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Abstract. Split (also known as real) hyperelliptic curves admit two
main algebraic structures: the Jacobian and the infrastructure. In this
paper, we describe exactly how the infrastructure and the Jacobian are
related. We show that computations in the infrastructure using a new
modified notion of distance and computations in a particular subgroup of
the Jacobian heuristically have exactly the same cost for curves defined
over sufficiently large finite fields. We also present a novel set of explicit
formulas for genus three split hyperelliptic curves that improves on the
current state-of-the-art.
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1 Introduction

The Jacobian of a hyperelliptic curve defined over a finite field is a finite abelian
group at the center of a number of important open questions in algebraic geom-
etry and number theory. Sutherland [23] surveyed some of these, including the
computation of the associated L-functions and zeta functions used in his inves-
tigation of Sato-Tate distributions [15]. Many of these problems lend themselves
to numerical investigation, and as emphasized by Sutherland, fast arithmetic in
the Jacobian is crucial for their efficiency.

Hyperelliptic curves are categorized as ramified and split models according
to their number of points at infinity. Ramified curves have one point at infinity,
whereas split curves have two. There is also a third model with no infinite points
called inert or unusual, but these are usually avoided in practice as they have
cumbersome Jacobian arithmetic and can be transformed to a split model over
a quadratic extension of the base field. Jacobian arithmetic differs on ramified
and split models. The split scenario is more complicated and is most efficiently
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realized via a divisor arithmetic framework referred to as balanced. As a result,
optimizing divisor arithmetic on split hyperelliptic curves has received less atten-
tion from the research community. However, split models have many interesting
properties; most importantly, they exist for a much larger array of hyperellip-
tic curves compared to ramified models. Thus, exhaustive computations such as
those in [15] conduct the bulk of their work on split models by necessity.

Split hyperelliptic curves support another algebraic structure, called the
infrastructure, that can also be used for numerical investigations of the Jaco-
bian. For example, Stein and Teske [22] used arithmetic in the infrastructure for
computing the order of the Jacobian by first computing the regulator, i.e. the
(usually very large) order of the class of the divisor D given by the difference of
the two points at infinity. One attractive aspect of the infrastructure is that it
supports an especially fast operation, called a baby step, that can be exploited to
speed up various applications, including the Jacobian order computation algo-
rithms used in [22] and [15].

Although both structures in split models can be employed for computational
problems, it was originally not clear how they are connected or which one pro-
vides better performance in practice. Mireles Morales [17] related the infrastruc-
ture to the cyclic subgroup G of the Jacobian generated by the class of D. He
showed that any computation in one structure can be reduced to an analogous
computation in the other. Moreover, he asserted that performing computations
in the Jacobian using balanced divisor arithmetic should always be more efficient
than infrastructure arithmetic. However, he did not verify his claim via proof or
implementation and also did not take into account the improved infrastructure
arithmetic from [12] in his analysis. Therefore, the question of which setting
provides better performance has to date not been decisively settled.

This paper offers two main contributions. First, we provide a definitive answer
to the aforementioned performance question through rigorous methodology. We
describe exactly how the infrastructure and the Jacobian are related. We inves-
tigate the assertion by Mireles Morales, considering state-of-the-art algorithms
for arithmetic in both settings, including the results of [12]. An initial numerical
investigation [11] suggested that the Jacobian offers better performance than the
infrastructure, raising the question of whether this deficiency was an inherent
property of the infrastructure or could be overcome through arithmetic improve-
ments. We confirm the latter answer by introducing an alternative notion of dis-
tance on the infrastructure. Using this new distance, we prove that computations
in the infrastructure and in G have exactly the same cost under the assumption
of some reasonable, widely accepted heuristics.

Our second contribution is a suite of new explicit formulas for arithmetic in
both the Jacobian and the infrastructure of a split genus 3 hyperelliptic curve.
As pointed out earlier, these formulas represent a highly useful tool for com-
putations involving such curves. Specifically, conforming to best practices, the
operations in our formulas are described completely in terms of finite field oper-
ations as opposed to polynomial arithmetic. We present two sets of formulas,
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one for curves defined over finite fields of odd characteristic, and a second set
for characteristic 2. Our formulas for odd characteristic offer improvements over
those of [23] for baby steps and addition, but not doubling. For characteristic 2,
our explicit formulas are the first to appear in the literature.

Following [23], our formulas use an affine model where each operation requires
one field inversion. Much of the literature on efficient Jacobian arithmetic for
low genus hyperelliptic curves assumes applications to cryptography, for which
inversion-free (projective) formulas are preferred because inversion is compu-
tationally expensive for finite fields of the sizes required for cryptography. In
the context of computational number theoretic applications like those in [15],
affine formulas are superior because group order algorithms such as baby-step
giant-step require frequent equality tests. As representations of group elements
using projective coordinates are not unique, this implies a non-negligible com-
putational cost per test, and precludes the use of more efficient searchable data
structures for the baby steps such as hash tables. Furthermore, as described in
[23], in these types of application the inversions can often be combined using a
trick due to Montgomery, allowing a batch of inversions to be computed with
only one field inversion and a small number of field multiplications. Thus, in
this paper, as cryptographic applications are not our motivation, we chose to
only present affine formulas. If projective formulas are required for some other
application, our formulas can readily be converted to that setting; such formulas
can be found in [18].

2 Hyperelliptic Curves

We refer the reader to [7,18,19] for more background on hyperelliptic curves.
Throughout, let Fq be a finite field where q is a power of a prime, Fq[x] the
univariate polynomial ring over Fq, and Fq(x) the field of rational functions over
Fq. A hyperelliptic curve C of genus g is a smooth projective curve with an
affine equation of the form y2 + h(x)y = f(x) where h, f ∈ Fq[x] satisfy certain
properties. More specifically, C is said to be

– ramified (or imaginary) if deg(f) = 2g+1, f is monic, h = 0 when char(Fq) �=
2, and h is monic of degree at most g when char(Fq) = 2;

– split (or real) if deg(f) = 2g + 2, h = 0 and f is monic when char(Fq) �= 2, h
is monic of degree g + 1 and the leading coefficient of f is of the form e2 + e
for some e ∈ F

∗
q when char(Fq) = 2;

The coordinate ring and function field of C are Fq[C] = Fq[x, y] and Fq(C) =
Fq(x, y), respectively. Ramified curves C have a unique Fq-rational point at
infinity, denoted by ∞, whereas a split curve C has two such points, denoted
by ∞+ and ∞−, respectively. For α ∈ Fq(C), we put deg(α) = −v∞+(α) and
define �α� to be the unique polynomial A ∈ Fq[x] with deg(α−A) < 0. Then the
polynomial �y� ∈ Fq[x] is well defined and has degree g + 1. It will be required
in several algorithms.
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2.1 Jacobian

Let Cl0(C) = Cl0
Fq

(C) denote the Jacobian of C over Fq; this is the group
of classes of degree zero divisors defined over Fq under linear equivalence. The
equivalence class of a degree zero divisor D is denoted [D]. The inverse of a class
[D] in Cl0(C) is [D ] where D is the image of D under the hyperelliptic involution.
This map sends a point P = (a, b) on C to the point P = (a,−b − h(a)) on C.
On ramified models, it leaves the point at infinity fixed, whereas on split models,
it sends ∞+ to ∞− and vice versa.

In the case of split hyperelliptic curves, the cyclic subgroup

G = 〈[∞+ − ∞−]〉
of Cl0(C) will be of key importance later on. Its order R = |G| is the regulator
of C. Schmidt [20] showed that |Cl0(C)| = Rh′, where h′ is the ideal class number
of Fq[C]. For most split hyperelliptic curves, h′ is small; frequently h′ = 1, so
Cl0(C) = G. Since the Hasse-Weil bounds establish (

√
q − 1)2g ≤ |Cl0(C)| ≤

(
√

q + 1)2g, the regulator R is generally of magnitude qg for large q.
A divisor on C is affine if it contains no infinite points. An affine divisor is

reduced if its degree is at most g and it is not supported simultaneously at P
and P for any affine point P . A degree zero divisor is reduced if its affine part is
reduced. Reduced divisors are said to be generic if their affine part has degree
g and degenerate otherwise.

Every affine reduced divisor D is uniquely determined by its Mumford basis1

which consists of two polynomials u, v ∈ Fq[x] such that u is monic, u divides
v2 − hv − f and deg(u) = deg(D) ≤ g. Here, u is unique and v is unique
modulo u, and we write D = [u, v]. In the standard or adapted Mumford basis
of D, we choose v such that deg(v) < deg(u); this is the typical choice for
ramified models. For split models, we usually work with the reduced Mumford
basis which satisfies deg(v−y−h) < deg(u) < deg(y+v). If [u, v] is the standard
basis of a reduced divisor, then the corresponding reduced basis is [u, v′] where
v′ = �y� + h + v − (

(�y� + h) mod u
)
.

Every degree zero divisor class on a ramified model contains a unique reduced
representative of the form D−deg(D)∞ with D affine. In contrast, on split mod-
els, since there are two points at infinity, a degree zero divisor class may contain
many reduced divisors. In [7], Galbraith et al. introduced a unique represen-
tative for each degree zero divisor class which is “balanced at infinity”. Put
D∞ = �g/2�∞+ + �g/2�∞−. Then every degree zero divisor can be written as
D = D0 − D∞ where D0 = D′

0 + n∞+ + m∞− with D′
0 affine and n,m ∈ Z.

Galbraith et al. proved that every element of Cl0(C) has a unique balanced
representative, i.e. a reduced divisor D such that 0 ≤ n ≤ g − deg(D′

0); since

1 There is a discrepancy between [7] and [18, Definition 2.2.13] in the definition of the
Mumford representation for split models. The signs of the polynomial v are opposite,
which leads to slight differences in the descriptions of the algorithms for Jacobian
arithmetic in the two sources. [7] is consistent with literature on ramified models,
whereas [18] follows previous literature on split models such as [5,11,12,14,19,21].
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m = g − deg(D′
0) − n, this implies 0 ≤ m ≤ g − deg(D′

0). We write D = (D′
0, n)

or D = ([u, v], n) where [u, v] is the reduced or adapted Mumford basis of D′
0. A

reduced divisor is generic if and only if n = m = 0; in this case, we simply write
D = [u, v]. It is thus clear that every generic reduced divisor is balanced. Con-
versely, heuristically, almost all balanced divisors are generic. More specifically,
we expect the probability that an element of G is represented by a degenerate
balanced divisor to approach h′/q as q → ∞; when h′ = 1. i.e. Cl0(C) = G,
this was proved by Fontein (see, for example, [11]). Hence, heuristically, degen-
erate balanced divisors are extremely rare when q is of cryptographic size. This
motivates the term “balanced”, since generically, the infinite support of D is
approximately equally balanced between the two points at infinity.

The group law on the Jacobian of a split hyperelliptic curve consists of per-
forming the compound operation of formal addition of divisors (realized in prac-
tice as composition), divisor reduction and balancing, in this order. It is referred
to as addition or, when the two inputs are identical, doubling. Adding divisor
classes via divisor composition and reduction is akin to the standard arithmetic
in the Jacobian of a ramified hyperelliptic curve as described, for example, by
Cantor [2], and produces a reduced divisor D = (D′, n) that need not be bal-
anced. A balancing step, denoted D → D+, decreases the value of n, whereas an
inverse balancing step, denoted D → D−, increases this value; see Algorithm 3
of [7] and Algorithms 3 and 4 of [18]. Given any two balanced divisors D1 and
D2 on C, the balanced representative of the class of D1+D2 is denoted D1⊕D2.
Thus, the group law on Cl0(C) can be expressed as [D1] + [D2] = [D1 ⊕ D2].
Algorithm 5 of [18] and Algorithm 4 of [7] compute the divisor D1 ⊕ D2. This
algorithm can be considered as the main operation on the Jacobian of a split
hyperelliptic curve. It is one of the fundamental operations required for many
applications related to split hyperelliptic curves. See [7] and [18] for more details.

2.2 Infrastructure

Let C be a split hyperelliptic curve. In this section, we summarize the main
properties of the infrastructure of C; details can be found in [18,19,21].

Every non-zero Fq[C]-ideal a is an Fq[x]-module of rank 2 with a basis of the
form {su, s(v + y)} where u divides v2 − vh − f ; write a = [su, s(v + y)]. If we
take s and u to be monic, then s and u are unique and v is unique modulo u.
The ideal a is primitive if s = 1 and reduced if additionally deg(u) ≤ g. The
basis [u, v] of a primitive ideal a = [u, y + v] is adapted if deg(v) < deg(u), and
reduced if deg(v − h − y) < deg(u) < deg(y + v).

The divisor associated to a = [u, v + y] is the affine divisor D = div(a) whose
Mumford representation is [u, v]. The degree of a is deg(a) = deg(div(a)), i.e.
the degree of its associated divisor. A generic (resp. degenerate) reduced ideal is
one whose associated divisor is generic (resp. degenerate), so a is a generic ideal
if and only if the balanced divisor D = (div(a), 0) is generic.
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Definition 1. The infrastructure of C is the (finite) collection R of reduced
principal Fq[C]-ideals. For an ideal a ∈ R, the distance of a is defined to be
δ(a) = deg(α), where α is the unique generator of a with 0 ≤ deg(α) < R.

The fact that no two infrastructure ideals have the same distance imposes
an ordering on R by distance. Hence, if we put a1 = (1) and δi = δ(ai), then we
can write

R = {a1, a2, . . . , ar} 0 = δ1 < δ2 < · · · < δr < R .

Computing the distance of an infrastructure ideal given its Fq[x]-basis is believed
to be computationally infeasible; this is the infrastructure discrete logarithm
problem on which the security of infrastructure-based cryptosystems is based
[12,14,19]. However, the relative distance between two successive ideals can be
efficiently computed. In [12] and [21], it was proved that if ai = [ui−1, y + vi−1]
then

δi+1 = δi + g + 1 − deg(ui−1) for 1 ≤ i ≤ r − 1. (1)

Thus, δi+1 = δi + 1 when ai is generic. Hence, most integers between 0 and
R − 1 occur as distance values, but this is not true for all of them: for example,
δ2 = g + 1 shows that there are no infrastructure ideals with distance between 1
and g.

The infrastructure supports two main operations. A baby step computes ai+1

from ai, along with the relative distance δi+1 − δi. Applying the same operation
a sufficient number of times to a non-reduced principal Fq[C]-ideal produces an
infrastructure ideal; this process is referred to as ideal reduction. A giant step
computes on input a, b ∈ R the first reduced ideal equivalent to the product
ab when applying reduction; this ideal is denoted a ⊗ b and is obtained after at
most (and generically exactly) �g/2� reduction steps. The conjugate ideal of an
ideal a = [u, v] ∈ R is the ideal ā = [u, v −h−y] ∈ R; it satisfies div(a) = div(a)
and has distance δ(a) = R+deg(u)−δ(a). With these notions, R is “almost” an
abelian group under ⊗, where the identity is a1, the “inverse” of an infrastructure
ideal is its conjugate ideal, and R fails associativity only barely; specifically, if
a, b ∈ R, then

δ(a ⊗ b) = δ(a) + δ(b) − d with 0 ≤ d ≤ 2g.

The quantity d is very small and is expected to be equal to �g/2� almost always
as explained in Sect. 2.3; see also [12,14,19] for further details. This “shortfall”
in distance is the reason that R is not associative under giant steps. This can be
rectified for almost all giant steps by shifting distances down by �g/2�. To that
end, we define a new distance on R as

γ(a) = δ(a) − �g/2� .
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We refer to δ as the classic distance and to R under δ as the classic infrastructure.
Note that γ preserves the ordering on R defined by δ, but the first distance value
is now negative; specifically, γ(a1) = −�g/2� < 0 and γ(a2) = �g/2� + 1 > 0.
Moreover,

γ(a ⊗ b) = γ(a) + γ(b) + (�g/2� − d) with 0 ≤ d ≤ 2g. (2)

Since we almost always expect d = �g/2�, the new distance is additive for most
inputs. The ordering on R determined by γ shows that for every integer N
with −�g/2� ≤ N < R − �g/2�, there exists a unique ideal ai ∈ R such that
γ(ai) ≤ N < γ(ai+1). This ideal ai, referred to as the infrastructure ideal below N
(with respect to γ) and denoted a[N ], can be efficiently computed, along with
the “error” N − γ(a[N ]). We expect γ(a[N ]) = N most of the time.

2.3 Connection Between G and R

Mireles Morales in [17] introduced an injective map from the infrastructure into
the Jacobian of a split hyperelliptic curve C. In [11], a shift of �g/2�[∞+ − ∞−]
was applied to the images under this map, yielding the injection

φ : R → Cl0(C)

φ(a) = [div(a) + (g − deg(a))∞− − D∞] = [(div(a), 0)].

This modification of the Mireles Morales map was a precursor to the analogous
shift of �g/2� used to define the new distance γ on R and ensures that the
representatives of the elements in the image φ(R) are balanced. By Proposition
4.2 of [11], we have

φ(a) = γ(a) [∞+ − ∞−]. (3)

This identity shows that the image of R under φ is the subset of G consisting
of precisely those classes m[∞+ − ∞−] ∈ G for which (m mod R) is the new
distance of some infrastructure ideal.

Based on the presumed scarcity of degenerate divisors and ideals, [12] and
[11] formulated two heuristic assumptions, denoted (H1) and (H2) in these
sources. Reformulating these statements with the new distance, (H1) asserts
that with heuristic probability 1 − O(q−1) as q → ∞, ai is generic, or equiva-
lently, γ(ai+1) = γ(ai)+1 for 2 ≤ i ≤ r−1. Heuristic (H2) states that d = �g/2�
in (2) under the same assumption, or equivalently, γ(a⊗ b) = γ(a) + γ(b) for all
a, b ∈ R\{a1}. Hence, infrastructure arithmetic using the new distance γ is more
natural and less complicated than using the classic distance δ. The assertion that
d = �g/2� in (2) also implies that the number of reduction steps required in a
giant step is heuristically equal to �g/2�; see [18, Remark 3.2.4] for a formal
proof. Both heuristics also imply that γ(a[N ]) = N almost always.
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Jacobson et al. in [12] obtained improvements to scalar multiplication in the
infrastructure by taking advantage of the fact that these heuristics eliminate the
need to keep track of all relative distances when performing infrastructure arith-
metic. In cryptographic protocols such as infrastructure Diffie-Hellman, even
though the respective computations of the two communicants are different, the
two parties “skip over” the same degenerate ideals (i.e. exceptions to the heuris-
tics) and are hence expected to obtain the same target ideal. Extensive numerical
computations in [12] confirm this. The description of the map φ in (3) makes
it possible to extend the improvements of [12] to computations in G by deriv-
ing analogous heuristics for divisors in φ(R) ⊂ G. These modified heuristics
assert that as q → ∞, the following properties hold with heuristic probability
1 − O(q−1):

(H1) φ(ai+1) = φ(ai) + [∞+ − ∞−] for 2 ≤ i ≤ r − 1.
(H2) φ(a ⊗ b) = φ(a) + φ(b) for a, b ∈ R \ {a1}.

(H2) explicitly links the arithmetic of R with that of G. This implies, as
already noted in [17], that the infrastructure discrete logarithm problem can be
reduced to the discrete logarithm problem in G and vice versa. Note that (1)
shows that the cardinalities of R and G are of the same magnitude when g is
small.

For 1 ≤ i ≤ r, let Di = (div(ai), 0) be the balanced divisor representing the
class φ(ai). Applying Algorithm 3 of [18] (also Algorithm 3 of [7]) to a generic
reduced divisor D shows that applying a balancing step to D is arithmetically the
same as adding the divisor class [∞+ − ∞−] to [D]; this was already remarked
in [7]. On the other hand, heuristically, [Di+1] = [Di] + [∞+ − ∞−] for 2 ≤
i ≤ r − 1 by (H1). As a result, we see that a balancing step in the Jacobian
and a baby step in the infrastructure act identically; more exactly, the formulas
for a balancing step applied to a Mumford basis [u, v] of a reduced divisor are
identical to those for a baby step applied to the infrastructure ideal a = [u, v+y].
An analogous argument applies to inverse balancing steps and backward baby
steps. Moreover, if D = (div(a), 0) and E = (div(b), 0), then heuristically, the
balanced representative of the class [D] + [E] = [D + E] is (div(a ⊗ b), 0). It is
obtained by applying at most �g/2� reduction steps to D+E, and no subsequent
balancing steps are needed. This shows that the operations ⊗ on R and ⊕ on
G have identical cost, generically. More detailed formal proofs of these results
can be found in Sect. 3.3 of [18]. Finally, if [D] = φ(div(a)), then heuristically,
[nD] = φ(div(b)) where b is the infrastructure ideal with γ(b) = nγ(a). In other
words, heuristically, scalar multiplying a generic divisor in G by n results in
multiplying the associated distance value on R by n. Therefore, using the new
distance, exponentiation on R and scalar multiplication on G are arithmetically
identical.
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We conclude this section with a remark on generic inversion in G, an oper-
ation that is required for some applications. Recall that D∞ = �g/2�∞+ +
�g/2�∞−, so D∞ = D∞ when g is even, and D∞ = D∞ − (∞+ − ∞−) when g
is odd. As a result, if D = (D′, 0) is a generic balanced divisor, then assuming
(H1), the balanced representative of [D] is (D′, 0) if g is even and (E′, 0) if g
is odd, where E′ is obtained by applying a balancing step (i.e. an addition of
[∞+ − ∞−] by our earlier remarks) to D′.

3 Explicit Formulas

All algorithms in the Jacobian and infrastructure operate on the Mumford poly-
nomials of a divisor or its corresponding ideal. Explicit formulas describe these
operations in terms of the coefficients of the polynomials, allowing better opti-
mization. We developed novel explicit formulas for genus 3 split hyperelliptic
curves over both odd characteristic and characteristic 2 fields in affine repre-
sentation (requiring one field inversion). Our input divisors are all reduced and
given by their reduced Mumford basis.

The first step, as is standard in the literature, is to apply curve isomorphisms
to cause as many coefficients of f and h as possible to vanish. For a genus 3
split curve C with equation y2 + h(x)y = f(x), we write h(x) =

∑4
i=0 hix

i

and f(x) =
∑8

i=0 fix
i. In odd characteristic, h(x) = 0 and the transformation

x → x − f7/8 eliminates the x7 term of f(x). In characteristic 2, when h3 = 0
the substitutions x → x and

y → y + f7x
3 + (f6 + f2

7 )x2 + (f7h2 + f5)x + (h2f6 + h2f
2
7 + f2

6 + f2
7 + h1f7 + f4)

cause the x7, x6, x5, x4 terms in f(x) to vanish, as can easily be verified by direct
substitution and simplification. A similar transformation exists when h3 �= 0, but
we restrict to the case h3 = 0 because having the x3 coefficient of y being zero
results in more efficient formulas. It is straightforward to compute the coefficients
of �y� =

∑4
i=0 yix

i by equating symbolically the coefficients of y2 + h(x)y with
those of f(x).

When implementing addition in the Jacobian and infrastructure, following
Cantor’s algorithm [2] literally is not the best strategy. It is instead prefer-
able to use the method suggested by Gaudry and Harley in [9], in which the
computations are broken into sub-expressions that can be re-used as much as
possible. As in [9], we also specialize to the frequently occurring cases where
the input divisors D1 = [u1, v1] and D2 = [u2, v2] for addition and D = [u, v]
for doubling are generic (i.e. deg(u1) = deg(u2) = deg(u) = 3) and satisfy
gcd(u1, u2) = gcd(u, h + 2v) = 1. In the rare cases where this does not hold,
an implementation can resort to Cantor’s algorithm. Specializations of Harley’s
addition and doubling algorithms for split hyperelliptic curves of genus 3 are
given in AppendixA as Algorithms A.3 and A.4, respectively. Furthermore, bal-
ancing and inverse balancing steps in Cl0(C), or equivalently, baby steps and
backward baby steps in the infrastructure, are given as AlgorithmsA.1 and A.2.
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We convert these algorithms to explicit formulas using standard methods from
the literature as follows; see, for example, [6,8,16,24].

1. Both addition and doubling require the computation of a resultant, with both
inputs of degree 3 for addition and inputs of degree 3 and 4 for doubling. We
employ the method presented in [1] based on Cramer’s rule to compute the
quantity inv in step 1 of Algorithms A.3 and A.4 directly, yielding the smallest
number of finite field operations required for this computation.

2. We use Karatsuba’s method for polynomial multiplication and modular
reduction whenever possible.

3. All four algorithms require exact polynomial division. In this context, we
need not compute all the coefficients of the inputs since, as explained in [8]
for example, the division of two polynomials of respective degrees d1 and d2
with d1 > d2 depends only on the d1 − d2 + 1 highest coefficients of the
dividend.

4. As field inversions are significantly more costly than other operations (eg.
estimates suggest that one field inversion in odd characteristic costs approx-
imately the same as 100 multiplications), we seek to eliminate as many of
these as possible. We use Montgomery’s trick [3, Algorithm 10.3.4] to invert
the product of all elements that must be inverted and recover the individ-
ual inverses at the cost of a few extra multiplications. Specifically, putting
I = (ab)−1, we have a−1 = bI and b−1 = aI. This technique produces formu-
las that require only a single field inversion.

Our explicit formulas using affine coordinates for a balancing step, inverse
balancing step, addition and doubling are presented in AppendixB. They can
also be found in [18, Sections 4.6.1 and 4.6.2], along with further details and a
more comprehensive exposition of the techniques employed.

To test our formulas, they were initially implemented in Sage version 5.2
using the small finite fields F7919 and F213 . The testing was done in three stages.
First, we implemented Cantor’s algorithm with no modifications, then Harley’s
algorithm, and finally, our explicit formulas. We then compared all three outputs.
We used the computer algebra library NTL to generate split hyperelliptic curves
over the desired finite fields and reduced divisors on these curves. Our testing
was done on 20 different examples. To test our explicit formulas for large finite
fields, we implemented the Diffie-Hellman key exchange protocol in C++. The
correctness of our formulas was confirmed by the fact that both parties always
obtained the same shared key, after hundreds of thousands of iterations of the
protocol over numerous randomly generated curves and base fields.

Operation counts for all our formulas are presented in Table 1. For each
operation, we give the number of field squarings (S), multiplications (M), and
inversions (I). We did not count multiplications or squarings involving coefficients
of �y�, h, and f exclusively (such as h2y4 for example), since such quantities can
be precomputed for a given curve and can be optimized as multiplications by
constants.

In addition to our new formulas, we compare operation counts for the best
available formulas in the literature. Counts for affine formulas for genus 3 ram-
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ified curves in odd characteristic are taken from [6] We considered the explicit
formulas presented in Tables B.1 and C.1 of [10] for genus 3 ramified curves in
characteristic 2. The closest analogue to a balancing step on a ramified model is
the addition of a generic divisor class represented by a divisor of the form P −∞
where P is an Fq-rational point on the curve. We used Tables VIII and XIII
in [6] for the baby/balancing step equivalent in affine coordinates on ramified
curves.

For genus 2 split hyperelliptic curves, we used the explicit formulas from [5].
For genus 3 split hyperelliptic curves in odd characteristic, we also include the
operation counts from [23], for which the input divisors are represented by their
adapted basis.

Table 1. Explicit Formula Operation Counts for Jacobian Arithmetic

Operation Split g = 2 Split g = 3 Split g = 3 from [23] Ramified g = 3

Fq Baby/Bal Step 1I+4M+4S 1I+9M+1S 1I+14M 1I+21M

Inv Baby/Bal Step 1I+4M+2S 1I+9M+1S - 1I+21M

Addition 1I+26M+2S 1I+74M+1S 1I+79M 1I+67M

Doubling 1I+28M+4S 1I+84M+2S 1I+82M 1I+68M

F2n Baby/Bal Step 1I+5M+1S 1I+9M+1S - 1I+20M

Inv Baby/Bal Step 1I+5M+1S 1I+9M+1S - 1I+20M

Addition 1I+27M+1S 1I+81M - 1I+64M+4S

Doubling 1I+29M+2S 1I+89M+1S - 1I+64M+5S

As expected, the number of operations for split models exceeds those for
ramified models. The main reason is that deg(f) = 7 for ramified models, but
8 for split models. Our addition and baby/balancing step formulas are more
efficient than those given in [23], but our doublings are more costly. Note that
for use in the baby-step giant-step algorithm, faster addition is in fact favorable,
as addition is the main operation required. Note also that [23] only contains
formulas for curves in odd characteristic.

4 Conclusion

Our investigations show that, computationally, there is no advantage to using
Jacobian arithmetic over infrastructure arithmetic for number theoretic com-
putations on split hyperelliptic curves. Jacobian arithmetic on balanced divisors
realizes arithmetic in a group (as opposed to an ordered set) and is hence perhaps
more natural and conceptually simpler than infrastructure arithmetic. Moreover,
it covers the entire Jacobian rather than just a fixed (albeit large) subgroup.
Hence, we recommend using Jacobian arithmetic in general. The computational
advantages offered by the inexpensive infrastructure baby step operation, as
recognized by Stein and Teske [22] for example, can be gained in general by
computing in the subgroup G as opposed to the infrastructure.
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Our new explicit formulas for genus 3 split hyperelliptic curves will be use-
ful for researchers doing large scale computations in the Jacobian, especially
for applications that rely heavily on addition and baby steps, as they require
fewer field operations as compared to those of Sutherland [23]. We are currently
investigating whether further improvements may be obtained by using other
approaches to arithmetic such as the geometric methods described by Costello
and Lauter [4] and the Shanks’ NUCOMP algorithm as adapted to hyperelliptic
curves by Jacobson, Scheidler and Stein [13].

A Basic Algorithms

All input divisors are assumed to be given by a reduced Mumford basis {u, v}
with u = x3 + u2x

2 + u1x + u0 and v = v4x
4 + v3x

3 + v2x
2 + v1x + v0, with v4

and v3 are determined by f and h and are never computed. We use the notation
D = [u2, u1, u0, v2, v1, v0]. In Algorithms A.3 and A.4, sn and s′

n denote the
leading coefficient of the polynomials s and s′, respectively.

Algorithm A.1. Balancing Step

Input: Generic reduced divisor D0 = [u0, v0].
Output: D+ = [u1, v1].
1: v1 = �y� + h − (v0 + �y�) (mod u0), u1 =

v′2−hv′−f
u0

made monic

2: return [u1, v1]

Algorithm A.2. Inverse Balancing Step

Input: Generic reduced divisor D0 = [u0, v0].
Output: D− = [u1, v1].

1: u1 =
v2
0−hv0−f

u0
made monic, v1 = �y� +

h − (v0 + �y�) (mod u1)
2: return [u1, v1]

Algorithm A.3 . Harley’s Algorithm for
Divisor Class Addition (genus 3)

Input: Generic reduced divisors D1 = [u1, v1],
D2 = [u2, v2] with gcd(u1, u2) = 1.

Output: D′ = D1 ⊕ D2.
1: Compute the resultant r of u1 and u2;

inv = r(u−1
2 ) (mod u1)

2: s′ = (v1 − v2)inv (mod u1), s = s′/r and
smonic = s/sn

3: l = smonicu2, k =
f+hv2−v2

2
u2

4: ut =
smonic(smonicu2+2v2w−hw)−kw2

u1
where w = r/s′

n, vt = (su2 + v2) (mod ut)
5: v′

t = �y� + h − (vt + �y�) (mod ut)

6: u′ =
f+hv′

t−(v′
t)

2

ut
made monic, v′ = h +

�y� − (�y� + v′
t) (mod u′)

7: return [u′, v′]

Algorithm A.4 . Harley’s Algorithm for
Divisor Class Doubling (genus 3)

Input: Generic reduced divisor D1 = [u1, v1]
with gcd(u1, h + 2v1) = 1.

Output: D′ = D1 ⊕ D1.
1: Compute the resultant r of 2v1 − h and u1;

inv = r(h + 2v1)
−1 (mod u)

2: k =
f−hv1−v2

1
u1

, k′ = k (mod u1)

3: s′ = k′inv (mod u1), s = s′/r and
smonic = s/sn

4: l = smonicu1

5: ut = s2monic +
wsmonic(2v1−h)−w2k

u1
where

w = r/s′
n, vt = (v1 + su1) (mod ut)

6: v′
t = �y� + h − (vt + �y�) (mod ut)

7: u′ =
f+hv′

t−(v′
t)

2

ut
made monic, v′ = h +

�y� − (�y� + v′
t) (mod u′)

8: return [u′, v′]
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B Genus 3 Explicit Formulas

Balancing and Inverse Balancing

Balancing Step, Odd Characteristic

Input D = [u2, u1, u0, v2, v1, v0]

OutputD+ = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Computing v′ = �y� + h − [(�y� + v) (mod u)]

1 v′
2 = −v2 + 2u1 − 2u2

2, v′
1 = −v1 + 2u0 − 2u1u2, v′

0 = −v0 − 2u0u22M, 1S

Precomputation for Step 2

w0 = 2y0 − 2v′
0, w1 = 2y1 − 2v′

1, w2 = 2y2 − 2v′
2

Computing u′ =Monic((f + hv′ − v′2)/u)

General case: w2 �= 0 (deg(u′) = 3)

2 I = w−1
2 , u′

2 = Iw1 − u2, u′
1 = Iw0 + (y2 + v′

2)/2 − u1 − u2u
′
2

u′
0 = I(f3 − f6v

′
1) + v′

1 − u0 − u1u
′
2 − u2u

′
1 1I, 7M

Special case 1: w2 = 0 and w1 �= 0 (deg(u′) = 2)

2 I = w−1
1 , u′

1 = Iw0 − u2, u′
0 = I(f3 − f6y1) + y2 − u1 − u2u

′
1 1I, 3M

Special case 2: w2 = w1 = 0 and w0 �= 0 (deg(u′) = 1)

2 I = w−1
0 , u′

0 = I(f3 − f6y1) − u2 1I, 1M

Special case 3: v′
2 = y2, v′

1 = y1 and v′
0 = y0 (deg(u′) = 0)

2 u′ = 1, v′ = y

Total General Case 1I, 9M, 1S

Special Case 1 1I, 5M, 1S

Special Case 2 1I, 3M, 1S

Special Case 3 2M, 1S

Balancing Step, Characteristic 2

Input D = [u2, u1, u0, v2, v1, v0]

OutputD+ = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Computing v′ = �y� + h − [(�y� + v) (mod u)]

1 v′
2 = h2 + v2 + u1 + u2

2, v′
1 = h1 + v1 + u0 + u1u2, v′

0 = h0 + v0 + u0u22M, 1S

Precomputation for Step 2

w0 = y0 + h0 + v′
0, w1 = y1 + h1 + v′

1, w2 = y2 + h2 + v′
2

Computing u′ =Monic((f + hv′ − v′2)/u)

General case: w2 �= 0 (deg(u′) = 3)

2 I = w−1
2 , u′

2 = Iw1 + u2, u′
1 = Iw0 + w2 + h2 + u1 + u2u

′
2

u′
0 = I(f3 + h2w1) + h1 + u0 + u1u

′
2 + u2u

′
1 1I, 7M

Special case 1: w2 = 0 and w1 �= 0 (deg(u′) = 2)

2 I = w−1
1 , u′

1 = Iw0 + u2, u′
0 = If3 + h2 + u1 + u2u

′
1 1I, 3M

Special case 2: w2 = w1 = 0 and w0 �= 0 (deg(u′) = 1)

2 I = w−1
0 , u′

0 = If3 + u2 1I, 1M

Special case 3: v′
2 = y2, v′

1 = y1 and v′
0 = y0 (deg(u′) = 0)

2 u′ = 1, v′ = y

Total General Case 1I, 9M, 1S

Special Case 1 1I, 5M, 1S

Special Case 2 1I, 3M, 1S

Special Case 3 2M, 1S
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Inverse Balancing Step, Odd Characteristic,

Input D = [u2, u1, u0, v2, v1, v0]

OutputD− = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Precomputation

w0 = 2y0 − 2v0, w1 = 2y1 − 2v1, w2 = 2y2 − 2v2

General case: v2 �= y (deg(u′) = 3)

Computing u′ =Monic((f + hv − v2)/u)

1 u′ = x3 + u′
2x

2 + u′
1x + u′

0 1I, 7M

I = w−1
2 , u′

2 = Iw1 − u2, u′
1 = Iw0 + (y2 + v2)/2 − u1 − u2u

′
2

u′
0 = I(f3 − f6v1) + v1 − u0 − u2u

′
1 − u1u

′
2

Computing v′ = �y� + h − [(�y� + v) (mod u′)]
2 v′ = x4 + v′

2x
2 + v′

1x + v′
0 2M, 1S

v′
2 = −v2 + 2u′

1 − 2(u′
2)2, v′

1 = −v1 + 2u′
0 − 2u′

1u
′
2, v′

0 = −v0 − 2u′
0u

′
2

Special case 1: w2 = 0 and w1 �= 0 (deg(u′) = 2)

Computing u′ =Monic((f + hv − v2)/u)

1 u′ = x2 + u′
1x + u′

0 1I, 3M

I = w−1
1 , u′

1 = Iw0 − u2, u′
0 = I(f3 − f6y1) + y2 − u1 − u2u

′
1

Computing v′ = �y� + h − [(�y� + v) (mod u′)]
2 v′ = x4 + y2x

2 + v′
1x + v′

0 2M, 1S

t1 = y2 − u′
0 + (u′

1)2, v′
1 = −v1 + 2(t1 − u′

0)u′
1, v′

0 = −v0 + 2t1u
′
0

Special case 2: w2 = w1 = 0 and w0 �= 0 (deg(u′) = 1)

Computing u′ =Monic((f + hv − v2)/u)

1 u′ = x + u′
0 1I, 1M

I = w−1
0 , u′

0 = I(f3 − f6y1) − u2

Computing v′ = �y� + h − [(�y� + v) (mod u′)]
2 v′ = x4 + y2x

2 + y1x + v′
0 2M, 1S

t1 = (u′
0)2, v′

0 = −v0 − 2(y2 + t1)t1 + 2y1u
′
0

Special case 3: w2 = w1 = w0 = 0 (deg(u′) = 0)

u′ = 1, v′ = y + h

Total General Case 1I, 9M, 1S

Special Case 1 1I, 5M, 1S

Special Case 2 1I, 3M, 1S
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Inverse Balancing Step, Characteristic 2,

Input D = [u2, u1, u0, v2, v1, v0]

OutputD− = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Precomputation

1 w0 = y0 + h0 + v0, w1 = y1 + h1 + v1, w2 = y2 + h2 + v2

General case: w2 �= 0 (deg(u′) = 3)

Computing u′ =Monic((f + hv − v2)/u)

2 u′ = x3 + u′
2x

2 + u′
1x + u′

0 1I, 7M

I = w−1
2 , u′

2 = Iw1 + u2, u′
1 = Iw0 + h2 + w2 + u1 + u2u

′
2

u′
0 = I(f3 + h2w1) + h1 + u0 + u1u

′
2 + u2u

′
1

Computing v′ = �y� + h − [(�y� + v) (mod u′)]
3 v′ = (y4 + 1)x4 + (h3 + y3)x3 + v′

2x
2 + v′

1x + v′
0 2M, 1S

v′
2 = h2 + v2 + u′

1 + (u′
2)2, v′

1 = h1 + v1 + u′
0 + u′

1u
′
2, v′

0 = h0 + v0 + u′
0u

′
2

Special case 1: w2 = 0 and w1 �= 0 (deg(u′) = 2)

Computing u′ =Monic((f + hv − v2)/u)

2 u′ = x2 + u′
1x + u′

0 1I, 3M

I = w−1
1 , u′

1 = Iw0 + u2, u′
0 = If3 + h2 + u1 + u2u

′
1

Computing v′ = �y� + h − [(�y� + v) (mod u′)]
3 v′ = (y4 + 1)x4 + (h3 + y3)x3 + (h2 + y2)x2 + v′

1x + v′
0 2M, 1S

t1 = (u′
1)2 + h2, v′

1 = h1 + v1 + t1u
′
1, v′

0 = h0 + v0 + (t1 + u′
0)u′

0

Special case 2: w2 = w1 = 0 and w0 �= 0 (deg(u′) = 1)

Computing u′ =Monic((f + hv − v2)/u)

2 u′ = x + u′
0 1I, 1M

I = w−1
0 , u′

0 = If3 + u2

Computing v′ = �y� + h − [(�y� + v) (mod u′)]
3 v′ = (y4 + 1)x4 + (h3 + y3)x3 + (h2 + y2)x2 + (h1 + y1)x + v′

0 2M, 1S

t1 = (u′
0)2, v′

0 = h0 + v0 + h1u
′
0 + (h2 + t1)t1

Special case 3: w2 = w1 = w0 = 0 (deg(u′) = 0)

2 u′ = 1, v′ = y + h

Total General Case 1I, 9M, 1S

Special Case 1 1I, 5M, 1S

Special Case 2 1I, 3M, 1S
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Addition and Doubling

Addition, Odd Characteristic

Input D1 = [u12, u11, u10, v12, v11, v10], D2 = [u22, u21, u20, v22, v21, v20]

OutputD1 ⊕ D2 = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Computing the resultant r =resultant(u1, u2) and inv = r(u−1
2 ) (mod u1)

1 r = u10(i2t3 + i1t2) − i0t0, inv = i2x
2 + i1x + i0 15M

t0 = u10 − u20, t1 = u11 − u21, t2 = u12 − u22, t3 = t1 − t2u12

t4 = t0 − t2u11, t5 = t4 − t3u12, t6 = t2u10 + t3u11

i0 = t4t5 + t3t6, i1 = −(t2t6 + t1t5), i2 = t1t3 − t2t4

Computing s′ = (v1 − v2)inv (mod u1)

2 s′ = s′
2x

2 + s′
1x + s′

0 10M

w0 = v10 − v20, w1 = v11 − v21, w2 = v12 − v22

t0 = w0i0, t1 = w1i1, t2 = w2i2

t3 = u12t2, t4 = (w1 + w2)(i1 + i2) − t1 − t2 − t3

t5 = u10 + u12, t6 = (t5 + u11)(t2 + t4), t7 = (t5 − u11)(t2 − t4)

s′
0 = t0 − t4u10, s′

1 = (w0 + w1)(i0 + i1) − (t7 + t6)/2 − t0 − t1 + t3

s′
2 = (w0 + w2)(i0 + i2) + (t7 − t6)/2 + t1 − s′

0 − t2

Call Cantor algorithm if s′
2 = 0

Computing Required Inverses

3 û3 = s′
2(s′

2u11 − s′
0) − s′

1(s′
2u12 − s′

1) 1I, 13M

t1 = s′
2r, w′ = t1û3, I = w′−1, t2 = It1, t3 = Iû3

Ir = t3s
′
2 (the inverse of r), Is = t3r (the inverse of s′

2)

Iu′ = t1t2 (the inverse of the leading coefficient of u′ in step 9), w = Isr, s2 = Irs
′
2

Computing s = s′/s′
2 = x2 + s1x + s0

4 s1 = Iss
′
1, s0 = Iss

′
0 2M

Computing l = su2

5 l = x5 + l4x
4 + l3x

3 + l2x
2 + l1x + l0 4M

t1 = u20 + u22, t2 = (s0 + s1)(t1 + u21) , t3 = (s0 − s1)(t1 − u21), t4 = s1u22

l0 = s0u20, l1 = (t2 − t3)/2 − t4, l2 = (t2 + t3)/2 − l0 + u20

l3 = t4 + s0 + u21, l4 = s1 + u22

Computing k = (v2
2 − hv2 − f)/u2

6 k3 = 2(y2 − v22)

Computing ut = (s(l + wh + 2wv2) − kw2)/u1

7 ut = x4 + ut3x
3 + ut2x

2 + ut1x + ut0 12M

t0 = l4 + 2w, t1 = t0s1, t2 = s0l3, t3 = 2v22w

ut3 = t0 + s1 − u12, t4 = u12ut3, ut2 = t1 + l3 + s0 − u11 − t4, t5 = u11ut2

ut1 = (s0 + s1)(l3 + t0) − (u11 + u12)(ut2 + ut3) − t1 − t2 + t3 + l2 + t4 + t5 − u10

ut0 = s1(t3 + l2) + w(2v21 − k3w) + t2 + l1 − t5 − u12ut1 − u10ut3

Computing vt = (v2 + ls2) (mod ut)

8 vt = vt3x
3 + vt2x

2 + vt1x + vt0 9M

t1 = s2(ut3 − l4) − 1

vt3 = t1ut3 − s2(ut2 − l3), vt2 = t1ut2 − s2(ut1 − l2) + v22

vt1 = t1ut1 − s2(ut0 − l1) + v21, vt0 = t1ut0 + s2l0 + v20

Computing u′ = (f + hv′
t − (v′

t)
2)/ut where v′

t = h + �y� − (vt + �y�) (mod ut)

9 u′ = x3 + u′
2x

2 + u′
1x + u′

0 6M, 1S

w3 = vt3 − ut3, w2 = vt2 − ut2, w1 = vt1 − ut1, w0 = vt0 − ut0 + y0

u′
2 = Iu′ (w2 + y2) − w3/2 − ut3, u′

1 = Iu′ (w1 + y1) − w2 − u′
2ut3 − ut2

u′
0 = Iu′ ((y2

2 − w2
2)/2 + w0) − w1 − u′

1ut3 − u′
2ut2 − ut1

Computing v′ = h + �y� − (�y� + v′
t) (mod u′)

10 v′ = x4 + v′
2x

2 + v′
1x + v′

0 3M

t1 = w3 + 2u′
2

v′
2 = −t1u

′
2 + 2u′

1 + w2, v′
1 = −t1u

′
1 + 2u′

0 + w1, v′
0 = −t1u

′
0 − y0 + w0

Total 1I, 74M, 1S

rscheidl@ucalgary.ca



Jacobian Versus Infrastructure in Split Hyperelliptic Curves 199

Addition, Characteristic 2

Input D1 = [u12, u11, u10, v12, v11, v10], D2 = [u22, u21, u20, v22, v21, v20]

OutputD1 ⊕ D2 = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Computing the resultant r =resultant(u1, u2) and inv = r(u−1
2 ) (mod u1)

1 r = i0t0 + u10(i2t3 + i1t2), inv = i2x
2 + i1x + i0 15M

t0 = u20 + u10, t1 = u21 + u11, t2 = u22 + u12, t3 = t1 + t2u12

t4 = t0 + t2u11, t5 = t4 + t3u12, t6 = t2u10 + t3u11

i0 = t4t5 + t3t6, i1 = t2t6 + t1t5, i2 = t2t4 + t1t3

Computing s′ = (v1 + v2)inv (mod u1)

2 s′ = s′
2x

2 + s′
1x + s′

0 11M

w0 = v10 + v20, w1 = v11 + v21, w2 = v12 + v22, t0 = w0i0, t1 = w1i1,

t2 = w2i2

t3 = (w1 + w2)(i1 + i2) + t1 + t2 + t2u12, t4 = t2u11, t5 = t3u10

s′
2 = (w0 + w2)(i0 + i2) + t0 + t1 + t2 + t4 + t3u12

s′
1 = (w0 + w1)(i0 + i1) + (t3 + t2)(u10 + u11) + t0 + t1 + t4 + t5, s′

0 = t0 + t5

Call Cantor algorithm if s′
2 = 0

Computing Required Inverses

3 û3 = s′
2(s′

2u11 + s′
0) + s′

1(s′
2u12 + s′

1) 1I, 13M

t1 = s′
2r, w′ = t1û3, I = w′−1, t2 = It1, t3 = Iû3

Ir = t3s
′
2 (the inverse of r), Is = t3r (the inverse of s′

2)

Iu′ = t1t2 (the inverse of the leading coefficient of u′ in step 9), w = Isr,

s2 = Irs
′
2

Computing s = s′/s′
2 = x2 + s1x + s0

4 s1 = Iss
′
1, s0 = Iss

′
0 2M

Computing l = su2

5 l = x5 + l4x
4 + l3x

3 + l2x
2 + l1x + l0 5M

w̃0 = s0u21, w̃1 = s1u22, l4 = s1 + u22, l3 = w̃1 + s0 + u21

l2 = (s0 + s1)(u21 + u22) + w̃1 + w̃0 + u20, l1 = s1u20 + w̃0, l0 = s0u20

Computing k = (v2
2 + hv2 + f)/u2

6 k3 = h2 + y2 + v22

Computing ut = s(l + wh + 2wv2) + kw2)/u1

7 ut = x4 + ut3x
3 + ut2x

2 + ut1x + ut0 12M

t0 = wh2, a1 = s1(w + l4), a0 = s0l3

ut3 = w + l4 + s1 + u12, t1 = u12ut3, ut2 = a1 + t1 + l3 + s0 + u11,

t2 = u11ut2

ut1 = (s0+s1)(w+l3+l4)+(u11+u12)(ut2+ut3)+t0+a0+a1+l2+t1+t2+u10

ut0 = w(wk3 + h1) + s1(t0 + l2) + a0 + l1 + t2 + u12ut1 + u10ut3

Computing vt = (v2 + ls2) (mod ut)

8 vt = vt3x
3 + vt2x

2 + vt1x + vt0 9M

t1 = s2(ut3 + l4) + y4 + 1

vt3 = t1ut3 + s2(ut2 + l3), vt2 = t1ut2 + s2(ut1 + l2) + v22

vt1 = t1ut1 + s2(ut0 + l1) + v21, vt0 = t1ut0 + s2l0 + v20

Computing u′ =
f+hv′

t+(v′
t)

2

ut
where v′

t = h + �y� − (vt + �y�) (mod ut)

9 u′ = x3 + u′
2x

2 + u′
1x + u′

0 11M

w3 = y4ut3 + vt3, w2 = y4ut2 + vt2 + y2, w1 = y4ut1 + vt1 + y1,

w0 = y4ut0 + vt0 + y0

u′
2 = Iuw2 + w3 + ut3, u′

1 = Iuw1 + h2 + ut2 + ut3u
′
2

u′
0 = Iu(w2(w2 + h2) + w0) + h1 + ut1 + ut3u

′
1 + ut2u

′
2

Computing v′ = h + �y� + (�y� + v′
t) (mod u′)

10 v′ = (h4 + y4)x4 + (h3 + y3)x3 + v2x
2 + v1x + v0 3M

t1 = w3 + u′
2

v′
2 = t1u

′
2 + w2 + y2 + u′

1, v′
1 = t1u

′
1 + w1 + y1 + u′

0, v′
0 = t1u

′
0 + w0 + y0

Total 1I, 81M
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Doubling, Odd Characteristic

Input D = [u2, u1, u0, v2, v1, v0]

OutputD ⊕ D = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Computing the resultant r =resultant(2v − h, u) and inv = r(2v − h)−1 (mod u)

1 r = ŵ0i0 − u0(t1i2 + ŵ2i1), inv = i2x
2 + i1x + i0 17M, 1S

ŵ0 = 2(v0 + u0u2), ŵ1 = 2(v1 − u0 + u1u2), ŵ2 = 2(v2 − u1 + u2
2)

t1 = ŵ1 − u2ŵ2, t2 = ŵ0 − u1ŵ2, t3 = t2 − u2t1, t4 = u0ŵ2 + u1t1

i0 = t2t3 + t1t4, i1 = −(ŵ1t3 + ŵ2t4), i2 = ŵ1t1 − ŵ2t2

Computing k′ = (f + hv − v2)/u, k = k′ (mod u)

2 k = k2x
2 + k1x + k0 7M

t1 = y2 − v2, t2 = u2t1, k′
3 = 2t1, k2 = −4t1 + 2y1 − 2v1

k1 = 2u2(t2 − y1 + v1) + t2(y2 + v2 − 4u1) + 2y0 − 2v0

k0 = f3 − u2k1 − 4u0t1 − 2u1(y1 − v1) − 2v1v2

Computing s′ = k.inv (mod u)

3 s′ = s2x
2 + s1x + s0 10M

t0 = k0i0, t1 = k1i1, t2 = k2i2, t3 = u2t2

t4 = (k1 + k2)(i1 + i2) − t1 − t2 − t3, t5 = t4u0, t6 = u0 + u2, t7 = t6 + u1

t8 = t6 − u1, t9 = t7(t4 + t2), t10 = t8(t4 − t2)

s′
2 = (k0 + k2)(i0 + i2) − (t10 + t9)/2 − t0 − t2 + t1 + t5

s′
1 = (k0 + k1)(i0 + i1) + (t10 − t9)/2 − t0 − t1 + t3, s′

0 = t0 − t5

If s′
2 = 0 then call Cantor Algorithm

Computing Required Inverses

4 û3 = s′
2(s′

2u2 − s′
0) − s′

1(s′
1 − s′

2u2) 1I, 13M

t1 = s′
2r, w′ = t1û3, I = w′−1, t2 = It1, t3 = Iû3

Ir = t3s
′
2 (the inverse of r), Is = t3r (the inverse of s′

2)

Iu′ = t1t2 (the inverse of the leading coefficient of u′ in step 9), w = Isr,

s2 = Irs
′
2

Computing s = s′/s′
2 = x2 + s1x + s0

5 s1 = Iss
′
2, s0 = Iss

′
0 2M

Computing l = su

6 l = x5 + l4x
4 + l3x

3 + l2x
2 + l1x + l0 4M

t1 = u0 + u2, t2 = (s0 + s1)(t1 + u1), t3 = (s0 − s1)(t1 − u1), w̃1 = s1u2

l0 = s0u0

l1 = (t2 − t3)/2 − w̃1, l2 = (t2 + t3)/2 − l0 + u0, l3 = w̃1 + s0 + u21,
l4 = s1 + u22

Computing ut = s2 + (sw(h + 2v) − w2k′)/u
7 ut = x4 + ut3x

3 + ut2x
2 + ut1x + ut0 13M

ut3 = 2(w + s1), t1 = u2ut3

ut2 = s1(2w + s1) + 2w̃1 − t1 + 2s0, t2 = u1ut2

ut1 = 2w(s0 + v2) + s1(w̃1 + 2s0) − (ut2 + ut3)(u1 + u2) + 2l2 − 2u0 + t1 + t2

ut0 = w(2s1v2 − 2wk′
3 + 2v1) + s1(l2 + u0) + s0(s0 + w̃1 + 2u1) − t2 − u2ut1 − u0ut3

Computing vt = (v + s2l) (mod ut)

8 vt = vt3x
3 + vt2x

2 + vt1x + vt0 9M

t1 = s2(ut3 − l4) − 1

vt3 = ut3t1 − s2(ut2 − l3), vt2 = ut2t1 − s2(ut1 − l2) + v2

vt1 = ut1t1 − s2(ut0 + l1) + v1, vt0 = ut0t1 + s2l0 + v0

Computing u′ = (f + hv′
t − (v′

t)
2)/ut where v′

t = h + �y� − (vt + �y�) (mod ut)

9 u′ = u′
3x

3 + u′
2x

2 + u′
1x + u′

0 6M, 1S

w3 = vt3 − ut3, w2 = vt2 − ut2, w1 = vt1 − ut1, w0 = vt0 − ut0 + y0

u′
2 = Iu′ (w2 + y2) − w3/2 − ut3, u′

1 = Iu′ (w1 + y1) − w2 − ut3u
′
2 − ut2

u′
0 = Iu′ ((y2

2 − w2
2)/2 + w0) − w1 − ut3u

′
1 − ut2u

′
2 − ut1

Computing v′ = h + �y� − (�y� + v′
t) (mod u)

10 v′ = (h4 + y4)x4 + (h3 + y3)x3 + v′
2x

2 + v′
1x + v′

0 3M

t1 = w3 + 2u′
2

v′
2 = −t1u

′
2 + 2u′

1 + w2, v′
1 = −t1u

′
1 + 2u′

0 + w1, v′
0 = −t1u

′
0 + w0 − y0

Total 1I, 84M, 2S
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Doubling, Characteristic 2

Input D = [u2, u1, u0, v2, v1, v0]

OutputD ⊕ D = [u′
2, u

′
1, u

′
0, v

′
2, v

′
1, v

′
0]

Step Expression Operations

Precomputations

Computing the resultant r =resultant(2v + h, u) and inv = r(2v + h)−1 (mod u)

1 r = ŵ0i0 + u0(t1i2 + ŵ2i1), inv = i2x
2 + i1x + i0 17M, 1S

ŵ0 = h0 + u0u2, ŵ1 = h1 − u0 + u1u2, ŵ2 = h2 − u1 + u2
2

t1 = ŵ1 + u2ŵ2, t2 = ŵ0 + u1ŵ2, t3 = t2 + u2t1, t4 = u0ŵ2 + u1t1

i0 = t2t3 + t1t4, i1 = ŵ1t3 + ŵ2t4, i2 = ŵ1t1 + ŵ2t2

Computing k′ = (f + hv + v2)/u, k = k′ (mod u)

2 k = k2x
2 + k1x + k0 6M

k′
3 = h2 + y2 + v2, k2 = h1 + y1 + v1

k1 = u2(k′
3u2 + k2) + v2(h2 + v2) + h0y4 + h0 + v0

k0 = f3 + k2(h2 + u1) + k′
3h1 + k1u2

Computing s′ = k.inv (mod u)

3 s′ = s′
2x

2 + s′
1x + s′

0 11M

t0 = k0i0, t1 = k1i1, t2 = k2i2, t3 = (k1 + k2)(i1 + i2) + t1 + t2 + t2u2,

t4 = t2u1, t5 = t3u0

s′
2 = (k0 + k2)(i0 + i2) + t0 + t1 + t2 + t4 + t3u2

s′
1 = (k0 + k1)(i0 + i1) + (t2 + t3)(u0 + u1) + t0 + t1 + t4 + t5, s′

0 = t0 + t5

If s′
2 = 0 then call Cantor Algorithm

Computing Required Inverses

4 û3 = s′
1(s′

1 + s′
2u2) + s′

2(s′
0 + s′

2u1), t1 = s′
2r, w′ = t1û3, I = w′−1,

t2 = It1, t3 = Iû3

1I, 13M

Ir = t3s
′
2 (the inverse of r, Is = t3r (the inverse of s′

2)

Iu′ = t1t2 (the inverse of the leading coefficient of u′ in step 9), w = Isr,

s2 = Irs
′
2

Computing s = s′/s′
2 = x2 + s1x + s0

5 s1 = Iss
′
1, s0 = Iss

′
0 2M

Computing l = su

6 l = x5 + l4x
4 + l3x

3 + l2x
2 + l1x + l0 5M

w̃1 = s1u2, w̃0 = s0u1, l4 = s1 + u2, l3 = w̃1 + s0 + u1

l2 = (s0 + s1)(u1 + u2) + w̃0 + w̃1 + u0, l1 = w̃0 + s1u0, l0 = s0u0

Computing ut = s2 + (ws(h + 2v) + w2k′)/u
7 ut = x4 + ut3x

3 + ut2x
2 + ut1x + ut0 12M

t1 = wu2, ut3 = w, ut2 = s1(w + s1) + t1, t2 = u1ut2

ut1 = w(s0 + h2) + s1w̃1 + (w + ut2)(u1 + u2) + t1 + t2

ut0 = w(s1h2 + wk′
3 + h1 + u0) + s1(l2 + u0) + s0(s0 + w1) + u2ut1 + t2

Computing vt = (v + s2l) (mod ut)

8 vt = vt3x
3 + vt2x

2 + vt1x + vt0 9M

t1 = s2(w + l4) + y4 + 1

vt3 = wt1 + s2(ut2 + l3), vt2 = ut2t1 + s2(ut1 + l2) + v2

vt1 = ut1t1 + s2(ut0 + l1) + v1, vt0 = ut0t1 + s2l0 + v0

Computing u′ = (f + hv′
t − (v′

t)
2)/ut where v′

t = h + �y� − (vt + �y�) (mod ut)

9 u′ = u′
3x

3 + u′
2x

2 + u′
1x + u′

0 11M

w3 = vt3 + y4w, w2 = y2 + vt2 + y4ut2, w1 = y1 + vt1 + y4ut1,

w0 = y0 + vt0 + y4ut0

u′
2 = Iu′w2 + w3 + w, u′

1 = Iu′w1 + h2 + wu′
2 + ut2

u′
0 = Iu′ (w2(w2 + h2) + w0) + h1 + wu′

1 + ut2u
′
2 + ut1

Computing v′ = h + �y� + (�y� + v′
t) (mod u′)

10 v′ = (h4 + y4)x4 + (h3 + y3)x3 + v′
2x

2 + v′
1x + v′

0 3M

t1 = u′
2 + w3

v′
2 = u′

2t1 + u′
1 + w2 + y2, v′

1 = u′
1t1 + u′

0 + w1 + y1, v′
0 = u′

0t1 + w0 + y0

Total 1I, 89M, 1S
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