ≤ 23;
(3) all monic irreducible polynomials � ∈ A of degree 2 for q = 2, 3, 5.

Examples can be found in [8, Sec. A.1]. In all our numerical examples for
linear �, the logarithmic height H of Φ�(X,Y ) was equal to q2(q+1) = q(|�|2+ |�|).
Our computations agree with the numerical examples of [3] and [43]. In addition
to Example 6.2, we verified �-isogeny via the modular polynomial test for many
Drinfeld modules obtained from Proposition 2.1. This verification was performed
for q = 3, 5, 7, � = T + ε with ε ∈ Fq, and monic irreducible polynomials of degrees
d with 2 ≤ d ≤ 5. We also verified that all the modular polynomials we computed
satisfy the Kronecker congruence (see [1])

Φ�(X, j) ≡ (X − j|P |)(X |P | − j) (mod �) .

7. Applications: Computing isogeny volcanoes
and endomorphism rings

As before, let � ∈ A be a monic irreducible polynomial different from P , and
let ϕ = (g,Δ) be an ordinary rank 2 Drinfeld module over L with j(ϕ) �= 0.
Two applications that utilize the reduction modulo P of the �-th modular poly-
nomial Φ�(X,Y ) over L are to compute the isogeny volcano containing j(ϕ) and
the endomorphism order of ϕ. By (6.4), storing Φ�(X,Y ) (mod P ) requires up to
O(|�|2min{q|�|3, d}) elements in Fq.

The isogeny volcano G of ϕ is generated through a relatively straightforward
graph generation algorithm using repeated root finding. It maintains a subset of L
of visited vertices (initialized to only contain j(ϕ)), a subset of L of unvisited ver-
tices (initialized to contain the set of roots of Φ�(X, j(ϕ)) in L distinct from j(ϕ),
with multiplicities), and a set of edges (initialized as empty). At every stage, the al-
gorithm computes all the roots of Φ�(X, u) in L where u is unvisited. All these roots
are marked as unvisited, u is flagged as visited, and for every root j, we add as many
edges {j, u} as the multiplicity of the root j of Φ�(X, u), provided no such edges
are as yet present. The algorithm terminates if either a root 0 is encountered or all
roots in L have been visited. The space requirement of this procedure is determined
by the size of Φ�(X,Y ) (mod P ) and the size of the output G which is bounded
by (3.3). The asymptotic run time is at most O

(
(
√
q + 1)d−2+cR(|�|, d)M(d)

)
where R(|�|, d) accounts for finding roots of Φ�(X, u) and the M(d) term converts
arithmetic in L to arithmetic in Fq.
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In practice, assuming that Φ�(X,Y ) (mod P ) is a known input to this algo-
rithm is problematic. Unlike Sutherland’s extensive online table of classical mod-
ular polynomials [45], there is no readily available database of Drinfeld modular
polynomials.

We implemented isogeny volcano computation in SAGE [44] and produced a
substantial collection of examples; see [8, Sect. 8.4 and Appendix B]. For illustrative
purposes, we include a small example here.

Example 7.1. Let q = 3, P (T ) = T 7 + 2T 2 + 1 and � = T . Figure 7.1 depicts
the T -isogeny volcano for the ordinary Drinfeld module ϕ = (T, T 3 + 2T 2 + 2T )
over L = F3[T ]/PF3[T ] whose j-invariant is

j(ϕ) = 2T 6 + 2T 4 + 2T 3 + T 2 + 2T + 2 .

Its crater has length 3, each of its internal vertices has 4 neighbours, and each of
its 3 sides is a complete ternary tree of height 2. This isogeny volcano was produced
by our SAGE implementation and was also drawn using SAGE.

Figure 7.1. Arial view of the T -isogeny volcano containing
j = 2T 6 + 2T 4 + 2T 3 + T 2 + 2T + 2 over L = F3[T ]/PF3[T ] with
P (T ) = T 7 + 2T 2 + 1.

The reduction (mod P ) of Φ�(X,Y ) can also be used to compute endomor-
phism rings. The concept behind Kohel’s algorithm for finding the endomorphism
order of an elliptic curve is to locate it in its connected component of the isogeny
graph, thereby generating a small subgraph of this component in the process. In the
context of point counting, the search was subsequently refined by Fouquet [16,17]
who exploited the fact that every vertex j in a volcano is adjacent to at most two
other vertices on or closer to the crater, and hence to at least one vertex that is
closer to the floor. Combining their two approaches leads to a technique for finding
the endomorphism ring of a rank 2 Drinfeld module.

Let ϕ be an ordinary rank 2 Drinfeld module that is not isogenous to one with
j-invariant 0. Then its endomorphism ring EndL(ϕ) is isomorphic to an imagi-
nary quadratic order Oϕ that is uniquely determined by its conductor fϕ in the
associated maximal order. The conductor fϕ is in turn determined by the �-adic
valuations v�(fϕ) for each monic irreducible polynomial � dividing the Frobenius
conductor fF . Entirely analogous to the elliptic curve setting, we find each v�(fϕ)
as the level where j(ϕ) is situated inside its �-isogeny volcano G ⊂ G�(L). The
height of G is n = v�(fF ). Any path of isogenies from j(ϕ) to the floor of G has
length m = v�(fF /fϕ), so v�(fϕ) = n − m. Fouquet’s idea was to grow three si-
multaneous �-isogeny paths in G starting at j(ϕ). If j(ϕ) is located in the crater of
G, then at least one of these paths moves down from level 0 to level 1; otherwise,
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at least two of the paths move down a level. Avoiding backtracking ensures that
at least one of the three paths is a direct path from j(ϕ) to the floor of G. We
stop growing a path if either its length exceeds the height n or visits a vertex of
degree 1, in which case the floor of G is reached.

The paths are grown similar to the isogeny volcano construction and require
the polynomial Φ�(X,Y ) (mod P ). At every vertex j in a path, we compute the
roots of Φ�(X, j) in L and choose as the next vertex one of these roots that is
not already contained in this path. The first path to reach the floor has length
n−m ≤ n ≤ (d−1)/2. Hence, the asymptotic run time of this procedure is bounded
by O (dR(|�|, d)M(d)). The paths need storage of at most 3d(d − 1)/2, which is
vastly dominated by the size of Φ�(X,Y ) (mod P ). We give a small example to
illustrate the strategy.

Example 7.2. Let q = 3, P (T ) = T 11 +2T 2 +1 and � = T . Let ϕ = (g,Δ) be
the ordinary rank 2 Drinfeld module over L = F3[T ]/PF3[T ] given by

g = T 10 + T 8 + T 7 + T 5 + T 4 + T 3 + 2T + 2 , Δ = T 3 ,

with j-invariant

j0 = j(ϕ) = 2T 9 + T 8 + T 7 + 2T 6 + T 3 + 2T 2 + 2T .

The Frobenius polynomial associated to ϕ is

Pϕ(X) = X2 − (2T 4 + 2T 2 + 2)X + (T 11 + 2T 2 + 1)

and has discriminant 2T 6(T 2 + T + 2)(T 3 + 2T 2 + 2T + 2). Hence, the Frobenius
conductor is fF = T 3, so no T -isogeny path starting at j0 should grow beyond
length 3. Using the procedure described above, we obtain the following paths P1,
P2, P3 from j0 to the floor of the isogeny volcano containing j0:

P1 : j0 = 2T 9 + T 8 + T 7 + 2T 6 + T 3 + 2T 2 + 2T ,

j1 = T 9 + 2T 6 + T 5 + 2T 4 + T 3 + 2T + 1 ,

j2 = T 5 + 2T 4 + 2T 3 + 2T 2 + 2 ,

j3 = T 9 + 2T 8 + T 7 + T 5 + T 3 + 2T 2 + 1 ,

P2 : j0 = 2T 9 + T 8 + T 7 + 2T 6 + T 3 + 2T 2 + 2T ,

j1 = T 9 + T 8 + T 7 + 2T 6 + 2T 5 + T 3 + 2T 2 + 1 ,

P3 : j0 = 2T 9 + T 8 + T 7 + 2T 6 + T 3 + 2T 2 + 2T ,

j1 = 2T 7 + T 6 + 2T 5 + T 4 + 2T 3 + 2T .

Both P2 and P3 are of length 1. So νT (fϕ) = 3 − 1 = 2, and hence fϕ = T 2.
Thus, j0 is located at level 2 of the volcano, see Figure 7.2. It follows that P2

and P3 both went straight down to the floor, whereas P1 moved up to level 1.

We note that a method for computing endomorphism rings of Drinfeld modules
of arbitrary rank was given in [18]. It finds the desired endomorphism ring modulo
that of Frobenius by entirely different means. Another approach for arbitrary rank
can be found in [37].
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Figure 7.2. Profile view of the T -isogeny volcano containing
j = 2T 9+T 8+T 7+2T 6+T 3+2T 2+2T over L = F3[T ]/PF3[T ]
with P (T ) = T 11 + 2T 2 + 1.

8. Computing explicit isogenies

It is possible to establish n-isogeny between two given rank 2 Drinfeld modules
directly and construct an n-isogeny between them if one exists. For any one pair
of Drinfeld modules with parameters of modest size, this method of isogeny de-
tection may be preferable over resorting to modular polynomials. However, when
processing many Drinfeld modules at once, for example in �-isogeny volcano or
endomorphism ring computation, this method is not efficient.

Let ϕ = (g,Δ) and ψ = (g′,Δ′) be two rank 2 Drinfeld modules over L. We
may assume that ϕ and ψ are not isomorphic as this can easily be checked: by
[20, Lem. 4.1], ϕ and ψ are isomorphic if and only if there exists c ∈ L∗ such that

g = cq−1g′ and Δ = cq
2−1Δ′. The brute-force approach now described finds all the

n-isogenies u : ϕ → ψ over L or establishes that no such n-isogeny exists.
For brevity, put k = degT (n). A (hypothetical) n-isogeny u : ϕ → ψ is a

polynomial in L{τ} of degree k given by

u =

k∑
i=0

uiτ
i (ui ∈ L, uk �= 0) .

The coefficients of u can be determined symbolically from the identity uϕT = ψTu.
By comparing coefficients of the powers of τ in this identity, we obtain a system of
k + 3 equations

u0T = Tu0 ,

u0g + u1T
q = Tu1 + g′uq

0 ,

u0Δ+ u1g
q + u2T

q2 = Δ′uq2

0 + g′uq
1 + Tu2 ,

...

uk−2Δ
qk−2

+ uk−1g
qk−1

+ ukT
qk = Δ′uq2

k−2 + g′uq
k−1 + Tuk ,

uk−1Δ
qk−1

+ ukg
qk = Δ′uq2

k−1 + g′uq
k ,

ukΔ
qk = Δ′uq2

k ,

(8.1)
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in the unknowns ui for i = 0, 1, . . . , k. We solve the last k + 1 equations of (8.1).
The last equation forces

uq2−1
k = y with y = Δqk/Δ′ .

Thus, a necessary condition for the existence of an n-isogeny u : ϕ → ψ over L is
the existence of a (q2 − 1)-st root of y in L. One can a priori verify the existence

of such a root by checking whether y(q
d−1)/e = 1 in L, where

e = gcd(qd − 1, q2 − 1) =

{
q − 1 if d is odd ,

q2 − 1 if d is even .

Furthermore, if y has a (q2 − 1)-st root in L, then it has exactly e such roots in L.
We may choose any one of them, since all the roots just differ by a factor that is
a root of unity in L. For example, we can make a canonical choice by requiring uk

to be monic as a polynomial in A modulo P .
By virtue of (8.1), we rule out non-existence of u, and compute its coefficients if

an n-isogeny u : ϕ → ψ exists, by finding the roots in L of the following polynomials:

For uk: Δ′Xq2−1 −Δqk = 0 (uk monic).

For uk−1: Δ′Xq2 −Δqk−1

X + g′uq
k − ukg

qk = 0 .(8.2)

For uk−i (2 ≤ i ≤ k) : Δ′Xq2 −Δqk−i

X + Tuk+2−i + g′uq
k+1−i

− uk+1−ig
qk+1−i − uk+2−iT

qk+2−i

= 0 .

Any (k+ 1)-tuple (u0, u1, . . . , uk) ∈ Lk+1 obtained from (8.2) gives rise to possible
coefficients of u. Any such (k + 1)-tuple over L whose first two entries satisfy the
second equation of (8.1) defines an n-isogeny u : ϕ → ψ. Here, each of the equations
for uk−1, . . . , u0 has up to q2 roots, and for each root uk−i ∈ L, we need to solve
the entire collection of polynomial equations for which uk−i and uk−i+1 appear in
the constant coefficient and for which uk−i−1 is a potential root. To exhaust all
possibilities, we grow a tree. The root of this tree is the unique monic (q2 − 1)-st
root uk of y, i.e. the unique monic root of the first polynomial in (8.2), provided
it belongs to L. The next level consists of the vertices uk−1, connected to uk by
an edge, where uk−1 is a root of the second polynomial in (8.2) that belongs to L.
In general, level i consists of vertices of the form uk−i ∈ L. Every such vertex
determines a unique polynomial appearing in (8.2) for which uk−i and its parent
uk−i+1 appear in the constant coefficient. If this polynomial has roots uk−i−1 ∈ L,
then all these roots are added as vertices at the next level and connected to uk−i

by edges. If at any level no vertices are added, then no n-isogeny from ϕ to ψ exists
and we abort.

Once all the equations are solved, the tree is complete. For each edge (u0, u1),
we check that u0 and u1 satisfy the second equation of (8.1). If yes, then the
corresponding (k + 1)-tuple (u0, u1, . . . , uk), where ui is the parent of ui−1 for
1 ≤ i ≤ k, represents the coefficients of an n-isogeny from ϕ to ψ. This process is
presented in Algorithm 8.1.

In the case when n = � is monic and irreducible, and ϕ, ψ are ordinary, we
know from the structure of �-isogeny volcanoes that there is almost always at most
one �-isogeny from ϕ to ψ; in the rare cases where ϕ and ψ lie on a crater of size
at most 2, there may be 2 such isogenies, arising from a double edge or a double
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loop if ϕ = ψ. Unfortunately, we do not know a priori which is the correct path
through the tree; this may not become evident until the validity is established with
the test of whether u0 and u1 satisfy the second equation in (8.1).

Algorithm 8.1 Computing explicit isogenies

Input: A prime power q, a monic irreducible polynomial P ∈ Fq[T ] of degree d,
a polynomial n ∈ Fq[x] of degree k ≥ 1 with P � n, and two Drinfeld modules
ϕ = (g,Δ), ψ = (g′,Δ′) over the field L = Fq[T ]/PFq[T ].

Output: A list of (k + 1)-tuples (u0, u1, . . . , uk) such that u =
∑k

i=0 uiτ
i is an

n-isogeny from ϕ to ψ, or statement that no n-isogeny from ϕ to ψ exists.

1: y ← Δqk/Δ′.
2: e ← q − 1 if d is odd; e ← q2 − 1 if d is even.

3: if y(q
d−1)/e �= 1 then

4: return “No n-isogeny exists.”
5: end if
6: uk ← the unique monic root of Xq2−1 − y (mod P ) in L.
7: E ← {}, V ← {uk}.
8: R ← {roots of Δ′Xq2 −Δqk−1

X + g′uq
k − ukg

qk} in L
9: if R = {} then

10: return “No n-isogeny exists.”
11: end if
12: for all uk−1 ∈ R do
13: V ← V ∪ {uk−1}
14: E ← E ∪ {(uk, uk−1)}
15: end for
16: for i = 2 to k do
17: for all uk+1−i ∈ V do

18: R ← {roots of Δ′Xq2 −Δqk−i

X + Tuk+2−i + g′uq
k+1−i

−uk+1−ig
qk+1−i − uk+2−iT

qk+2−i} in L.
19: if R = {} then
20: return “No n-isogeny exists.”
21: end if
22: for all uk−i ∈ R do
23: V ← V ∪ {uk−i}
24: E ← E ∪ {(uk−i+1, uk−i)}
25: end for
26: end for
27: end for
28: L ← {}.
29: for all leaf vertices u0 ∈ V do
30: if u0g + u1T

q = Tu1 + g′uq
0 (where u1 is the parent of u0) then

31: L ← L ∪ {(u0, u1, . . . , uk)} where ui is the parent of ui−1 for 1 ≤ i ≤ k.
32: end if
33: end for
34: return L
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Theorem 8.1. For any two rank 2 Drinfeld modules ϕ, ψ over L=Fq [T ]/PFq[T ]
and any polynomial n ∈ A with P � n, Algorithm 8.1 computes all the n-isogenies
from ϕ to ψ, or ascertains that none exist, in

O
(
|n|2R(q2, d)M(d)

)
Fq-operations, as |P |, |n| −→ ∞. Here, R(n, d) is the number of operations in Fqd

required to compute the roots of a degree n polynomial over Fqd , and M(n) is the
number of Fq-operations required to multiply two polynomials in Fq[T ] of degree n.
The space requirement is O(|n|2d) elements in Fq.

Proof. The worst case complexity scenario is if each polynomial equation
in (8.2) has q2 roots in L. In that case, each internal vertex in the tree of coef-
ficients yielding a potential isogeny has q2 children. So the total number of root
computations is equal to the number of vertices, which is

k∑
i=0

q2i =
q2k+1 − 1

q − 1
= O(|n|2) .

For each node, the algorithm must find the root of a polynomial over L of degree q2.
This yields the run time result. Since each node is an element in L, the tree requires
storage of O(|n|2d) elements in Fq. �

We expect the complexity result in Theorem 8.1 to be a vast overestimate much
of the time, since it is unlikely that each of the polynomials in (8.2) has q2 roots
in L. In fact, in all our computations over F3 where the two input Drinfeld modules
were a priori known to be �-isogenous via the modular polynomial root test, every
node in the tree only had q = 3 children.

Finally, Algorithm 8.1 can in fact find all the n-isogenies from ϕ to ψ over any
extension field of L. However, if we allow roots outside L in our tree, then the
complexity estimate of Theorem 8.1 is no longer valid.

Example 8.2. Let q = 3, P (T ) = T 9 + 2T 3 + 2T 2 + T + 1, and n = T 2 + 1.
Consider the ordinary rank 2 Drinfeld modules

ϕ = (T 2, T 7) , ψ = (T, 2T 6 + 2T 5 + 2T 4 + 2T 2 + T + 2)

over L = F3[T ]/PF3[T ]. Their respective j-invariants are

j(ϕ) = T , j(ψ) = T 7 + T 6 + T 5 + 2T 3 + T 2 + T + 1 .

Note that ϕ and ψ are (T 2 +1)-isogenous as ΦT 2+1(j(ϕ), j(ψ)) = 0. Algorithm 8.1
produces the (T 2 + 1)-isogeny u = u0 + u1τ + u2τ

2 ∈ L{τ} from ϕ to ψ, where

u0 =2T 8 + T 7 + 2T 5 + 2T 4 + 2T 2 + T + 2 ,

u1 =T 7 + T 6 + 2T 5 + T 4 + T 3 + T 2 + T + 2 ,

u2 =T 8 + T 7 + 2T 6 + T 5 + 2T 4 + 2T 3 + T + 1 .

9. Computing dual isogenies

Dual isogenies can also be found via symbolic computation, but far more ef-
ficiently. Given two rank 2 Drinfeld modules ϕ = (g,Δ) and ψ = (g′,Δ′) over L
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and an isogeny u ∈ L{τ} of degree n ∈ A from ϕ to ψ, the dual isogeny û is
characterized by the identity ûu = ϕn. Write

u =

k∑
i=0

uiτ
i , û =

k∑
i=0

ûiτ
i , ϕn =

2k∑
i=0

niτ
i ,

where k = degT (n), ui, ûi ∈ L for 0 ≤ i ≤ k, ni ∈ L for 0 ≤ i ≤ 2k, and
ukûkn2k �= 0. The coefficients ni can be recursively determined as follows (see, for
example, [35, Lem. 3.2.2]):

n0 = n , n1 =
gnq

0 − n0g

T q − T
,

ni =
nq
i−1g − ni−1g

qi−1

+ nq2

i−2Δ− ni−2Δ
qi−2

T qi − T
(2 ≤ i ≤ 2k) .

(9.1)

Comparing coefficients of the powers of τ in the identity ϕn = ûu produces the
following system of 2k + 1 linear equations in the unknowns û0, û1, . . . , û2k:

n0 = û0u0 ,

n1 = û0u1 + û1u
q
0 ,

n2 = û0u2 + û1u
q
1 + û2u

q2

0 ,

...

nk = û0uk + û1u
q
k−1 + · · ·+ ûku

qk

0 ,

nk+1 = û1u
q
k + û2u

q2

k−1 + · · ·+ ûku
qk

1 ,

...

n2k = ûku
qk

k .

A solution can be obtained recursively from the first k + 1 of these equations via

û0 = n0u
−1
0 ,

ûj =

(
nj −

j−1∑
i=0

ûiu
qi

m−i

)
u−qj

0 , (1 ≤ j ≤ k) .
(9.2)

In algorithmic form, this simple procedure can be summarized as follows.

Algorithm 9.1 Computing a dual isogeny

Input: A prime power q, a monic irreducible polynomial P ∈ Fq[T ] of degree d,
a Drinfeld module ϕ = (g,Δ) over L = Fq[T ]/PFq[T ], and an isogeny u =∑k

i=0 uiτ
i of degree n on ϕ such that P � n and k = degT (n).

Output: The dual isogeny û =
∑k

i=0 ûiτ
i.

1: Compute the first k + 1 polynomials n0, n1, . . . , nk ∈ L defined in (9.1).
2: Compute the polynomials û0, û1, . . . , ûk ∈ L defined in (9.2)

3: return û =
∑k

i=0 ûiτ
i.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

RANK TWO DRINFELD MODULAR POLYNOMIALS AND ISOGENIES 309

Theorem 9.1. For any rank 2 Drinfeld module ϕ over L = Fq[T ]/PFq[T ], any
polynomial n ∈ A with P � n, and any n-isogeny u defined on ϕ, Algorithm 9.1
computes the dual isogeny û of u in

O
(
degT (n)

2M(d)
)

Fq-operations, as |P |, |n| −→ ∞, with a storage requirement of O(degT (n)d) ele-
ments in Fq. Here, M(n) is the number of Fq-operations required to multiply two
polynomials in Fq[T ] of degree n.

Proof. Step 1 computes k + 1 elements in L, where each such element needs
a fixed number of multiplications and exponentiations by q. So the cost of step 1
is O(kM(d)) operations in Fq and O(kd) space. Step 2 computes k elements in L,
and the number of operations in L required to compute the j-th such element is
O(j). Hence this step has a computational cost of O(k2M(d)) operations in Fq,
requiring storage of O(kd) elements in Fq. �

Example 9.2. Consider the (T 2 + 1)-isogeny u computed in Example 8.2.
Algorithm 9.1 computes the dual of u as û = û0 + û1τ + û2τ

2 ∈ L{τ} where

û0 =2T 6 + 2T 5 + T 4 + 2T 3 + 2T + 1 ,

û1 =T 8 + T 7 + 2T 6 + 2T 5 + 2T 4 + 2 ,

û2 =T 8 + T 7 + T 6 + 2T 5 + T 4 + T 3 + 2T 2 + 1 .

10. Current and future work

Exploration into computations on rank 2 Drinfeld modules is still very much
in its infancy. In terms of generating modular polynomials, we are as yet a long
way away from producing comprehensive tables like those for classical modular
polynomials supplied by Sutherland [45]. Endomorphism ring computation for
Drinfeld modules also lags behind what can be accomplished for elliptic curves. An
optimized high-speed implementation will narrow that gap.

Not surprisingly, among the algorithms presented here, our method for com-
puting Drinfeld modular polynomials is the most costly due to the size of the poly-
nomials involved in the computation. The gap in the complexity estimate between
this algorithm and its classical counterpart is somewhat vexing. Using the method-
ology and coefficient bounds of Bae-Lee [3], it appears that our estimate cannot be
improved. Perhaps taking sparsity of the j-expansions in s and its coefficients in
T into account would help, but such an analysis seems challenging. On the other
hand, it is possible that this issue simply represents a fundamental difference be-
tween the behaviour of classical and Drinfeld modular polynomials. As mentioned
earlier, while the logarithmic height of the classical modular polynomial Φ�(X,Y )
grows quasilinearly in �, the growth of the coefficients of the �-th Drinfeld modular
polynomial is between linear and cubic [3]. In all our examples with degT (�) = 1,
the logarithmic height H of Φ�(X,Y ) was H = q(|�|2 + |�|) = q3 + q2. For all the
examples with degT (�) = 2 that we computed, the height stayed below q(|�|2+ |�|).
This matter clearly warrants further investigation. Our computations are as yet
too modest to observe consistent behaviour here, let alone formulate a hypothesis.
A fast implementation that is able to produce larger volumes of data will shed more
light on this question.
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As a start, we opted to adopt the standard analytic approach for computing
classical modular polynomials to the Drinfeld module setting. There are other
techniques such as computing the modular polynomial modulo many small primes
and then lifting it via Chinese Remaindering (see, for example [6,9,46]) or Enge’s
evaluation-interpolation method [15]. Work on exploring these algorithms in the
context of Drinfeld modules is currently in progress. In addition, Hilbert class poly-
nomials play a crucial role in the elliptic curve analogues of many of the algorithms
under consideration here, and their computation is closely linked to obtaining mod-
ular polynomials and isogeny volcanoes. The Drinfeld analogue would be the poly-
nomial HO(X) ∈ A[X] whose roots are the j-invariants of rank 2 Drinfeld modules
with endomorphism orders isomorphic to O. While Gekeler [20] and Hayes [33]
laid the theoretical ground work, and singular moduli were discussed, for example,
in [11,12], there has to date been no investigation of Hilbert class polynomials for
Drinfeld modules to the best of our knowledge. We intend to fill this gap.

Our treatment did not extend to supersingular rank 2 Drinfeld modules, nor
to those with j-invariant 0. An investigation of these cases is currently under-
way. Kohel [36, Chap. 7] showed that the �-isogeny subgraph of supersingular
elliptic curves over a finite field is connected and gave an algorithm for comput-
ing four Z-linearly independent endomorphisms of a given curve. We expect that
the �-isogeny graph of a supersingular rank 2 Drinfeld module will look similar
and Kohel’s work can be adapted to this setting. We are also exploring ways of
computing the endomorphism ring of a supersingular rank 2 Drinfeld module. In
[4], Bisson and Sutherland presented two index calculus algorithms for computing
the endomorphism ring of an ordinary elliptic curve. Under reasonable smoothness
assumptions, both methods have sub-exponential run time. The approach seems to
lend itself well to adaptation to rank 2 Drinfeld modules over Fq. However, the run
time will likely generally be exponential in the size of q, since the corresponding
smoothness parameter only bounds the degrees of polynomial factors in relations,
but not their coefficients in Fq. Recent computational advances in the context of
isogenies and endomorphisms of Abelian surfaces also lead to the natural questions
of analogous notions and computations on Drinfeld modules of higher rank.

Isogeny volcanoes for Drinfeld modules give rise to a number of open questions
as well. We did not attempt to use Proposition 2.1 for generating isogeny volcanoes.
The explicit construction of a linear n-isogeny defined on ϕ = (g,Δ) over L relies on
the existence of a root of the polynomial ΔXq+1 + gX + n in L. For the case n = �
monic and irreducible, it is conceivable that the entire �-isogeny volcano of ϕ can
be constructed using this approach. It may then be possible to adapt classical
methods that compute Φ�(X,Y ) from the �-isogeny volcano, such as the algorithms
described in [6], to the Drinfeld module setting. Moreover, isogeny volcanoes of
Drinfeld modules may have other applications. In the elliptic curve setting, isogeny
graphs can be used to detect supersingularity, see [47]; the same may be true
for Drinfeld modules. Fouquet and Morain [16,17] employed isogeny volcanoes for
point counting on elliptic curves; it is unclear if there is a corresponding application
for Drinfeld modules.

This last point leads back to the broader tantalizing question of similarities
and differences between elliptic curves and rank 2 Drinfeld modules. A crucial
distinction between the two classes of objects is that the geometric structure and
properties of elliptic curves do not appear to carry over to Drinfeld modules; in
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this context, their otherwise close resemblance seems to come to an abrupt end.
There is no notion of “points” on Drinfeld modules, and the fundamental point
counting formula #E(Fp) = p + 1 − ap, where ap is the trace of Frobenius, has
no meaning here. Vélu’s formulas for constructing cyclic isogenies seem to have
no obvious Drinfeld module analogue either, and conversely, our construction of
Algorithm 8.1 appears to not be applicable to elliptic curves. On the other hand,
Drinfeld modules do support a notion of torsion points — the roots of any image ϕa

for a ∈ A; see Section 2 — so perhaps further analogies extending to the geometry
of elliptic curves could be discovered. Possible starting points might be Yu’s kernel
lattice construction of isogenies [49, Sec. 2] or divisibility properties and kernels of
polynomials in L{τ}.
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