
Tabulation of Cubic Function Fields with
Imaginary and Unusual Hessian

Pieter Rozenhart and Renate Scheidler

Department of Mathematics and Statistics, University of Calgary,
2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4

{pieter,rscheidl}@math.ucalgary.ca

Abstract. We give a general method for tabulating all cubic function
fields over Fq(t) whose discriminant D has odd degree, or even degree
such that the leading coefficient of −3D is a non-square in F

∗
q , up to

a given bound on |D| = qdeg(D). The main theoretical ingredient is a
generalization of a theorem of Davenport and Heilbronn to cubic function
fields. We present numerical data for cubic function fields over F5 and
over F7 with deg(D) ≤ 7 and deg(D) odd in both cases.

1 Introduction

In 1997, Belabas [2] presented an algorithm for tabulating all non-isomorphic
cubic number fields of discriminant D with |D| ≤ X for any X > 0. The re-
sults make use of the reduction theory for binary cubic forms with integral
coefficients. A theorem of Davenport and Heilbronn [8] states that there is a
discriminant-preserving bijection between Q-isomorphism classes of cubic num-
ber fields of discriminant D and a certain explicitly characterizable set U of
equivalence classes of primitive irreducible integral binary cubic forms of the
same discriminant D. Using this one-to-one correspondence, one can enumerate
all cubic number fields of discriminant D with |D| ≤ X by computing the unique
reduced representative f(x, y) of every equivalence class in U of discriminant D
with |D| ≤ X . The corresponding field is then obtained by simply adjoining a
root of the irreducible cubic f(x, 1) to Q. Belabas’ algorithm is essentially linear
in X , and performs quite well in practice.

In this paper, we give an extension of the above approach to function fields.
That is, we present a method for tabulating all cubic function fields over a fixed
finite field up to a given upper bound on the degree of the discriminant, using the
theory for binary cubic forms with coefficients in Fq[t], where Fq is a finite field
with char(Fq) �= 2, 3. While some of the ideas of [2] translate essentially directly
from number fields to function fields, there are in fact a number of obstructions
to a straightforward adaptation of Belabas’ algorithm [2] to the function field
setting. Firstly, there is a very simple connection between the signatures of cubic
and quadratic number fields of the same discriminant D, which are simply char-
acterized as real or complex/imaginary according to whether D > 0 or D < 0.
In cubic function fields, this connection is far more complicated and in some
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cases no longer exists, due to the increased level of flexibility in how the place
at infinity of Fq(t) splits in the cubic extension. Secondly, the case of unusual
quadratic function fields, where the place at infinity is inert, has no number field
analogue. Thirdly, the extensions of the degree map on Fq(t) to any function
field are non-Archimedean valuations, i.e. satisfy the strong triangle inequal-
ity |a + b| ≤ max{|a|, |b|}, whereas the absolute value on any number field is
Archimedean, satisfying the ordinary triangle inequality |a + b| ≤ |a| + |b|. This
results in somewhat different bounds on the coefficients of the binary cubic forms
that the function field version of the tabulation algorithm uses for its search.

Our main tool is the function field analogue of the Davenport-Heilbronn the-
orem [8] mentioned above (see [10,13]). We also make use of the association of
any binary cubic form f of discriminant D over Fq[t] to its Hessian Hf which is a
binary quadratic form over Fq[t] of discriminant −3D. Under certain conditions,
this association can be exploited to develop a reduction theory for binary cubic
forms over Fq[t] that is analogous to the reduction theory for integral binary cu-
bic forms. Suppose that deg(D) is odd, i.e. Hf is an imaginary binary quadratic
form, or that deg(D) is even and the leading coefficient of −3D is a non-square
in F

∗
q , i.e. Hf is an unusual binary quadratic form. We will establish that under

these conditions, the equivalence class of f contains a unique reduced form, i.e.
a binary cubic form that satisfies certain normalization conditions and has an
associated Hessian that is a reduced binary quadratic form. Thus, equivalence
classes of binary cubic forms can be efficiently identified via their unique repre-
sentatives. This result no longer holds when Hf is a real binary quadratic form,
i.e. deg(D) is even and the leading coefficient of −3D is a square in F

∗
q. In this

case, the equivalence class of f contains many — in fact, generally exponentially
many — reduced forms, and a different reduction theory needs to be developed.
This is the subject of future research.

Our tabulation procedure proceeds analogously to the number field scenario.
The function field analogue of the Davenport-Heilbronn theorem states that
there is again a discriminant-preserving bijection between Fq(t)-isomorphism
classes of cubic function fields of discriminant D ∈ Fq[t] and a certain set U of
primitive irreducible binary cubic forms over Fq[t] of discriminant D. Hence, in
order to list all Fq(t)-isomorphism classes of cubic function fields up to an upper
bound X on |D|, it suffices to enumerate the unique reduced representatives of
all equivalence classes of binary cubic forms of discriminant D for all D ∈ Fq[t]
with |D| = qdeg(D) ≤ X . Bounds on the coefficients of such a reduced form
show that there are only finitely many candidates for any reduced form of a
fixed discriminant. These bounds can then be employed in nested loops to test
whether each form found lies in U . As mentioned earlier, the coefficient bounds
obtained for function fields are different from those used by Belabas for number
fields, due to the fact that the degree valuation is non-Archimedean.

This paper is organized as follows. After a brief overview of binary quadratic
and cubic forms over Fq[t] in Section 2, the reduction theory for imaginary
and unusual binary cubic forms is developed in Sections 3 and 4, respectively.
We present the Davenport-Heilbronn theorem for function fields and an explicit
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characterization of the set U in Section 6. Bounds on the coefficients of a reduced
binary cubic form are derived in Section 5. Finally, we present the tabulation
algorithm as well as numerical results in Section 7.

2 Binary Quadratic and Cubic Forms over Fq[t]

For a general introduction to algebraic function fields, we refer the reader to
Rosen [9] or Stichtenoth [12]. Let Fq be a finite field of characteristic at least 5,
and set F

∗
q = Fq\{0}. Denote by Fq[t] and Fq(t) the ring of polynomials and the

field of rational functions in the variable t over Fq, respectively. For any non-
zero H ∈ Fq[t] of degree n = deg(H), we let |H | = qn = qdeg(H), and denote by
sgn(H) the leading coefficient of H . For H = 0, we set |H | = 0. This absolute
value extends in the obvious way to Fq(t). Note that in contrast to the absolute
value on the rationals, the absolute value on Fq(t) is non-Archimedean.

Any non-zero r ∈ Fq(t) can be written as r = antn + an−1t
n−1 + · · · + a0 +

a−1t
−1 + · · · with n ∈ Z and ai ∈ Fq for i ≤ n. We set �r� = antn + · · ·+a1t+a0

to be the polynomial part of r; note that �r� = 0 if n < 0. We also set �0� = 0.
The function �r� is analogous to the floor function for integers.

We give a brief overview of binary quadratic and cubic forms with coefficients
in Fq[t]; their reduction theory will be developed in Sections 3 and 4 respectively.
Much of this material is completely analogous to the theory for binary cubic
forms over the integers.

A binary quadratic form over Fq[t] is a homogeneous quadratic polynomial
in two variables with coefficients in Fq[t]. If H(x, y) = Px2 + Qxy + Ry2 is
a binary quadratic form over Fq[t], then we write H = (P, Q, R) for brevity.
The discriminant of H is the polynomial disc(H) = Q2 − 4PR ∈ Fq[t]. H is
said to be imaginary if deg(disc(H)) is odd, unusual if deg(disc(H)) is even
and sgn(disc(H)) is a non-square in F

∗
q , and real if deg(disc(H)) is even and

sgn(disc(H)) is a square in F
∗
q .

A binary cubic form over Fq[t] is a homogeneous cubic polynomial in two
variables with coefficients in Fq[t]. If f(x, y) = ax3+bx2y+cxy2+dy3 is a binary
cubic form over Fq[t], then we write f = (a, b, c, d) for brevity. The discriminant
of f = (a, b, c, d) is the polynomial

disc(f) = 18abcd + b2c2 − 4ac3 − 4b3d − 27a2d2 ∈ Fq[t] .

For the remainder of this paper, we assume that all binary cubic forms f =
(a, b, c, d) are primitive, i.e. gcd(a, b, c, d) = 1.

Definition 2.1. Let F be a binary quadratic or cubic form over Fq[t]. If

M =
(

α β
γ δ

)
,

is a 2 × 2 matrix with entries in Fq[t], then the action of M on F is defined by
F ◦ M = f(αx + βy, γx + δy).
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We obtain an equivalence relation from this action by restricting to matrices
M ∈ GL2(Fq[t]), the group of 2 × 2 matrices over Fq[t] whose determinant lies
in F

∗
q. That is, two binary quadratic or cubic forms F and G over Fq[t] are said

to be equivalent if
μF (αx + βy, γx + δy) = G(x, y)

for some μ ∈ F
∗
q and α, β, γ, δ ∈ Fq[t] with αδ−βγ ∈ F

∗
q . Up to associates, equiv-

alent binary forms have the same discriminant. Furthermore, the action of the
group GL2(Fq[t]) on binary forms over Fq[t] preserves irreducibility over Fq(t).

As in the case of integral binary cubic forms, any binary cubic form f =
(a, b, c, d) over Fq[t] is closely associated with its Hessian

Hf (x, y) = −1
4

∣∣∣∣∣∣∣∣

∂2f

∂x∂x

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y∂y

∣∣∣∣∣∣∣∣
= (P, Q, R) ,

where P = b2 − 3ac, Q = bc − 9ad, and R = c2 − 3bd. Note that Hf is a binary
quadratic form over Fq[t]. The Hessian has a number of useful properties, which
are easily verified by direct computation:

Proposition 2.1. Let f = (a, b, c, d) be a binary cubic form over Fq[t] with
Hessian Hf = (P, Q, R). Then the following are satisfied.

1. Hf◦M = (det M)2(Hf ◦ M) for any M ∈ GL2(Fq[t]).
2. disc(Hf ) = −3 disc(f).

A binary cubic form f over Fq[t] is said to be imaginary, unusual, or real accord-
ing to whether its Hessian Hf is an imaginary, unusual, or real binary quadratic
form. By Proposition 2.1, f is imaginary if disc(f) has odd degree, unusual if
disc(f) has even degree and −3 sgn(disc(f)) is a non-square in F

∗
q , and real if

disc(f) has even degree and −3 sgn(disc(f)) is a square in F
∗
q .

For the tabulation of cubic function fields, it will be important to represent
equivalence classes of binary cubic forms over Fq[t] via a unique and efficiently
identifiable representative. This can be accomplished via reduction. As in the
case of integral forms, reduction of cubic forms is accomplished via reduction
of their associated binary quadratic forms. Specifically, in the imaginary and
unusual cases, a binary cubic form over Fq[t] is declared to be reduced essentially
if its associated Hessian is reduced and certain normalization conditions are
satisfied.

3 Reduction Theory of Imaginary Binary Cubic Forms

We begin with an overview of the reduction theory for imaginary binary quadratic
forms over Fq[t] which can be found in Artin [1]. We then use this theory to
develop a reduction theory for imaginary binary cubic forms via their associated
Hessians. This theory is quite similar to its counterpart for integral binary forms.



Tabulation of Cubic Function Fields with Imaginary and Unusual Hessian 361

In the case of unusual binary cubic forms, we will proceed in an analogous fashion
to the approach for imaginary forms; this is done in Section 4.

An imaginary binary quadratic form H = (P, Q, R) of discriminant D =
disc(H) is said to be reduced if |Q| < |P | ≤ |D|1/2, sgn(P ) = 1, and either
Q = 0 or sgn(Q) ∈ S, where S ⊂ Fq is a set such that if a ∈ S, then −a /∈ S and
|S| = (q − 1)/2. Such a set can always be found. One such choice is as follows:
order the non-zero elements of Fq lexicographically and let S consist of the first
(q − 1)/2 elements. If q = p is a prime, this is simply the set {1, 2, ..., (p− 1)/2}.
Note that since deg(D) is odd, the exponent in

√
|D| = qdeg(D)/2 is a half integer,

so the second inequality is in fact equivalent to the strict inequality |P | <
√

|D|.
Note also that in contrast to integral binary quadratic forms, the only matrices
M ∈ GL2(Fq[t]) whose action on H leaves H unchanged are the identity matrix,

its negative and ±
(

1 0
0 −1

)
when Q = 0 (see [1]).

The algorithm for reducing a binary quadratic form over Fq[t] is almost the
same as for integral imaginary binary quadratic forms. If H = (P, Q, R) with
|Q| ≥ |P |, then compute s = �−Q/2P � and apply the matrix

T =
(

1 s
0 1

)
∈ GL2(Fq[t])

to H to obtain a new form H1(x, y) = H(x + sy, y) = (P1, Q1, R1) equivalent
to H . Now the inequality |Q1| < |P1| is satisfied. If |P1| > |D|1/2, then apply
the matrix

S =
(

0 −1
1 0

)
∈ GL2(Fq[t])

to H1 to obtain the equivalent form H2(x, y) = H1(−y, x) = (P2, Q2, R2) with
(P2, Q2, R2) = (R1, −Q1, P1). If as a result of this last transformation, the con-
dition |Q2| < |P2| is not satisfied, then we repeat this procedure from the begin-
ning with H = H2 = (P2, Q2, R2). Since Pi, Qi, Ri are polynomials in Fq[t], the
process must eventually terminate after a finite number of steps, as we reduce
the degree of Pi at each step.

Now suppose Hj = (Pj , Qj, Rj) satisfies |Qj| < |Pj | ≤
√

|D| for some j. To
obtain the condition sgn(Pj) = 1, we apply

N =
(

1 0
0 ν

)
∈ GL2(Fq[t])

to Hj , where ν ∈ F
∗
q is chosen appropriately. It follows from the above reduction

procedure that every imaginary binary quadratic form over Fq[t] is equivalent to
a unique reduced quadratic form, see [1].

Now let f = (a, b, c, d) be an imaginary binary cubic form over Fq[t] of dis-
criminant D = disc(f) with (imaginary) Hessian Hf = (P, Q, R). Then f is said
to be reduced if Hf is reduced, sgn(a) = 1 and if Q = 0, then sgn(d) ∈ S, where
S ⊂ Fq as described above. Equivalently, by Proposition 2.1, f is reduced if

|Q| < |P | ≤ |D|1/2, sgn(P ) = 1, sgn(a) = 1, sgn(Q) ∈ S or sgn(d) ∈ S ,
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depending on whether or not Q = 0. Analogous to [2], one can deduce that any
two equivalent reduced imaginary forms are equal, so equivalence classes of such
forms can be efficiently identified by their unique reduced representative.

Theorem 3.1

1. Every equivalence class of imaginary binary cubic forms over Fq[t] has a
unique reduced representative.

2. Every imaginary binary cubic form over Fq[t] is equivalent to a unique re-
duced binary cubic form.

4 Reduction Theory of Unusual Binary Cubic Forms

As in the previous section, we first outline reduction for unusual binary quadratic
forms over Fq[t] and then apply this theory to unusual binary cubic forms over
Fq[t]. Both the reduction theory and the algorithm for the unusual case are
almost identical to that of imaginary forms, with one crucial difference: the
analogous definition of reducedness does not lead to a unique reduced represen-
tative in each equivalence class, but instead to q+1 equivalent reduced forms. To
achieve uniqueness, a distinguished representative among these q + 1 equivalent
forms will need to be identified.

Again, the reduction theory for unusual binary quadratic forms over Fq[t]
goes back to Artin [1]. An unusual binary quadratic form H = (P, Q, R) of
discriminant D = disc(H) is said to be reduced if |Q| < |P | ≤

√
|D|, sgn(P ) = 1

and either Q = 0 or sgn(Q) ∈ S where S ⊂ Fq is a set such that if a ∈ S, then
−a /∈ S and |S| = (q − 1)/2, as for imaginary quadratic forms. At first glance,
this definition looks exactly like the definition of a reduced imaginary binary
quadratic form. However, the crucial difference is that here, the exponent in√

|D| = qdeg(D)/2 is an integer, whereas in the imaginary scenario, it was a half
integer. So here, equality |P | =

√
|D| can in fact be achieved. The algorithm

for reducing an unusual binary quadratic form is the same as for imaginary
binary quadratic forms, so every unusual binary quadratic form is equivalent to
a reduced form.

Unusual reduced binary quadratic forms H = (P, Q, R) with |P | <
√

|D|
behave exactly like reduced imaginary binary quadratic forms. However, if H =
(P, Q, R) is an unusual reduced binary quadratic form with |P | =

√
|D|, then

so is Hα = (Pα, Qα, Rα) for all α ∈ Fq, where

Hα = H ◦
(

1
μα

(
α sgn(D)
4 α

))
= H

(
α

μα
x +

sgn(D)
μα

y,
4

μα
x +

α

μα
y

)
,

with α ∈ Fq and μα = α2 − 4 sgn(D). Note that μα �= 0 for all α ∈ Fq, since
sgn(D) is a non-square in F

∗
q . Hence, we have a family of q + 1 equivalent re-

duced unusual binary quadratic forms when |P | =
√

|D|. These q + 1 forms
can be sorted according to lexicographical order in Fq[t] of their x2-coefficients.
To identify a unique representative in the class of H , one selects the form
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H ′ = (P ′, Q′, R′) ∈ {H, Hα}α∈Fq so that P ′ is minimal in terms of lexicographi-
cal order in Fq[t] amongst {P, Pα}α∈Fq . We call the form H ′ distinguished. Thus,
to find such a representative, it is necessary to execute the reduction algorithm
described in Section 3 and then computing the q forms Hα, α ∈ Fq. This is
slower than reduction for imaginary binary quadratic forms, especially for large
values of q.

Now let f = (a, b, c, d) be an unusual binary cubic form over Fq[t] of discrim-
inant D = disc(f) with (unusual) Hessian Hf = (P, Q, R). Then f is said to
be reduced if Hf is reduced, Hf is distinguished if |P | =

√
|D|, sgn(a) = 1 and

either Q = 0 or sgn(Q) ∈ S, where S ⊂ Fq is a set such that if a ∈ S, then
−a /∈ S and |S| = (q − 1)/2. Equivalently, by Proposition 2.1, f is reduced if

|Q| < |P | ≤ |D|1/2, sgn(P ) = 1, sgn(a) = 1 , sgn(Q) ∈ S or if Q = 0 then
sgn(d) ∈ S, where S is as described above,

if |P | =
√

|D|, then P is lexicographically minimal in the set {P̃ | H̃ =
(P̃ , Q̃, R̃) is a reduced form equivalent to H}.

Analogous to the imaginary case, we again obtain

Theorem 4.1

1. Every equivalence class of unusual binary cubic forms over Fq[t] has a unique
reduced representative.

2. Every unusual binary cubic form over Fq[t] is equivalent to a unique reduced
binary cubic form.

5 Bounds on Reduced Binary Cubic Forms

For our tabulation algorithm, we will need to search over all candidates for
reduced imaginary or unusual binary cubic forms f = (a, b, c, d) of discriminant
D where |D| is bounded above by some given bound X . It then remains to test
via Algorithm 6.4 whether such a reduced form lies in the Davenport-Heilbronn
set U defined in Section 6 below. If this is the case, then the reduced form
corresponds to a triple of Fq(t)-isomorphic cubic function fields.

In order to establish that this set of candidates for reduced forms of discrimi-
nant D of absolute value at most X is in fact finite, and to ensure that the search
procedure is as efficient as possible, we develop good bounds on the absolute val-
ues of the coefficients a, b, c, d of an imaginary or unusual reduced binary cubic
form in terms of the absolute value of D. The following inequality appears in
Cremona [5] and is easily verified by straightforward computation.

Lemma 5.1. f = (a, b, c, d) be a binary cubic form over Fq[t] of discriminant
D and Hessian Hf = (P, Q, R), where we recall that P = b2 − 3ac. Set U =
2b3 + 27a2d − 9abc. Then 4P 3 = U2 + 27a2D.

The above identity can be used to establish degree bounds on the coefficients
of an imaginary or unusual reduced binary cubic form over Fq[t] in terms of the
degree of its discriminant.
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Proposition 5.2. Let f = (a, b, c, d) be an imaginary or unusual binary cubic
form over Fq[t] of discriminant D, and set P = b2 − 3ac and U = 2b3 + 27a2d −
9abc. Then |U |2 ≤ |P |3.
Proof. By Lemma 5.1, we have

4P 3 = U2 + 27a2D = U2 − (−3D)(9a)2 . (5.1)

Now |P |3 < |U |2 if and only if the leading terms of the polynomials U2 and
(−3D)(9a)2 in the right hand side of (5.1) cancel, which is the case if and only if
deg(U2) = deg((−3D)(9a)2) and sgn(U2) = sgn((−3D)(9a)2). The first of these
two equalities implies that deg(D) is even, and the second one forces sgn(−3D)
to be a square in F

∗
q , which would imply that Hf is a real binary quadratic form,

a contradiction.

We can now derive our desired degree bounds for imaginary or unusual reduced
binary cubic forms.

Corollary 5.3. Let f = (a, b, c, d) be a reduced imaginary or unusual binary
cubic form over Fq[t] of discriminant D. Then

|a|, |b| ≤ |D|1/4, |c| ≤ |D|1/2/|a|, |d| ≤ max{|bc|/|a|, |b|2/|a|q, |c|/q} .

Proof. Let Hf = (P, Q, R) be the Hessian of f . Then P = b2 − 3ac and |Q| <

|P | ≤
√

|D|. Set U = 2b3 + 27a2d − 9abc. Then 4P 3 = U2 + 27a2D by Lemma
5.1, and |U |2 ≤ |P |3 by Proposition 5.2. It follows that

|a2D| = |4P 3 − U2| ≤ max{|P |3, |U |2} ≤ |P |3 ≤ |D|3/2 ,

and hence |a| ≤ |D|1/4.
A straightforward computation shows that U = 2bP − 3aQ. Hence,

|bP | = |U + 3aQ| ≤ max{|U |, |aQ|} ≤ max{|P |3/2, |a||P |} ,

so |b| ≤ max{|P |1/2, |a|} ≤ |D|1/4.
To obtain the upper bound for c, we observe that 3ac = b2 − P , so

|ac| ≤ max{|b|2, |P |} ≤ |D|1/2 ,

and hence |c| ≤ |D|1/2/|a|. Finally, Q = bc− 9ad, P = b2 − 3ac, and |Q| ≤ |P |/q
imply

|d| = |bc − Q|/|a| ≤ max{|bc/a|, |Q|/|a|} ≤ max{|bc/a|, |P |/|a|q}
= max{|bc/a|, |b2 − 3ac|/|a|q} ≤ max{|bc|/|a|, |b|2/|a|q, |c|/q} .

This concludes the proof.

The bounds for a and b are essentially of the same order of magnitude as the
corresponding bounds for integral imaginary binary cubic forms. However, the
bounds for c and d are different.

Corollary 5.4. For any fixed discriminant D in Fq[t], there are only finitely
many imaginary and unusual reduced binary cubic forms over Fq[t] of discrimi-
nant D.
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6 The Davenport–Heilbronn Theorem

Recall that the Davenport-Heilbronn theorem [8] states that there is a discrim-
inant-preserving bijection from a certain set U of equivalence classes of integral
binary cubic forms of discriminant D to the set of Q-isomorphism classes of cubic
fields of the same discriminant D. Therefore, if one can compute the unique
reduced representative f of any class of forms in U of discriminant D with
|D| < X , then this leads to a list of minimal polynomials f(x, 1) for all cubic
fields of discriminant D with |D| ≤ X .

The situation for cubic function fields is completely analogous. We now de-
scribe the Davenport-Heilbronn set U for function fields, state the function field
version of the Davenport-Heilbronn theorem, and provide a fast algorithm for
testing membership in U that is in fact more efficient than its counterpart for
integral forms.

For brevity, we let [f ] denote the equivalence class of any primitive binary
cubic form f over Fq[t]. Fix any irreducible polynomial p ∈ Fq[t]. We define
Vp to be the set of all equivalence classes [f ] of binary cubic forms such that
p2

� disc(f). In other words, if disc(f) = i2Δ where Δ is squarefree, then f ∈ Vp

if and only if p � i. Hence, f ∈
⋂

p Vp if and only if disc(f) is squarefree.
Now let Up be the set of equivalence classes [f ] of binary cubic forms over

Fq[t] such that

– either [f ] ∈ Vp, or
– f(x, y) ≡ λ(δx − γy)3 (mod p) for some λ ∈ Fq[t]/(p)∗, γ, δ ∈ Fq[t]/(p),

x, y ∈ Fq[t]/(p) not both zero, and in addition, f(γ, δ) �≡ 0
(
mod p2

)
.

For brevity, we summarize the condition f(x, y) ≡ λ(δx−γy)3 (mod p(t)) for
some γ, δ ∈ Fq[t]/(p) and λ ∈ Fq[t]/(p)∗ with the notation (f, p) = (13) as was
done in [7,8].

Finally, we set U =
⋂

p Up; this is the set under consideration in the Davenport-
Heilbronn theorem for function fields. The version given below appears in [10]. A
more general version of this theorem for Dedekind domains appears in Taniguchi
[13].

Theorem 6.1. Let q be a prime power with gcd(q, 6) = 1. Then there exists
a discriminant-preserving bijection between Fq(t)-isomorphism classes of cubic
function fields and classes of binary cubic forms over Fq[t] belonging to U .

In order to to convert Theorem 6.1 into an algorithm, we require a fast method
for testing membership in the set U . This is aided by the following efficiently
testable conditions:

Proposition 6.2. Let f = (a, b, c, d) be a binary cubic form over Fq[t] with
Hessian Hf = (P, Q, R). Let p ∈ Fq[t] be irreducible. Then the following hold:

1. (f, p) = (13) if and only if p | gcd(P, Q, R).
2. If (f, p) = (13) then f ∈ Up if and only if p3

� disc(f).
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In addition, classes in U contain only irreducible forms; this result can be found
for integral cubic forms in [4] and is completely analogous for forms over Fq[t]. In
other words, by Theorem 6.1, if [f ] ∈ U , then f(x, 1) is the minimal polynomial
of a cubic function field over Fq(t). This useful fact eliminates the necessity for
a potentially costly irreducibility test when testing membership in U .

Theorem 6.3. Any binary cubic form whose equivalence class belongs to U is
irreducible.

Using Proposition 6.2, we can now formulate an algorithm for testing mem-
bership in U . This algorithm will be used in our tabulation routines for cubic
function fields.

Algorithm 6.4
Input: A binary cubic form f = (a, b, c, d) over Fq[t].
Output: true if [f ] ∈ U , false otherwise.
Algorithm:

1. If f is not primitive, return false.
2. Put P := b2 − 3ac, Q := bc − 9ad, R := c2 − 3bd, Hf := (P, Q, R), 
H :=

gcd(P, Q, R), D := Q2 − 4PR (so that D = −3 disc(f)).
3. If 
H is not squarefree, return false.
4. Put s := D/(
H)2. If gcd(s, 
H) �= 1, return false
5. If s is squarefree, return true. Otherwise return false.

Proposition 6.5. Algorithm 6.4 is correct.

Proof. Step 1 is correct, as U only contains classes of primitive forms by de-
finition. If p2 | 
H , then p4 | D. If p | 
H and p | s, then p3 | D. In both
cases, it follows that p3 | disc(f), so [f ] /∈ Up, and hence [f ] /∈ U , by part 2 of
Proposition 6.2. This proves the correctness of steps 3 and 4.

Assume now that f passes steps 1-4, so p2
� 
H and p | gcd(s, 
H) for some

irreducible polynomial p ∈ Fq[t]. Then s is not squarefree if and only if there
exists an irreducible polynomial z ∈ Fq[t] with z2 | s and hence z � 
H . By part 1
of Proposition 6.2, this rules out (f, z) = (13). On the other hand, we also have
z2 | disc(f), so f /∈ Vz, and hence f /∈ Uz, by steps 3 and 4 above. Thus, s is
squarefree if and only if [f ] ∈ Up for all p, or equivalently, [f ] ∈ U , proving the
validity of step 5.

Note that steps 3 and 5 of Algorithm 6.4 require tests for whether a polynomial
F ∈ Fq[t] is squarefree. This can be accomplished very efficiently with a simple
gcd computation, namely by checking whether gcd(F, F ′) = 1, where F ′ denotes
the formal derivative of F with respect to t. This is in contrast to the integral
case, where squarefree testing of integers is generally difficult; in fact, squarefree
factorization of integers is just as difficult as complete factorization. Hence, the
membership test for U is more efficient than its counterpart for integral forms.
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7 Tabulation Algorithm and Numerical Results

We now describe the tabulation algorithms for cubic function fields correspond-
ing to imaginary and unusual reduced binary cubic forms over Fq[t]; that is,
cubic extensions of Fq(t) of discriminant D where deg(D) is odd, or deg(D) is
even and sgn(−3D) is a non-square in F

∗
q , respectively.

The idea of both algorithms is as follows. Input a prime power q coprime
to 6 and a bound X ∈ N. The first algorithm outputs minimal polynomials
for all Fq(t)-isomorphism classes of cubic extension of Fq(t) of discriminant D
such that deg(D) is odd and |D| ≤ X . For the second algorithm, the output is
analogous, except that all the discriminants D satisfy deg(D) even, sgn(−3D)
is a non-square in F

∗
q , and again |D| ≤ X . Both algorithms search through all

coefficient 4-tuples (a, b, c, d) that satisfy the degree bounds of Corollary 5.3
with |D| replaced by X such that the form f = (a, b, c, d) satisfies the following
conditions:

1. f is reduced;
2. f is imaginary, respectively, unusual;
3. f belongs to an equivalence class in U ;
4. f has a discriminant D whose degree is bounded above by X .

If f passes all these tests, the algorithms outputs f(x, 1) which by Theorem 6.1
is the minimal polynomial of a triple of Fq(t)-isomorphic cubic function fields of
discriminant D.

Algorithm 7.1
Input: A prime power q not divisible by 2 or 3, and a positive integer X.
Output: Minimal polynomials for all Fq(t)-isomorphism classes of cubic function
fields of discriminant D with deg(D) odd and |D| ≤ X.
Algorithm:
for |a| ≤ X1/4

for |b| ≤ X1/4

for |c| ≤ X1/2/|a|
for |d| ≤ max{|bc|/|a|, |b|2/|a|q, |c|/q}
Set f := (a, b, c, d);
compute D = disc(f);
if deg(D) is odd AND |D| ≤ X AND [f ] ∈ U AND f is reduced
then output f(x, 1).

Each loop of the form “for |f | ≤ M” runs through all polynomials f ∈ Fq[t] with
deg(f) = 0, 1, . . . , logq(M). The algorithm for unusual forms (Algorithm 7.2) is
completely analogous, except that the test of whether or not f is reduced in
Algorithm 7.2 is more involved. Recall that if Hf = (P, Q, R) is the Hessian of
f and |P | =

√
|D|, then this test requires the computation and sorting of q + 1

reduced binary quadratic forms equivalent to Hf . This makes Algorithm 7.2 a
good deal slower than Algorithm 7.1.
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Algorithm 7.2
Input: A prime power q not divisible by 2 or 3, and a positive integer X.
Output: Minimal polynomials for all Fq(t)-isomorphism classes of cubic function
fields of discriminant D with deg(D) is even, sgn(−3D) is a non-square in F

∗
q,

and |D| ≤ X.
Algorithm:
for |a| ≤ X1/4

for |b| ≤ X1/4

for |c| ≤ X1/2/|a|
for |d| ≤ max{|bc|/|a|, |b|2/|a|q, |c|/q}
Set f := (a, b, c, d);
compute D = disc(f);
if deg(D) is even AND sgn(−3D) is not a square in Fq AND
|D| ≤ X AND [f ] ∈ U AND f is reduced

then output f(x, 1).

The algorithms presented here have some of the same advantages as Belabas’
algorithm [2]. In particular, there is no need to check for irreducibility of binary
cubic forms lying in U , no need to factor the discriminant, and no need to keep
all fields found so far in memory. Our algorithm has the additional advantage
that there is no overhead computation needed for using a sieve to compute num-
bers that are not squarefree, since by the remarks following Algorithm 6.4, we
need only perform a gcd computation of a polynomial and its formal derivative.
There is an additional bottleneck for Algorithm 7.2, namely the computation
of additional Hessians and subsequently finding the smallest one in terms of
lexicographical ordering in Fq[t].

The following tables present the results of our computations for cubic function
fields with imaginary Hessian for q = 5, 7 for various degrees. In the interests
of space, we only include our computational results on imaginary forms. We
implemented the tabulation algorithm using the C++ programming language
coupled with the number theory library NTL [11]. The lists of cubic function
fields were computed on a 3 GHz Pentium 4 machine running Linux with 1 GB
of RAM.

Table 1. Cubic Function Fields over F5 with imaginary Hessian

Degree bound X # of fields Elapsed time
3 50 0.06 seconds
5 2050 53.09 sec
7 33290 24 min 21.36 sec

In [2], Belabas derived essentially the same bounds on the coefficients a and
b as ours, i.e. O(X1/4). However, his bounds on c and d are different and were
obtained using analytic methods that do not seem to have an obvious analogue
in function fields. Using the bounds of Corollary 5.3, it is possible to show that
O(X5/4) forms need to be checked. Belabas obtained a quasi-linear complexity
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Table 2. Cubic Function Fields over F7 with imaginary Hessian

Degree bound X # of fields Elapsed time
3 147 0.52 seconds
5 12495 29 min 53.22 sec
7 365421 1 day, 3 hours, 45 min 58.78 sec

for his algorithm for tabulating cubic number fields, using the fact that the
number of reduced binary cubic forms of discriminant up to |X | is O(|X |), see
Theorem 3.7 of [4]. For function fields, we have no such asymptotic available,
but we conjecture an analogous complexity of O(X); this is a subject of future
research.

8 Conclusions and Future Work

This paper presented a method for computing all cubic function fields with imag-
inary and unusual Hessian. We computed all cubic function fields with imaginary
Hessian up to |D| ≤ q7 for q = 5, 7.

An immediate question is how to obtain a more exact complexity analysis of
Algorithms 7.1 and 7.2; in particular whether the bound of O(X5/4) on the num-
ber of forms searched can be improved to O(|X |1+ε), as in the case of Belabas’
algorithm. In addition, a method for finding a distinguished representative in
each class of reduced unusual cubic forms that is more efficient than brute force
exhaustive search would significantly improve the performance of Algorithm 7.2.

We intend to extend our computations to function fields whose associated bi-
nary cubic form is unusual, and to larger values of q and deg(D). We also hope to
derive an algorithm analogous to Algorithms 7.1 and 7.2 for cubic function fields
where the associated binary cubic form is real. It is unclear how to develop a re-
duction theory for binary cubic forms with real Hessian that guarantees a unique
reduced cubic form in each equivalence class. Achieving this goal via the Hessian
of the cubic form is impossible, since this Hessian is a real binary quadratic form.
It well-known that the number of real reduced binary quadratic forms in each
equivalence class of discriminant D is of order

√
|D|, i.e. exponential in the size

of the discriminant.
In addition, we plan to apply our methods to the task of finding quadratic

function fields with large 3-rank, in a similar way to Belabas’ method [3] for
number fields.

Finally, recall that a cubic function field can have 5 different signatures at
infinity, whereas a cubic number field can only have 2 (three real roots or one
real root and two non-real complex roots, according to whether the discriminant
is positive or negative). For some of the possible signatures of a cubic function
field of a given discriminant, it is unclear how they relate to the signature of the
quadratic function field of the same discriminant. For cubic fields that are not
totally ramified at infinity, it is possible to establish the connection between the
cubic and the quadratic signature through the Hilbert class field. If the place at
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infinity is totally ramified, the situation is unclear. It would also be interesting
to analyze density results like those of [6] according to the signature of a cubic
function field or of the underlying quadratic field. Such density results are the
subject of future investigation.
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