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PRIME DECOMPOSITION AND CLASS NUMBER
FACTORS FOR CERTAIN FUNCTION FIELDS

TOBIAS BEMBOM, RENATE SCHEIDLER AND QINGQUAN WU

RÉSUMÉ. Le but de cet article est double. En premier lieu, nous donnons une ca-
ractérisation explicite de la décomposition de n’importe quelle place d’un corps de
fonctions quartique contenant un sous-corps quadratique. Notre approche est générale
et peut (potentiellement) être étendue pour déterminer les décompositions dans tout
corps de fonctions. En second lieu, nous obtenons des résultats sur les facteurs pre-
miers des nombres de classes de certaines familles infinies d’extensions de corps de
fonctions. Les deux résultats peuvent être utilisés pour accélérer le calcul du nombre
de classes des extensions de corps de fonctions considérées.

ABSTRACT. The contribution of this paper is two-fold. Firstly, we provide an
explicit characterization of the decomposition of any place in a quartic function field
with quadratic subfields. Our approach is general and can be potentially extended to
determine decompositions in any function field. Secondly, we provide results on prime
factors of class numbers of certain infinite families of function field extensions. Both
results can be used to speed up the computation of the class number for the function
field extensions under consideration.

1. Introduction and motivation

Computing the class number of a global field is a central problem in number theory,
and a large amount of literature has been devoted to this subject. Recently, a general
method for determining the class number of an arbitrary function field was presented
in [13]. This algorithm consists of two stages. In the first stage, an approximation E
of the class number h and an error bound U are computed such that |h − E| ≤ U .
The approximation E is generated via the truncated Euler product representation of
the zeta function of the function field. In order to obtain this representation, the prime
decompositions of a large number of irreducible polynomials in the function field need
to be determined. In the second stage of the class number algorithm of [13], the interval
[E − U,E + U ] is searched using a baby step giant step or Pollard kangaroo method.
This stage can be improved significantly if the class number is known to belong to a
particular congruence class. In essence, if h (modm) is known, then the search can be
sped up by a factor of m. The method of [13] had previously been applied to quadratic
[15] and purely cubic [12, 7] function fields with considerable success and motivates
the work in this article, most of which can also be found in [5].
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We provide an explicit characterization of the decomposition of any rational place
in a quartic function field with a quadratic subfield. This decomposition can be easily
and efficiently determined from a suitable minimal polynomial of the quartic exten-
sion, including the cases that cannot be resolved by Kummer’s Theorem. In contrast
to previous approaches, our method can potentially be generalized to arbitrary function
fields. It does not make use of properties that are specific to extensions of this degree
only, such as root formulas. In contrast, the signature characterizations for cubic fields
given in [14], [9] and [8] for example make use of Cardano’s formulas. Moreover, un-
like the techniques just cited as well as that of [19], we do not need to resort to P -adic
expansions. Our technique has two main surprisingly simple ingredients. Firstly, where
possible, we apply suitable variable transformations to the initial minimal polynomial
of the extension to reduce potentially problematic cases that cannot be resolved by
Kummer’s Theorem to simpler scenarios that are covered by this theorem. Secondly,
instead of viewing the function field F as an algebraic extension Fq(x)(y) of Fq(x),
where x is transcendental over Fq, as is generally done, we view it as an extension
of Fq(y). This allows for a simpler classification of possible prime decompositions.
The degree of the extension F/Fq(y) is the degree of the pole divisor of y which will
play an important role in our work. By applying suitable variable transformations that
do not change the decomposition of any rational place, we can determine this degree
explicitly.

Our second contribution is a collection of results on factors of class numbers for
certain function field extensions that need not be defined by non-singular curves. Rather
than having to resort to genus theory, these results can be obtained by considering
the zero divisors of certain well-chosen elements in the function field and explicitly
constructing appropriate divisor classes.

This paper is organized as follows. We introduce the necessary notation and prop-
erties of function fields in Section 2, thereby laying the ground work for our later re-
sults. We briefly revisit prime decomposition in a cubic extension in Section 3. The
decomposition of the infinite place of Fq(x) and every finite place of Fq(x) in a quartic
extension with an intermediate quadratic subfield are presented in Sections 4 and 5,
respectively. Section 6 contains divisibility results for divisor class numbers of certain
infinite families of function fields. We conclude with some open problems in Section 7.

2. Function fields — notation and preliminaries

2.1. Notation
For a general introduction to algebraic function fields, we refer to [16] or [11].

Throughout this paper, let Fq be a finite field of order q and x be a fixed transcendental
element over Fq. For any non-zero polynomial Q ∈ Fq[x], we denote by deg(Q) its
degree and by sgn(Q) the leading coefficient ofQ. Throughout the paper,F will denote
an algebraic function field over Fq such that F/Fq(x) is separable.

Denote the set of places of F by PF . For each P ∈ PF , we let vP denote its
normalized discrete valuation and OP its valuation ring. Write P | P if P lies above
P ∈ PFq(x). The infinite place P∞ of Fq(x) has uniformizer 1/x and the finite places
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in Fq(x) can be one-to-one identified with the (non-constant) monic irreducible poly-
nomials in Fq[x] which are respective uniformizers for these places; we will use the
same notation (usually P ) for both a finite place of Fq(x) and its corresponding monic
irreducible polynomial in Fq[x]. The infinite places of F are the places P | P∞, and
the finite places of F satisfy P | P for some finite place P of Fq(x).

For any P ∈ PFq(x) and P ∈ PF lying above P , the ramification index and relative
degree of P | P are denoted by e(P|P ) and f(P|P ), respectively. For brevity, we also
write eP and fP if P is fixed. The tuple of pairs (e(P|P ), f(P|P )), usually sorted in
lexicographical order, is the P -signature of F/Fq(x). The P∞-signature is usually just
called the signature of F/Fq(x).

For most places P ∈ PFq(x), Kummer’s Theorem (see Theorem 3.3.7 of [16]) can
be used to completely determine the P -signature of F/Fq(x). Suppose F = Fq(x, y)
with y integral over OP . Let F (T ) ∈ OP [T ] be the minimal polynomial of y and
γ(T ) ∈ Fqdeg(P ) [T ] be any monic irreducible factor of F modulo P . If γ(y) ∈ P,
i.e., vP(γ(y)) > 0 for some P ∈ PF lying above P , then γ is said to belong to P.
Kummer’s Theorem asserts that every such γ(T ) belongs to at least one place P | P ,
and f(P|P ) ≥ deg(γ). Moreover, if the powers 1, y, . . . , yn−1 of y form an OP -basis
of OP, then the number of irreducible factors of F (mod P ) is equal to the number of
places P | P , f(P|P ) = deg(γ) if γ belongs to P, and e(P|P ) is the exact power of
γ that divides F (mod P ).

Throughout this paper, we will assume that F = Fq(x, y), where the minimal
polynomial of y over Fq(x) is

(2.1) F (x, T ) = T k +Ak−1(x)T
k−1 + · · ·+A1(x)T +A0(x) ∈ Fq(x)[T ].

Most of the time, we will additionally assume that Ai ∈ Fq[x], for 0 ≤ i ≤ k − 1; so
F (x, T ) ∈ Fq[x, T ]. If this is the case, then for any finite place P ∈ PFq(x), F is said
to be in standard form at P if vP (Ai) < k − i for some i ∈ {0, . . . , k − 1}. Standard
form at any P can easily be obtained: if vP (Ai) ≥ k − i for 0 ≤ i ≤ k − 1, then we
can simply divide F (x, T ) by P k and replace y by y/P to achieve standard form at P .

2.2. A helpful identity
Our main goal in this section is to establish the highly useful identity∑

P|P

vP(y)f(P|P ) = vP (A0)

for all places P ∈ PFq(x), with A0 = F (x, 0) and F (x, T ) ∈ Fq[x, T ] given by (2.1).
First, some auxiliary results that will lead up to this identity.

Lemma 2.1. Let F = Fq(x, y) be a function field with F (x, y) = 0 and let
F (x, T ) ∈ Fq[x, T ] as in (2.1). Then 0 ≤ vP(y) ≤ e(P|P )maxi{vP (Ai)} for ev-
ery finite place P of Fq(x) and every place P | P of F .

Proof. Let P be any finite place of F , and let P be the unique finite place of Fq(x)
such that P | P . Obviously, vP(Ai) ≥ 0 for 1 ≤ i ≤ k − 1. Hence y is integral over
OP. Since OP is integrally closed in F by Proposition 3.2.5 (b) of [16], we know that
y ∈ OP; hence vP(y) ≥ 0.
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For brevity, set Ak = 1. Applying the triangle inequality to F (x, y) = 0, we see
that there must exist indices i, j, with 0 ≤ i < j ≤ k and vP(Ajy

j) = vP(Aiy
i). Thus,

vP(y) =
vP(Aj)− vP(Ai)

j − i

≤ vP(Aj)

= e(P|P )vP (Aj)

≤ e(P|P ) max
1≤i≤k−1

{vP (Ai)}.

�

Lemma 2.2. Let F = Fq(x, y) be a function field with F (x, y) = 0 and let
F (x, T ) ∈ Fq(x)[T ] as in (2.1). If min vP∞(Ai) = vP∞(A0) ≤ 0, then vP(y) ≤ 0 for
every infinite place P of F .

Proof. Let P be any infinite place of F . Then vP(A0) = mini{vP(Ai)} ≤ 0. If
vP(y) > 0, then vP(A0) < vP(y

n) and vP(A0) < vP(Aiy
i) for 1 ≤ i ≤ k − 1, which

contradicts the strict triangle inequality applied to F (x, y) = 0. �

Lemma 2.3. Let F (x, T ) ∈ Fq[x, T ] be given by (2.1). Then F (T, y) is irreducible
over Fq(y).

Proof. Let F (T, y) = f(T, y)g(T, y) with f, g ∈ Fq[y][T ]. Since F (T, y) is irre-
ducible over Fq(T ), either f(T, y) or g(T, y) must be constant with respect to y; say
g(T, y) ∈ Fq[T ]. Since F (T, y) is monic in y, g(T, y) is also constant with respect to T ,
so g ∈ F∗q . It follows that F (y, T ) is irreducible over Fq[y], and hence over Fq(y). �

Every divisor D of F can be written as D = D+ −D−, where

D+ =
∑

vP(D)>0

vP(D)P, D− = −
∑

vP(D)<0

vP(D)P,

and the sums run over all the places P of F with vP(D) 6= 0. If div(z) denotes the
principal divisor of z ∈ F∗, then

(2.2) deg(div(z)+) = deg(div(z)−) = [F : Fq(z)]

by Theorem 1.4.11 of [16].

Corollary 2.4. Let F = Fq(x, y) be a function field with F (x, y) = 0 and let
F (x, T ) ∈ Fq[x, T ] as in (2.1). Then deg(div(y)−) = maxi{deg(Ai)}.

Proof. By Lemma 2.3, F (T, y) ∈ Fq[T, y] is irreducible over Fq(y). Conse-
quently, by (2.2), deg(div(y)−) = [F : Fq(y)] is the degree in T of F (T, y) which
is equal to maxi{deg(Ai)}. �

Corollary 2.5. Let F = Fq(x, y) be a function field with F (x, y) = 0 and let
F (x, T ) ∈ Fq[x, T ] as in (2.1). If deg(A0) = maxi{deg(Ai)}, then

−
∑
P|P∞

vP(y)f(P|P∞) = deg(div(y)−) = deg(A0).
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Proof. The first equality of the claim follows from Lemmata 2.1 and 2.2, and the
second one from Corollary 2.4. �

We are now ready to present the main result of this section.

Theorem 2.6. Let F = Fq(x, y) be a function field with F (x, y) = 0 and let
F (x, T ) ∈ Fq[x, T ] be as in (2.1). Then

∑
P|P vP(y)f(P|P ) = vP (A0) for every

place P ∈ Fq(x).

Proof. For brevity, set Ak = 1 and ni = deg(Ai), for 0 ≤ i ≤ k. We first prove
the theorem for the infinite place P∞ of Fq(x). Let n ∈ N, with n ≥ maxi{ni}. Then
n ≥ (ni − n0)/i, for 1 ≤ i ≤ k, and it now follows easily that

(2.3) max
0≤i≤k

{ni + (k − i)n} = n0 + kn.

For any finite degree 1 place Q of Fq(x), the minimal polynomial of yQn over Fq(x) is

T k +
k−1∑
i=0

Ai(x)Q(x)(k−i)nT i ∈ Fq[x, T ].

By Corollary 2.5 and (2.3), we see that

(2.4)
∑
P|P∞

vP(yQ
n)f(P|P∞) = −deg(div(y)−) = −(n0 + kn).

Since
∑

P|P∞
vP(Q

n)f(P|P∞) = nk vP∞(Q) = −nk, we obtain∑
P|P∞

vP(y)f(P|P∞) = −n0 = vP∞(A0).

So the result of Theorem 2.6 holds for the infinite place P∞ of Fq(x).

Next, we prove the claim for any finite place of Fq(x). So let P ∈ PFq(x) be such a
place. For brevity, set nP = deg(P ), l = vP (A0) and m = maxi{vP (Ai)}. We need
to show that

∑
P|P vP(y)f(P|P ) = l.

Let n ∈ N, with n ≥ mnP +maxi{ni}. Then

n ≥ mnP + (ni − n0)/i ≥ (ni − n0)/i
for 0 ≤ i ≤ k, and it now follows easily that (2.3) holds and

(2.5) max
0≤i≤k

{ni + (k − i)n+ (i− k)mnP } = n0 + kn− kmnP .

Let Q 6= P be any finite place of degree 1, and set z = yQn/Pm ∈ F . Then

vP(z) = vP(y/P
m) = vP(y)− e(P|P )m

for all places P | P of F , so

(2.6)
∑
P|P

vP(y)f(P|P ) =
∑
P|P

vP(z)f(P|P ) + km.

To establish the claim of the theorem for P , we therefore need to prove that∑
P|P

vP(z)f(P|P ) = l − km.



330 PRIMES AND CLASS NUMBERS FOR FUNCTION FIELDS

To that end, we determine the support of div(z)− .

The minimal polynomial of z over Fq(x) is

T k +
k−1∑
i=0

Ai(x)Q(x)(k−i)nP (x)(i−k)mT i ∈ Fq(x)[T ].

By (2.5), we have mini{vP∞(AiQ
(k−i)nP (i−k)m)} = −n0−kn+kmnP ≤ −nk = 0.

Thus, by Lemma 2.2, vP(z) ≤ 0 for all the infinite places P of F .

For every finite place P ∈ PF with P - P , we have

vP(z) = vP(yQ
n) ≥ vP(y) ≥ 0

by Lemma 2.1. Finally, for every finite place P of F lying above P , we have

vP(z) = vP(y)− e(P|P )m ≤ 0,

again by Lemma 2.1. It follows that div(z)− is only supported at places P of F with
P | P or P | P∞. Hence

−deg(div(z)−) = nP
∑
P|P

vP(z)f(P|P ) +
∑
P|P∞

vP(z)f(P|P∞).

Now vP(z) = vP(yQ
n) + e(P|P∞)mnP for any P|P∞. So by (2.4),∑

P|P∞

vP(z)f(P|P∞) = −n0 − kn+ kmnP .

It follows that

(2.7) nP
∑
P|P

vP(z)f(P|P ) = −deg(div(z)−) + n0 + kn− kmnP .

It remains to determine deg(div(z)−) = [F : Fq(z)]. We proceed similarly to the
proofs of Corollary 2.4 and Lemma 2.3. Set

G(z, T ) = zkP (T )km−l +
k−1∑
i=0

zi
Ai(T )

P (T )l
Q(T )(k−i)nP (T )im

= F (T, y)Q(T )nk/P (T )l.

Note that G(z, T ) ∈ Fq[z, T ] since l ≤ km and vP (Ai) ≥ l for 0 ≤ i ≤ k − 1.
Furthermore, G(z, x) = 0. We claim that G(z, T ) is irreducible over Fq(z). Note that
G(z, T ) is irreducible over Fq(T ), since F (T, y) is irreducible over Fq(T ). Suppose
that G(z, T ) = g(z, T )h(z, T ), with g, h ∈ Fq[z][T ]. Then either g(z, T ) or h(z, T ) is
constant with respect to z; say g ∈ Fq[T ]. Then

g | G(0, T ) = A0Q
knP−l = QnkA0/P

vP (A0),

which implies that P - g. Besides this, g divides the leading coefficient of G(z, T ),
which is P km−l. Since l ≤ m < km, g is also a constant with respect to T , so g ∈ F∗q .
It follows that G(z, T ) is irreducible over Fq[z], and hence over Fq(z).
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It follows from (2.2) and (2.5) that

deg(div(z)−) = [F : Fq(z)]

= max
0≤i≤k

{deg(AiQ
(k−i)nP im−l)}

= max
0≤i≤k

{ni + (k − i)n+ (im− l)nP }

= n0 + kn− lnP ,
and thus from (2.7), ∑

P|P

vP(z)f(P|P ) = l − km.

Finally, the assertion of the theorem follows for P by (2.6). �

3. Interlude: some problematic prime decompositions in
cubic extensions

Simple variable transformations to a new field extension generator, as used in the
proof of Theorem 2.6, can be a surprisingly powerful tool for finding prime decom-
positions that are not completely resolved by Kummer’s Theorem. Here, we illustrate
very briefly the effectiveness of this technique using the well-known example of cubic
extensions. Certain P -signatures which were previously treated at a consirable level of
complexity can be settled in a few lines with this method.

Explicit descriptions of prime decompositions in cubic function fields were pro-
vided in [14], [9], [8], [19] and [4]. As mentioned earlier, the first three sources consid-
ered only the case where Fq has characteristic at least 5 and needed to resort to Puiseux
series expansions and Cardano’s formulas in order to settle the cases that are unresolved
by Kummer’s Theorem. The case of characteristic 3 was discussed in [4], while in [19]
any characteristic were considered, but again by using P -adic completions. We show
here that for any cubic extension of Fq(x) of characteristic at least 5, and any place
P of Fq(x), it is always possible — and straightforward — to find a suitable minimal
polynomial for which Kummer’s Theorem determines the P -signature.

Every cubic extension of Fq(x) can be written in the form F = Fq(x, y), where the
minimal polynomial of y over Fq(x) is of the form

(3.1) F (x, T ) = T 3 −A(x)T +B(x) ∈ Fq[x, T ],

with discriminant D = 4A3 − 27B2 ∈ Fq[x]. The cases for which the signature at
infinity of F/Fq(x, y) cannot be simply obtained through Kummer’s Theorem (applied
to P∞) occur exactly when 2 deg(B) = 3 deg(A) and 4 sgn(A)3 = 27 sgn(B)2, so
that deg(D) < 3 deg(A) = 2 deg(B).

Proposition 3.1. Let F = Fq(x, y) be a cubic function field with F (x, y) = 0 and
F (x, T ) as in (3.1). Set D = 4A3 − 27B2 and assume that 2 deg(B) = 3 deg(A) and
4 sgn(A)3 = 27 sgn(B)2. Then F/Fq(x) has signature

(a) (1, 1; 1, 1; 1, 1), if deg(D) is even and sgn(D) is a square in Fq;
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(b) (1, 1; 1, 2), if deg(D) is even and sgn(D) is not a square in Fq;

(c) (1, 1; 2, 1), if deg(D) is odd.

Proof. The idea is to find a suitable generator of F/Fq(x) so that D is a common
factor of the coefficients of the minimal polynomial.

Set y1 = 2Ay, y2 = y1 − 3B, y3 = y2/B, y4 = y−13 , y5 = y4 + 1/3, and
y6 = 3Dy5/A. Note that replacing y by any yi does not change the field F or the
signature of F/Fq(x). For 1 ≤ i ≤ 6, let Fi be the minimal polynomial of yi. Then it
is straightforward to verify that

F1(T ) = T 3 − 4A3T + 8A3B,

F2(T ) = T 3 + 9BT 2 −DT −DB,

F3(T ) = T 3 + 9T 2 − (D/B2)T −D/B2,

F4(T ) = T 3 + T 2 − (9B2/D)T −B2/D,

F5(T ) = T 3 − (9B2/D + 1/3)T + (2B2/D + 2/27)

= T 3 − (4A3/3D)T + 8A3/27D,

F6(T ) = T 3 − 12ADT + 8D2.

Since 3 deg(A) > deg(D), we see that 3 deg(12AD) > 2 deg(8D2). So this is one of
the scenarios where Kummer’s Theorem provides the P∞-signature. �

For any finite place P of Fq(x), the problematic P -signatures correspond precisely
to the scenario when P - AB and P | D. We can obtain these P -signatures by ap-
plying Kummer’s Theorem to the minimal polynomial F6(T ) as given in the proof of
Proposition 3.1, converted to standard form at P .

4. Infinite prime decomposition in quartic fields with a
quadratic subfield

We now turn our attention to quartic fields F/Fq(x) of odd characteristic that con-
tain at least one quadratic subfield. First, we determine the (P∞-)signature of such an
extension. Our method will make use of Corollary 2.5, combined with suitable changes
of the generator of F/Fq(x) and Kummer’s Theorem.

LetF be an algebraic function field over Fq of odd characteristic such thatF/Fq(x)
has degree 4 and contains at least one intermediate quadratic field. Then F/Fq(x) is
separable and simple. By Proposition 3.1 of [17], we can always obtain F = Fq(x, y)
with

(4.1) F (x, y) = y4 −A(x)y2 +B(x) = 0,

where A(x), B(x) ∈ Fq[x]. The required variable transformation does not change the
P -signature of F/Fq(x) for any place P . Note that the discriminant of T 2 − AT + B
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is D = A2 − 4B. For brevity, set

(4.2) n2 = deg(A) and n0 = deg(B), with n2 < n0.

This inequality can easily be achieved if we replace y by yxm, A(x) by A(x)x2m and
B(x) by B(x)x4m for sufficiently large m ∈ Z+. From Corollary 2.5, we obtain

(4.3) −
∑
P|P∞

vP(y)fP = deg(div(y)−) = n0.

By (4.1),

(4.4) 4vP(y) ≥ min(L), where L = {−ePn2 + 2vP(y),−ePn0}

for any infinite place P of F , with eP = e(P|P∞). This leads to the following three
cases:

Case (i). If min(L) = −ePn2 + 2vP(y) is the strict minimum of L, then

4vP(y) = −ePn2 + 2vP(y),

i.e., vP(y) = −ePn2/2. It follows that n0 < 2n2.

Case (ii). If min(L) = −ePn0 is the strict minimum of L, then similarly

vP(y) = −ePn0/4,

and hence n0 > 2n2 .

Case (iii). If min(L) = −ePn2 + 2vP(y) = −ePn0, i.e.,

vP(y) = −eP(n0 − n2)/2,

then similarly n0 ≤ 2n2.

Considering these three cases separately is helpful to determine the signature of
F/Fq(x). Note that since Fq has odd characteristic, polynomials of the form T 2 − a
and T 4 + b cannot have multiple roots.

Theorem 4.1. Let F = Fq(x, y) be of characteristic at least 3, with F (x, y) = 0
as in (4.1). Let n2, n0 be as in (4.2), a = sgn(A), b = sgn(B), D = A2 − 4B,
d = sgn(D), and nD = deg(D). Then F/Fq(x) has signature

(a) (1, 1; 1, 1; 1, 1; 1, 1), if
n0 < 2n2, 2 | n0, 2 | n2, and both a and b are squares in Fq, or

n0 = 2n2, 2 | n2, and T 4 − aT 2 + b has four distinct roots in Fq, or

n0 = 2n2, 2 | n2, a2 = 4b, 2 | nD, and both a/2 and d are squares in Fq, or

2n2 < n0, 4 | n0, and T 4 + b has four distinct roots in Fq;

(b) (1, 1; 1, 1; 1, 2), if
n0 < 2n2, 2 | n0, 2 | n2, and b is not a square in Fq, or

n0 = 2n2, 2 | n2, and T 4 − aT 2 + b has exactly two distinct roots in Fq, or

2n2 < n0, 4 | n0, and T 4 + b has exactly two distinct roots in Fq;



334 PRIMES AND CLASS NUMBERS FOR FUNCTION FIELDS

(c) (1, 1; 1, 1; 2, 1), if{
n0 < 2n2, 2 - n0, 2 - n2, and ab is a square in Fq, or

n0 < 2n2, 2 - n0, 2 | n2, and a is a square in Fq;

(d) (1, 2; 1, 2), if

n0 < 2n2, 2 | n0, 2 | n2, a is not a square in Fq, and b is a square in Fq, or

n0 = 2n2, 2 | n2, and T 4 − aT 2 + b factors into a product of two distinct
irreducible quadratic polynomials in Fq, or

n0 = 2n2, 2 | n2, a2 = 4b, 2 | nD, and at least one of a/2 and d is not a
square in Fq, or

2n2 < n0, 4 | n0, and T 4 + b factors into a product of two irreducible qua-
dratic polynomials in Fq;

(e) (1, 2; 2, 1), if{
n0 < 2n2, 2 - n0, 2 - n2, and ab is not a square in Fq, or

n0 < 2n2, 2 - n0, 2 | n2, and a is not a square in Fq;

(f) (1, 4), if{
n0 = 2n2, 2 | n2, and T 4 − aT 2 + b is irreducible in Fq, or

2n2 < n0, and T 4 + b is irreducible in Fq;

(g) (2, 1; 2, 1), if

n0 < 2n2, 2 | n0 and 2 - n2, or

n0 = 2n2, 2 - n2, a2 6= 4b, and a2 − 4b is a square in Fq, or

n0 = 2n2, 2 - n2, a2 = 4b, 2 | nD, and d is a square in Fq, or

n0 = 2n2, a2 = 4b, 2 - nD, and a/2 is a square in Fq, or

2n2 < n0, n0 ≡ 2 (mod 4), and −b is a square in Fq;

(h) (2, 2), if
n0 = 2n2, 2 - n2, a2 6= 4b, and a2 − 4b is not a square in Fq, or

n0 = 2n2, 2 - n2, a2 = 4b, 2 | nD, and d is not a square in Fq, or

n0 = 2n2, a2 = 4b, 2 - nD, and a/2 is not a square in Fq, or

2n2 < n0, n0 ≡ 2 (mod 4), and −b is not a square in Fq;

(i) (4, 1), if 2n2 < n0, and 2 - n0.

Proof. Henceforth, P1, P2, P3 refer to infinite places of F that satisfy cases (i),
(ii), (iii) above, respectively.
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Case 1. Assume that n0 < 2n2. Then, clearly, only cases (i) and (iii) may occur. We
claim that both cases must occur. Otherwise, first assume that (i) is the only possible
case. Then every infinite place P of F satisfies vP(y) = −ePn2/2, which implies
n0 = 2n2 by (4.3), a contradiction. Likewise, (iii) cannot be the only possible case.

We now distinguish according to the parities of n0 and n2.

Case 1.1. Assume that both n0 and n2 are odd. It follows that eP1 is even. Since
there are at least two infinite places in F , it follows that eP1 = 2. The minimal polyno-
mial of z = Bx−(n0+n2)/2y−1 reduces to T 2(T 2−ab) modulo P∞. It is straightforward
to verify that vP1(z) = 2n2 − n0 > 0, hence vP1(z

2 − ab) = 0 by strict triangle in-
equality. This implies that any irreducible factor γ(T ) of T 2 − ab (mod P∞) belongs
to a place P3. By Kummer’s Theorem, if ab is a square in Fq, then there are two places
P3 above P∞, implying signature (1, 1; 1, 1; 2, 1), whereas if ab is a non-square in Fq,
then there is one inert place P3, implying signature (1, 2; 2, 1).

Case 1.2. Assume that n0 is even and n2 is odd. By the equalities

vP1(y) = −eP1n2/2 and vP3(y) = −eP3(n0 − n2)/2,

both eP1 and eP3 are even, which implies signature (2,1;2,1).

Case 1.3. Assume that n0 is odd and n2 is even. Then eP3 is even, and as in Case
1.1, we see that eP3 = 2. The minimal polynomial of z = x−n2/2 y modulo P∞ is
T 2(T 2 − a). It is easy to verify that vP3(z) = 2n2 − n0 > 0, which implies that
vP3(z

2 − a) = 0. Thus, any irreducible factor γ(T ) of T 2 − a belongs to a place P1.
Again by Kummer’s Theorem, if a is a square in Fq, then there are two places P1 above
P∞, which implies signature (1, 1; 1, 1; 2, 1), whereas if a is a non-square in Fq, then
there is one inert place P1, which implies signature (1, 2; 2, 1).

Case 1.4. Assume that both n0 and n2 are even. The reductions modulo P∞ of the
minimal polynomials of x−n2/2 y and Bx−(n0+n2)/2y−1 are

T 2(T 2 − a) and T 2(T 2 − ab),

respectively. Similar to Cases 1.1 and 1.3, any irreducible factor of T 2 − ab belongs
to P3 and any irreducible factor of T 2 − a belongs to P1. Thus, the factorizations of
T 2 − a and T 2 − ab over Fq will again determine the signature uniquely.

Case 2. Assume that n0 > 2n2. Then case (ii) is the only possibility. Thus any
infinite place P2 in F satisfies vP2(y) = −eP2n0/4.

Case 2.1. If n0 is odd, then F must have signature (4,1).

Case 2.2 If n0 ≡ 2 (mod 4), there exists at least one place P2 with eP2 even. Then
the minimal polynomial of x−n0/2y2 modulo P∞ is T 2 + b, hence P∞ is unramified in
the quadratic extension Fq(x, y

2)/Fq(x). Thus the factorization of T 2 + b over Fq will
determine the signature uniquely.

Case 2.3. Assume that 4 | n0. Then the minimal polynomial of x−n0/4y modulo
P∞ is T 4 + b, which has no multiple roots. Hence Kummer’s Theorem yields the
signature.

Case 3. Assume that n0 = 2n2 and a2 6= 4b. Then only case (iii) is possible, hence
any infinite place P3 in F satisfies vP3(y) = −eP3(n0 − n2)/2 = −eP3n2/2.
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Case 3.1. Assume that n2 is odd. Then eP3 is even. The reduction modulo P∞ of
the minimal polynomial of y2 −A/2 is T 2 − a2/4 + b which has distinct roots. Hence
P∞ is unramified in the quadratic extension Fq(x, y

2)/Fq(x). Together with the fact
that eP3 is even, our result follows.

Case 3.2. Assume that n2 is even. The reduction modulo P∞ of the minimal
polynomial of x−n2/2y is T 4 − aT 2 + b, which has distinct roots. Kummer’s Theorem
again yields the signature.

Case 4. Finally, assume that n0 = 2n2 and a2 = 4b. Then nD < n0 = 2n2.
Again, only case (iii) is possible, and as in Case 3, any infinite place P3 in F satisfies
vP3(y) = −eP3n2/2.

Let M = Fq(x)(y
2) = Fq(

√
D), and consider the quadratic extension F/M de-

fined by the equation T 2 = (A +
√
D)/2. Let pM be any infinite place of M . Since

nD < 2n2, we have

vpM (A) = −e(pM |P∞)n2 < −e(pM |P∞)nD/2 = −vpM (D)/2 = −vpM (
√
D),

which implies that vpM (A+
√
D) = vpM (A) = −e(pM |P∞)n2. By Proposition 3.7.3

of [16], pM is ramified in the quadratic extension F/M if e(pM |P∞)n2 is odd and
unramified in F/M if e(pM |P∞)n2 is even. Equivalently, by the same proposition, pM
is ramified in F/M if and only if n2 is odd and nD is even. Combined with the fact that
P∞ is ramified in M/Fq(x) if and only if nD is odd, we infer that P∞ is unramified
in F/Fq(x) if and only if both n2 and nD are even, and P∞ has ramification index 2
otherwise.

Case 4.1. Assume that both n2 and nD are odd, so eP3 = 2. Note that a uniformizer
for pM is t =

√
Dxm for m = −(1 + nD)/2. Changing the field generator of F/M

from y to z = ytn2 does not change the signature. The minimal polynomial of z over
M is

T 2 = (A+
√
D)t2n2/2 = (A+

√
D)Dn2x2mn2/2,

which reduces to T 2 − a/2 modulo pM . If a/2 is a square in Fq, then F has at least
two infinite places, whereas if a/2 is a non-square in Fq, then F has one infinite place.
Combined with the fact that eP3 = 2, our result follows.

Case 4.2. Assume that n2 is odd and nD is even, so again eP3 = 2. The reduction
modulo P∞ of the minimal polynomial of x−nD/2(y2 −A/2) over Fq(x) is T 2 − d/4,
which has distinct roots. Thus, P∞ is unramified in the quadratic extension M/Fq(x).
If d is a square in F1, thenF has at least two infinite places, whereas if d is a non-square
in Fq, then F has one infinite place. Combined with the fact that eP3 = 2, our result
follows.

Case 4.3. Assume that n2 is even and nD is odd, so once again eP3 = 2. The
reduction modulo P∞ of the minimal polynomial of x−n2/2y over Fq(x) is

T 4 − aT 2 + b = (T 2 − a/2)2.

If a/2 is a square in Fq, then F has at least two infinite places, whereas if a/2 is a
non-square in Fq, then F has one infinite place. Combined with the fact that eP3 = 2,
our result follows.
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Case 4.4. Assume that both n2 and nD are even, so P∞ is unramified in F/Fq(x).
If d is a square in Fq, then P∞ splits completely in M/Fq(x), whereas if d is a non-
square in Fq, then P∞ is inert in M/Fq(x). Clearly, changing the field generator of
F/M from y to z = yx−n2/2 does not change the signature. The minimal polynomial
of z over Fq(x) is T 2−(A+

√
D)/2xn2 , which reduces to T 2−a/2 modulo pM . If a/2

is a square in Fq, then pM splits completely in F/M , whereas if a/2 is a non-square in
F/M , then pM is inert in F . Our result now follows. �

It should be mentioned that the P -adic completion method, i.e., determining the
smallest field of Puiseux series containing each root of (4.1), could also be used to
prove Theorem 4.1 if the proper machinery is introduced. More specifically, one can
apply Lemma 4.1 of [14] and Theorem 3.1 of [8] to provide an alternative proof.

5. Finite prime decomposition in quartic fields with a
quadratic subfield

In this section, we determine for every finite place of Fq(x) the P -signature of a
quartic extension F/Fq(x) with at least one intermediate quadratic field. So fix any
finite place P ∈ PFq(x) and assume without loss of generality that the minimal poly-
nomial of y over Fq(x), as given in (4.1), has standard form at P . This assumption
simplifies the description of the different signatures compared to Theorem 4.1. For
brevity, set

(5.1) m2 = vP (A), m0 = vP (B) and mD = vP (D),

where we recall that D = A2 − 4B. Similar to Lemma 2.3, we have the following
result.

Proposition 5.1. LetF = Fq(x, y) with F (x, y) = 0 as given in (4.1), P be a finite
place of Fq(x) of degree nP = deg(P ), m0,m2 as in (5.1), and z = y/P . Assume
that m0 ≥ 3 and m2 = 1. Then

G(z, T ) = z4P (T )− z2A(T )/P (T ) +B(T )/P (T )3

is irreducible over Fq(z), G(z, x) = 0, and

deg(div(z)−) = max{nP , n2 − nP , n0 − 3nP }.

Proof. Observe that G(z, T ) ∈ Fq[z, T ] as m2 = 1 and m0 ≥ 3 by assumption.
The rest of the proof is very analogous to those of Lemma 2.3 and Corollary 2.4. �

If in (4.4), we replace −ni by mi as given in (5.1), and set

L = {ePm2 + 2vP(y), ePm0}

for any place P | P of F , then Theorem 2.6 leads to three cases that are analogous to
those derived from (4.3) and (4.4) as follows:

Case (iv). If min(L) = ePm2 + 2vP(y) is the strict minimum of L, then

vP(y) = ePm2/2 and 2m2 < m0.
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Case (v). If min(L) = ePm0 is the strict minimum of L, then

vP(y) = ePm0/4 and 2m2 > m0.

Case (vi). If min(L) = ePm2 + 2vP(y) = ePm0, then

vP(y) = eP(m0 −m2)/2 and 2m2 ≤ m0.

As before, for j = 4, 5, 6, let Pj | P denote the places of F that satisfy cases (iv),
(v), (vi) above, respectively. The following preliminary result will be useful.

Lemma 5.2. Let F = Fq(x, y) with F (x, y) = 0 as given in (4.1), P be a finite
place of Fq(x) of degree nP = deg(P ), and m0,m2 as in (5.1).

(a) If m0 ≥ 3 and m2 = 1, then there is a place P4 | P in F with eP4 = 2.

(b) If m0 < 2m2 and 2 - m0, then there is a place P5 | P in F with eP5 = 4.

Proof. (a) If necessary, we replace y by Qky for some sufficiently large integer k
and some monic irreducible polynomial Q ∈ Fq[x] that divides neither A nor B. This
leaves the P -signature of F/Fq(x) as well as m0,m2 unchanged, but changes n2 to
n2 + 2k deg(Q) and n0 to n0 + 4k deg(Q). If we choose k sufficiently large k, then
Proposition 5.1 implies that

(5.2) deg(div(y/P )−) = n0 − 3nP .

Cases (i)-(iii) just before Theorem 4.1 imply that

vP(y) ∈ {−ePn2/2,−ePn0/4,−eP(n0 − n2)/2}

for any infinite place P of F . Thus,

vP(y/P ) ∈ {−ePn2/2 + ePnP ,−ePn0/4 + ePnP ,−eP(n0 − n2)/2 + ePnP }.

If we choose k sufficiently large, then we can assume that vP(y/P ) ≤ 0 for any infinite
place P | P∞.

We claim that in addition to possibly some infinite places of F , the support of
div(y/P )− only contains divisors P4. By assumption, only cases (iv) and (vi) can
occur. For any P6 | P , we have

vP6(y) = eP6(m0 −m2)/2 ≥ eP6(3− 1)/2 = eP6 ,

so vP6(y/P ) ≥ 0. For any P4 | P , we have vP4(y) = eP4/2, so

vP4(y/P ) = −eP4/2 < 0.

Thus, (5.2) implies that

(5.3) n0 − 3nP = −
∑
P|P∞

vP(y/P )f(P|P∞)− nP
∑
P4|P

vP4(y/P )f(P4|P ).

By (4.3),

−
∑
P|P∞

vP(y/P )f(P|P∞) = −
∑
P|P∞

vP(y)f(P|P∞) +
∑
P|P∞

vP(P )f(P|P∞)

= n0 − 4nP .
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From (5.3) and the fact that vP4(y/P ) = −eP4/2, it follows that

1 = −
∑
P4|P

vP4(y/P )f(P4|P ) =
1

2

∑
P4|P

e(P4|P )f(P4|P ),

so
∑

P4
eP4fP4 = 2. Note also that eP4 = 2vP4(y) is even. Since

∑
P|P ePfP = 4,

this forces eP4 = 2 for some P4 | P .

(b) Since m0 < 2m2, only case (v) can occur, i.e., vP5(y) = eP5m0/4 for every
place P5|P . Since m0 is odd, eP5 = 4. �

It is now possible to provide the P -signature of F/Fq(x) for any finite place P in
PFq(x).

Theorem 5.3. Let q be an odd prime power, F = Fq(x, y) with F (x, y) = 0
as given in (4.1), and D = A2 − 4B. Let P be a finite place of Fq(x) of degree
nP = deg(P ) such that (4.1) has standard form at P , and let m0,m2,mD be as in
(5.1). Then F/Fq(x) has P -signature

(a) (1, 1; 1, 1; 1, 1; 1, 1), if
0 = m0, and T 4 −AT 2 +B has four distinct roots modulo P , or

0 = m0 = m2 < md, 2 | md, and both A/2 and D/Pmd are squares modulo
P , or

0 = m2 < m0, 2 | m0, and both A and B/Pm0 are squares modulo P ;

(b) (1, 1; 1, 1; 1, 2), if{
0 = m0, and T 4 −AT 2 +B has exactly two distinct roots modulo P , or

0 = m2 < m0, 2 | m0, and B/Pm0 is not a square modulo P ;

(c) (1, 1; 1, 1; 2, 1), if{
0 = m2 < m0, 2 - m0, and A is a square modulo P , or

1 = m2, 2 < m0, 2 - m0, and AB/Pm0+1 is a square modulo P ;

(d) (1, 2; 1, 2), if

0 = m0, and T 4 −AT 2 +B factors into a product of two irreducible quad-
ratic polynomials modulo P , or

0 = m0 = m2 < md, 2 | md, and at least one of A and D/Pmd is not a
square modulo P , or

0 = m2 < m0, 2 | m0, A is not a square modulo P , and B/Pm0 is a square
modulo P ;

(e) (1, 2; 2, 1), if{
0 = m2 < m0, 2 - m0, and A is not a square modulo P , or

1 = m2, 2 < m0, 2 - m0, and AB/Pm0+1 is not a square modulo P ;
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(f) (1, 4) if 0 = m0, and T 4 −AT 2 +B is irreducible modulo P ;

(g) (2, 1; 2, 1), if

1 = m2, 2 < m0, 2 | m0, or

2 = m0 < 2m2, and −B/P 2 is a square modulo P , or

2 = m0 = 2m2 < md, 2 | md, and D/Pmd is a square modulo P , or

2 = m0 = 2m2 = md, and D/P 2 is a square modulo P , or

m0 = 2m2 < md, 2 - md, and A/2Pm2 is a square modulo P ;

(h) (2, 2), if
2 = m0 < 2m2, and −B/P 2 is not a square modulo P , or

2 = m0 = 2m2 < md, 2 | md, and D/Pmd is not a square modulo P , or

2 = m0 = 2m2 = md, and D/P 2 is not a square modulo P , or

m0 = 2m2 < md, 2 - md, and A/2Pm2 is not a square modulo P ;

(i) (4, 1) if m0 < 2m2, and 2 - m0.

Proof. As mentioned before, the assumption that F (x, T ) has standard form at
P introduces some simplification over Theorem 4.1. The proof of Theorem 5.3 is
analogous to that of Theorem 4.1 and employs Lemma 5.2. In essence, one replaces
−ni by mi for i = 0, 2, sgn(G) by G/P vP (G) for G ∈ {A,B,D}, and factorizations
over Fq by factorizations modulo P ; similarly for roots, squares and non-squares. �

6. Factors of class numbers

The results of Theorems 4.1 and 5.3 can be used to compute an approximation to
the class number h of a quartic function field with an intermediate quadratic field as
required by the algorithm of [13]. This was explicitly described in Section 3.4 of [5].
As mentioned earlier, the search phase of this method can essentially be sped up by
a factor of m ∈ N if h (modm) is known. This section presents several divisibility
results for class numbers.

We begin with a brief overview of what is known. A lower bound on the number
of 2-factors dividing the class number of a hyperelliptic function field was first deter-
mined in [1], with a stronger result provided in [18]. The case of function fields of
Picard curves was investigated in [3]. All these results assume that the defining curve
is non-singular at all finite points. This assumption can in fact be computationally
detrimental, as a singular representation might support much more efficient arithmetic
than the non-singular model. For example, any cyclic cubic function field over Fq

with q ≡ 1 (mod 3) is a Kummer extension and can hence be represented in the form
F = Fq(x, y), where y3 = A(x) ∈ Fq[x]. If A is not square-free, then the curve
y3 = A(x) is singular. However, this representation of F/Fq(x) allows for much faster
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divisor arithmetic than the non-singular cubic model, which is advantageous in many
applications, including class number computation.

Genus theory for function fields was used to establish `-ranks of class groups of
Kummer extensions in [2] and [10]. In this section, we provide results on factors of
the class numbers of certain types of function field extensions. Unlike the case of
hyperelliptic and Picard curves, we do not require a non-singular model. Moreover,
unlike [2] and [10], we include radical extensions that need not be cyclic, and we do
not need to resort to genus theory; instead, we explicitly construct appropriate divisor
classes.

Henceforth, let C denote the degree 0 divisor class group of a function field F/Fq,
h be its order (i.e., the class number of F), and P be the subgroup of C of principal
divisors. We begin with a useful auxiliary lemma.

Lemma 6.1. Let F = Fq(x, y), with y` = A ∈ Fq[x], be a radical function field of
prime degree ` so that ` divides neither deg(A) nor the characteristic ofF . Let Ã denote
the square-free kernel of A. Then deg(div(z)+) > deg(Ã)/2 for every z ∈ F \Fq(x).

Proof. By Proposition 6.3.1 of [16], the genus of F is

g =
(`− 1)(deg(Ã)− 1)

2
.

Let z ∈ F \Fq(x). Then z is a generator of F/Fq(x) as [F : Fq(x)] = ` is prime. Now
Riemann’s Inequality (Corollary 3.11.4 of [16]) implies

[F : Fq(z)] ≥
g

[F : Fq(x)]− 1
+ 1 =

g

`− 1
+ 1·

Combined with the genus formula, we obtain

deg(div(z)+) = [F : Fq(z)] ≥
deg(Ã) + 1

2
>

deg(Ã)

2
· �

Our first result shows that for radical function fields of prime degree, the extension
degree always divides the class number. We note that when ` | q− 1, i.e., in the case of
Kummer extensions, this is a simple consequence of Corollary 3.14 of [2].

Theorem 6.2. Let F = Fq(x, y), with y` = A ∈ Fq[x], be a radical function
field of prime degree ` such that A factors into r ≥ 2 distinct powers of irreducible
polynomials. Assume that ` divides neither deg(A) nor the characteristic of F . Then
` | h.

Proof. Let A = sgn(A)
∏r

i=1 P
ei
i be the factorization of A into powers of irre-

ducible polynomials. If Ã again denotes the square-free kernel ofA, then Ã =
∏r

i=1 Pi.
By Proposition 6.3.1 of [16], the ramified places of Fq(x) are exactly P1, . . . , Pr, P∞
and they are all totally ramified.

For 1 ≤ i ≤ r, let Pi be the unique place of F lying above Pi, and P∞ be the
unique infinite place ofF . Then deg(Pi) = deg(Pi) for 1 ≤ i ≤ r, and deg(P∞) = 1.
The principal divisor of each Pi in F is div(Pi) = `Di, whereDi = Pi−deg(Pi)P∞.
It suffices to show that Di /∈ P for some 1 ≤ i ≤ r.
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By way of contradiction, suppose that for every i with 1 ≤ i ≤ r, Di = div(zi) for
some zi ∈ F∗. Then zi /∈ Fq(x), as otherwise

1 = vPi(zi) = e(Pi|Pi)vPi(zi) = ` vPi(zi) ∈ `Z,
a contradiction. Thus, zi ∈ F \ Fq(x). By Lemma 6.1, we have

deg(Pi) = deg(div(zi)+) > deg(Ã)/2

for 1 ≤ i ≤ r. But then

deg(Ã) =

r∑
i=1

deg(Pi) > r deg(Ã)/2 ≥ deg(Ã),

a contradiction. �

As an application of Theorem 6.2, we obtain the following result.

Corollary 6.3. Let F = Fq(x, y) be an algebraic function field given by

axk + byl = c,

where k, l, and the characteristic of F are pairwise distinct primes, and a, b, c are in
Fq \ {0}. Assume that neither axk − c nor byl − c is irreducible over Fq. Then kl
divides the class number of F .

Proof. Fq(y) is an intermediate field of F/Fq with [F : Fq(y)] = k, and Fq(x) is
an intermediate field of F/Fq with [F : Fq(x)] = l. The claim now follows immedi-
ately from Theorem 6.2. �

Theorem 6.2 reveals nothing about higher powers of ` dividing h. However, we can
strengthen this result in the case ` = 3 as follows.

Theorem 6.4. Let F = Fq(x, y) be a purely cubic extension of Fq(x), where
y3 = A(x) ∈ Fq[x] factors into r distinct powers of irreducible polynomials. Assume
that 3 divides neither deg(A) nor the characteristic of Fq. Then C has 3-rank at least
dr/2e, so 3dr/2e | h, where d e is the ceiling function.

Proof. Assume that r ≥ 2, otherwise there is nothing to prove. Define Ã, Pi, Pi,
P∞, P∞ and Di analogous to the proof of Theorem 6.2. Let l be the 3-rank of C. Our
goal is to show that the number of independent divisor classes represented by the Di is
at least dr/2e.

Note that Di,−Di /∈ P , while 3Di ∈ P , for 1 ≤ i ≤ r. So the set

S =

{
D =

r∑
i=1

kiDi ∈ P

∣∣∣∣∣ ki ∈ {0,±1}, ki 6= 0 for some i

}
is a generating system of the subgroup of P generated by the divisor classes of the Di.
Let

m = min
D∈S

#

{
i

∣∣∣∣∣ ki 6= 0 for D =
r∑

i=1

kiDi ∈ S

}
be the minimum of the number of non-zero coefficients ki for all elements in S, i.e., the
minimum non-zero ternary Hamming weight of S. Then 1 ≤ m ≤ r and l ≥ m− 1.
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Let D =
∑n

i=1 kiDi ∈ S. Reordering the Di, we may assume that ki = 1 for
1 ≤ i ≤ t, and ki = −1 for t+ 1 ≤ i ≤ m for some suitable t. Let

D′ =

t∑
i=1

Pi and D′′ =

m∑
i=t+1

Pi.

Then D = D′ − D′′ − (deg(D′) − deg(D′′))P∞. Replacing D by −D if necessary,
we may assume that deg(D′) ≥ deg(D′′), so D+ = D′.

Write D = div(z) with z ∈ F∗. Then z /∈ Fq(x), as otherwise

1 = vP1(z) = 3vP1(z) ∈ 3Z,

a contradiction. Hence,

(6.1) deg(D+) =
t∑

i=1

deg(Pi) > deg(Ã)/2

by Lemma 6.1.

We claim that the r−t divisor classes represented byDt+1, . . . , Dr are independent
in C. To that end, suppose by way of contradiction that there exist ki ∈ Z, not all zero,
such that E =

∑r
i=t+1 kiDi is principal. Without loss of generality, we may assume

that ki ∈ {0,±1} for t + 1 ≤ i ≤ r, so E ∈ S. As before, we reorder Dt+1, . . . , Dr

so that ki = 1 for t + 1 ≤ i ≤ s, ki ∈ {0,−1} for s + 1 ≤ i ≤ r for some suitable s,
and E+ =

∑s
i=t+1Pi is non-zero. Thus, E is the divisor of an element in F \ Fq(x),

which by Lemma 6.1 implies that

(6.2) deg(E+) =

s∑
i=t+1

deg(Pi) > deg(Ã)/2.

Now (6.1) and (6.2) together yield

deg(Ã) =

r∑
i=1

deg(Pi) ≥
s∑

i=1

deg(Pi) =

t∑
i=1

deg(Pi) +

s∑
i=t+1

deg(Pi) > deg(Ã),

a contradiction. It follows that l ≥ r − t. Thus,

(6.3) l ≥ max{r − t,m− 1} ≥ max{m− 1, r −m} ≥ br/2c,

where b c is the floor function. This proves our result for even r, and for those odd r
for which any of the inequalities in (6.3) is strict for some t.

We prove that the remaining case leads to a contradiction. To that end, assume
equality throughout (6.3) for any t, and r odd. Then it is easy to infer that

l = r − t = m− 1 = br/2c = (r − 1)/2,

so
l + 1 = m = t = (r + 1)/2,

and any D ∈ S that is a linear combination of exactly m among D1, . . . Dr must be the
sum of these m divisors Di (since our ordering forces the first t = m divisors Di in the
linear combination to have coefficient ki = 1).
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Without loss of generality, assume that A(x) is cube-free, so vP (A) 6≡ 0 (mod 3)
for any P ∈ {P1, . . . , Pr, P∞}. For every place P | P , we have

3vP(y) = vP(y
3) = vP(A) = e(P|P )vP (A).

Since e(P|P ) = 3 for P ∈ {P1, . . . , Pr, P∞}, this implies vP(y) = vP (A) for all
P ∈ PFq(x) and P | P . It follows that div(y) =

∑r
i=1 vPi(A)Di. Subtracting suitable

multiples of 3Di from div(y), for 1 ≤ i ≤ r, yields a principal divisor

div(u) =

r∑
i=1

aiDi, with ai = ±1 for 1 ≤ i ≤ r.

Among the r coefficients ai, there are at least (r + 1)/2 = m identical ones. By
replacing u by u−1 and reordering the Di if necessary, we may thus assume that ai = 1
for 1 ≤ i ≤ m. So

div(u) =
m∑
i=1

Di +
r∑

i=m+1

aiDi, with ai = ±1 for m+ 1 ≤ i ≤ r.

Since l = (r − 1)/2, the m = (r + 1)/2 divisors D1, . . . , Dm represent depen-
dent divisor classes in C, so there exist k1, . . . , km ∈ {±1} and w ∈ F∗ such that∑m

i=1 kiDi = div(w). Since this divisor belongs to S and is a linear combination of
exactly m of the Di, we must have ki = 1, for 1 ≤ i ≤ m. Hence

div(w) =
m∑
i=1

Di and div(u/w) =
r∑

i=m+1

aiDi.

Now

deg(div(u/w)+) = max

 ∑
ai=1,m+1≤i≤r

deg(Pi),
∑

ai=−1,m+1≤i≤r
deg(Pi)


≤

r∑
i=m+1

deg(Pi).(6.4)

Note that vP1(w) = 1 and vPr(u/w) = ar = ±1. Since neither of these values is
divisible by 3, it follows that w and u/w belong to F \ Fq(x). By Lemma 6.1, we
obtain

(6.5) deg(div(w)+) > deg(Ã)/2 and deg(div(u/w)+) > deg(Ã)/2.

Then (6.4) and (6.5) together imply

deg(Ã) =
r∑

i=1

deg(Pi)

=

m∑
i=1

deg(Pi) +

r∑
i=m+1

deg(Pi)

≥ deg(div(w)+) + deg(div(u/w)+) > deg(Ã),

a contradiction. �
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If A is square-free, a stronger result than Theorem 6.4 holds.

Corollary 6.5. With the notation as in Theorem 6.4, if A is square-free, then C has
3-rank at least r − 1; so 3r−1 | h.

Proof. Let z be defined as in the proof of Theorem 6.4. Then

div(y/z) = div(y)− div(z) =

r∑
i=1

Di −

(
t∑

i=1

Di −
m∑

i=t+1

Di

)
= 2

r∑
i=t+1

Di.

The proof of Theorem 6.4 established that the divisor classes of Dt+1, . . . , Dr are in-
dependent, so this sum must vanish. Since t ≤ m ≤ r, this forces t = m = r. By
(6.3), C has 3-rank at least m− 1 = r − 1. �

We point out that for Kummer extensions, this result is a direct consequence of
Lemma 5 (2) of [10]. The quadratic analogue to Corollary 6.5 was first stated in [1] and
generalized in [18], while its origin (for quadratic number fields) goes back to Gauss’s
genus theory in his Disquisitiones Arithmeticae. For Picard curves, Corollary 6.5 was
proved in [3], along with other divisibility results for the class numbers of such curves.
Genus theory establishes that the ideal class group of any cyclic extension of Q of
prime degree ` has `-rank at least r − 1, where r is the number of ramified primes;
Gerth asserted in [6] that this bound is met for most such extensions.

The following proposition provides a necessary condition for a prime to divide the
class number of a function field.

Proposition 6.6. Let F = Fq(x, y) be a function field and ` be a prime. If ` | h,
then there exists z ∈ F , integral over Fq[x], such that the norm NFFq(x)

(z) is an `-th
power in Fq[x] up to a constant factor in F∗q , but z is not an `-th power in F .

Proof. Suppose ` | h. Then there exists a non-principal degree 0 divisor D such
that `D ∈ P . By adding multiples kP ∈ P to D if necessary for every place P of F
in the support of D, we may assume that D+ is supported at finite places of F , and D−
is supported at infinite places of F only. It follows that `D = div(z), for some z ∈ F
that is integral over Fq[x]. Since D /∈ P , z is not an `-th power in F up to constants in
F∗q .

Let

F (x, T ) = T k +

k−1∑
i=0

AiT
i

be the minimal polynomial of z, with Ai ∈ Fq[x], for 0 ≤ i ≤ n − 1. Applying
Theorem 2.6 to G = Fq(x, z), we see that

∑
P|P vP(z)f(P|P ) = vP (A0) for every

place P of Fq(x). Since div(z) = `D, ` | vP(z) for every place P of F . It follows
that ` | vP (A0) for every place P of Fq(x), hence A0 is an `-th power in Fq[x] up to a
constant factor. Thus,

NFFq(x)
(z) = NGFq(x)

(z)[F :G] = ±A[F :G]
0

is an `-th power in Fq[x] up to a constant factor. �
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The following result provides a partial converse of the above proposition.

Proposition 6.7. Let ` be a prime and F = Fq(x, y) be a function field with
F (x, y) = 0 and F (x, T ) ∈ Fq(x)[T ] as in (2.1). Assume that the following conditions
are satisfied:

(1) A0 is an `-th power in Fq[x] up to a constant in F∗q ;

(2) ` | vP(y) for every infinite place P of F ;

(3) y is not an `-th power in F ;

(4) gcd(A0, A1) = 1.

Then ` | h.

Proof. We first claim that ` | vP(y) for all places P of F . By property (2), this
is true if P is infinite. Let P be a place in F lying above any finite place P of Fq(x).
Then vP(y) ≥ 0 by Lemma 2.1. If vP(y) = 0, there is nothing to prove, so suppose
that vP(y) > 0. Since F (x, y) = 0, we have

A0 = −y(A1 + βy), with β = yk−2 +
k−3∑
i=0

Ai+2y
i.

Note that vP(β) ≥ 0 by triangle inequality, so

vP(A1 + yβ) ≥ 0 and hence vP (A0) ≥ vP(y) > 0.

Property (4) now forces vP (A1) = 0 and hence vP(A1 + yβ) = 0 by the strict triangle
inequality. Therefore vP(y) = vP(A0) is a multiple of ` as A0 is an `-th power.

It now follows that div(y) = `D for some degree 0 divisor D. By property (3),
D /∈ P . So the divisor class of D has order ` in C. �

Given a prime ` and a random function field F , it is unlikely that ` divides the
class number h of F . However, suppose one generates a random polynomial F (x, T )
in Fq[x, T ] that is monic in T , irreducible over Fq(x), and satisfies properties (1) and
(4) above. Let y be a root of F (x, T ) and F = Fq(x, y). Note that if F is cubic or
quartic with at least one quadratic intermediate field, and y as given in (3.1) or (4.1),
for example, then it is easy to determine vP(y) as shown in Section 4, and thus verify
property (2). Moreover, ifF has only one infinite place P, then ` always divides vP(y);
this follows immediately from Theorem 2.6. In general, y is expected to satisfy property
(3), so it is likely that ` | h. This could be taken advantage of during the search phase
when computing the class number h of F using the technique of [13].

7. Conclusion and further work

While this paper deals predominantly with particular families of function fields,
such as cubic, quartic and radical extensions of a rational function field, the underlying
techniques are general and have the potential for broader utilization.

Our method for determining P -signatures as applied to quartic fields with at least
one quadratic subfield in Sections 4 and 5 apply in principle to any function field. Recall
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that this technique distinguished between different cases that characterize the possible
values vP(y) of a generator y at any place P of the function field. In practice, the
method works best for extensions defined by minimal polynomials with few non-zero
coefficients. For such extensions, the number of cases to be considered is manageable.
The most promising candidates are trinomials and other sparse irreducible polynomials.

It would also be interesting to see if analogues of Theorem 6.4 and Corollary 6.5
extend to radical extensions of higher degree. The ideas that lead to these two results
as well as those used in the proofs of Lemma 6.1 and Theorem 6.2 can potentially be
applied to other function fields. For example, suppose that the infinite place P∞ and
some finite place P of Fq(x) of a degree k extension of Fq(x) have respective signatures
(e, k/e) and (e∞, k/e∞) with e | e∞ deg(P ). If D = P− (e∞ deg(P )/e)P∞, where
P | P and P∞ | P∞, then deg(D) = 0 and eD is principal. If D is non-principal, then
a non-trivial divisor of the class number is found. The same idea can be extended to
other degree zero divisors supported at suitable places only. If in addition, several such
divisors can be shown to represent independent divisor classes whose respective orders
have a common prime factor `, then the number of these classes is a lower bound on
the `-rank of the class group of the field.

The extendability of our results to other function fields represents the subject of
future research and work in progress.
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