Visualization

DATA 201: Thinking With Data

 Winter 2021Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

What is visualization?

Scientific Visualization Information Visualization Data Visualization

Mesopotamian Clay Tokens 5500 BCE

ALCARAVi

Size -> Quantity Shape -> Type

Numeral 1		Seat
	0 Wool	
Numeral 36000		 Cloth

William Playfair 1786

Exports and Imports to and from DENMARK \&e NORWAY from 1700 to 1780 .

William Playfair - Founder of graphical methods of statistics, invented numerous common diagram types

TurkifhEnpire

This Photo by Unknown Author is licensed under CC BY-SA

John Snow 1854 \qquad

the position of each cholera case in London [from Tufte 83]

John Snow - dot chart

- Cholera in 1800s
- 'miasma theory' -> from 'bad air'
- Snow -> role of water supply
- Dot map to show cases around water pump
- 'Founding event of science of epidemiology'
- (pump dug 3 feet from old cesspit)

Jon Snow

WHOWS NOTHING
 STIL AIV:

 an TCobilow er-ou-rejoinn vers Orscha en 'Witebsk, avaiem-toryours marcbie avec l'armée.

Charles Minard

- Napoleon's losses during Russian campaign in 1812
- Six types of data
- Troop count, distance traveled, temperature, latitude, longitude, direction of travel, location relative to dates of events
- Later this type of diagram -> Sankey diagram

Everytime a foreign nower tried to invade Russia in winter

Figure. Sketch showing arrangement of restaurant tables and air conditioning airflow at site of outbreak of 2019 novel coronavirus disease, Guangzhou, China, 2020. Red circles indicate seating of future case-patients; yellow-filled red circle indicates index case-patient.

Figure. Sketch showing arrangement of restaurant tables and air conditioning airflow at site of outbreak of 2019 novel coronavirus disease, Guangzhou, China, 2020. Red circles indicate seating of future case-patients; yellow-filled red circle indicates index case-patient.

COVID

6 Feet Not Enough

COVID

- https://informationisbeautiful.net/visualizations/covid-19-coronavirus-infographic-datapack/

Visual Language

Encode
 Data $=\boldsymbol{\rightarrow}=$ Images/Signs $=\#$ Information

Levels of Measurement

- Nominal
- Ordinal
- Interval
- Ratio

Levels of Measurement

- Nominal - categories, labels.
- Ordinal
- Interval
- Ratio

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal
- Interval
- Ratio

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal - meaningful order.
- Interval
- Ratio

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal - meaningful order.
- E.g., medals: gold, silver, bronze
- Interval
- Ratio

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal - meaningful order.
- E.g., medals: gold, silver, bronze
- Interval - degree of difference, arbitrary origin or 0.
- Ratio

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal - meaningful order.
- E.g., medals: gold, silver, bronze
- Interval - degree of difference, arbitrary origin or 0.
- E.g., temperature in C° or F°
- Ratio

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal - meaningful order.
- E.g., medals: gold, silver, bronze
- Interval - degree of difference, arbitrary origin or 0.
- E.g., temperature in C° or F°
- Ratio - unique (non-arbitrary) 0 value. Zero indicates the absence of the quantity.

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal - meaningful order.
- E.g., medals: gold, silver, bronze
- Interval - degree of difference, arbitrary origin or 0.
- E.g., temperature in C° or F°
- Ratio - unique (non-arbitrary) 0 value. Zero indicates the absence of the quantity.
- E.g., length

Levels of Measurement

- Nominal - categories, labels.
- E.g., fruits: apples, oranges, bananas, etc.
- Ordinal - meaningful order.
- E.g., medals: gold, silver, bronze
- Quantitative Interval - degree of difference, arbitrary origin or 0.
- E.g., temperature in C° or F°
- Quantitative Ratio - unique (non-arbitrary) 0 value. Zero indicates the absence of the quantity.
- E.g., length

Levels of Measurement - Tour de France

- Nominal - categories, labels.
- Team Sky, sprinter/climber/etc.
- Ordinal - meaningful order.
- Podium finish (maybe quantitative but height often arbitrary on podium)
- Quantitative Interval - degree of difference, arbitrary origin or 0.
- Rank ordering. $1^{\text {st }}$ to cross finish line, $2^{\text {nd }}$ to cross finish line (not a quantity where $0^{\text {th }}$ means anything)
- Quantitative Ratio - unique (non-arbitrary) 0 value. Zero indicates the absence of the quantity.
- Time back of leader (leader at 0, second place 33s back, third place 1:33 back)

Relational Data Model

- Relation (Table)
- Tuple (Row) Attribute (Column)
- Schema (Blueprint / table structure) Database (A collection of relation)

Month	Treatment	Pressure
March	Control	165
March	Placebo	163
March	300 mg	166
March	450 mg	168
April	Control	162
April	Placebo	159
April	300 mg	161
April	450 mg	163
May	Control	164

Blood pressure study (4 treatments, 6 months)

Relational Data Model

- Dimensions
- discrete variables
- e.g., categories, names
- Measures
- can be aggregated usually continuous
- e.g., weight, height

Month	Treatment	Pressure
March	Control	165
March	Placebo	163
March	300 mg	166
March	450 mg	168
April	Control	162
April	Placebo	159
April	300 mg	161
April	450 mg	163
May	Control	164

Blood pressure study (4 treatments, 6 months)

Keys

- Primary key
- A column
- Each row value unique in this table of data
- Each record uniquely connected to this
- Used by program to identify row
- Only one
- Secondary key
- A column
- Each row value unique in this table of data
- Each record uniquely connected to this
- Not used by program to identify row
- Can me zero, one, or more

No	ID	Name
1	3012143	Jon
2	3002243	Jon
3	3102143	Jonathan
4	3002144	John
5	3002121	Dr. J
6	3006143	John
7	3802142	Jonathan
8	3402143	Jon
9	3003243	Johnathan

Keys

- Foreign Key
- A primary key in another table

No	ID	Name
1	3012143	Jon
2	3002243	Jon
3	3102143	Jonathan

No	ID	Course	Grade
1	3012143	DATA 201	A
2	3012143	DATA 211	A-
3	3012143	DATA 311	$\mathrm{B}+$

Keys

- Foreign Key
- A primary key in another table

No	ID	Name
1	3012143	Jon
2	3002243	Jon
3	3102143	Jonathan

No	ID	Course	Grade
1	3012143	DATA 201	A
2	3012143	DATA 211	A-
3	3012143	DATA 311	$\mathrm{B}+$

Keys

- Foreign Key

- A primary key in another table
- Used to join tables together
- (Note that we didn’t have to store 'Jon' as a name for every single grade)

No	ID	Course	Grade	Name
1	3012143	DATA 201	A	Jon
2	3012143	DATA 211	A-	Jon
3	3012143	DATA 311	B+	Jon

Example (Census)

- Levels of Measurement (nominal, ordinal, interval, or ratio)
- Types of Attribute (dimension or measure)
- Year: 1901 - 2016 (every 5 years)
- Age: 0 - 90+
- Marital Status: Single, Married, Divorced,...
- People: \# of people in group

Dimensions and Measures are important concepts in many analysis tools.

Data with different levels of measurement are best to encode in different ways.

Encoding

Marks

Marks

O
 - Points

Lines

Visual Variables

Visual Variables

- Position
- Size
- Value
- Texture
- Colour
- Orientation
- Shape

Bertin 1974

More Accurate	Nominal		Ordinal		Quantitative	
	Position	$\bullet \bullet$	Position	$\bullet \cdot$	Position	$\bullet \bullet$
\uparrow	Hue	- ${ }^{\circ}$	Density	\cdots	Length	
	Density	- .	Saturation	$\bullet \cdot$ -	Angle	\angle
	Saturation	-••	Hue	\cdots	Slope	1-
	Shape	- ${ }^{\text {- }}$	Length	-	Area	\bullet
	Length	-	Angle	\angle	Density	- .
	Angle	\angle	Slope	-	Saturation	- $\cdot \circ$
\downarrow	Slope	1-	Area	$\bullet \bullet$	Hue	-
Less Accurate	Area	-	Shape	- A	Shape	- A

Jacques Bertin refined by Cleveland \& McGill then by Card \& Mackinlay

Month	Treatment	Pressure
March	Control	165
March	Placebo	163
March	300 mg	166
March	450 mg	168
April	Control	162
April	Placebo	159
April	300 mg	161
April	450 mg	163
May	Control	164

Month	Treatment	Pressure	Quantitative
March	Control	165	Position - -
March	Placebo	163	Length
March	300 mg	166	Angle $\quad \angle$
March	450 mg	168	Slope /
April	Control	162	Area ••
April	Placebo	159	Density $\bullet \bullet$
April	300 mg	161	Saturation •••
April	450 mg	163	Hue •••
May	Control	164	Shape - ^■

Month	Treatment	Pressure
March	Control	165
March	Placebo	163
March	300 mg	166
March	450 mg	168
April	Control	162
April	Placebo	159
April	300 mg	161
April	450 mg	163
May	Control	164

Month	Treatment	Pressure	Nominal
March	Control	165	Position $\quad \bullet$
March	Placebo	163	Hue •••
March	300 mg	166	Density ••
March	450 mg	168	Saturation •••
April	Control	162	Shape •^•
April	Placebo	159	Length
April	300 mg	161	Angle \angle
April	450 mg	163	Slope / -
May	Control	164	Area ••

More Variables with Computers

Motion

More Variables with Computers

More Variables with Computers

Flicker
Frequency, rhythm

More Variables with Computers

Flicker
Frequency, rhythm
Depth

More Variables with Computers

Flicker
Frequency, rhythm
Depth
Transparency

Characteristics of Visual Variables

- Selective
- Associative
- Quantitative
- Order
- Variations / Length / Resolution

Characteristics of Visual Variables

- Selective - differentiate items from groups
- Associative
- Quantitative
- Order
- Variations / Length / Resolution

Characteristics of Visual Variables

- Selective - differentiate items from groups
- Associative - group items in a group
- Quantitative
- Order
- Variations / Length / Resolution

Characteristics of Visual Variables

- Selective - differentiate items from groups
- Associative - group items in a group
- Quantitative - changes in terms of numerical reading
- Order
- Variations / Length / Resolution

Characteristics of Visual Variables

- Selective - differentiate items from groups
- Associative - group items in a group
- Quantitative - changes in terms of numerical reading
- Order - perceive an order
- Variations / Length / Resolution

Characteristics of Visual Variables

- Selective - differentiate items from groups
- Associative - group items in a group
- Quantitative - changes in terms of numerical reading
- Order - perceive an order
- Variations / Length / Resolution - distinguishable variations (How many variations in the visual variable are distinctions recognizable?)

Position

Selective
Associative
Quantitative
Order
Variations / Length / Resolution

Position

+ Selective
+ Associative
+ Quantitative
+ Order
+ Variations / Length / Resolution

Size

Selective
Associative
Quantitative
Order

Variations / Length / Resolution

Size

+ Selective
+ Associative

+/- Quantitative
+ Order

+ Variations / Length / Resolution $4 \times \square=\square$?

Shape

Selective
Associative
Quantitative
Order
Variations / Length / Resolution

Shape

＋／－Selective
＋／－Associative
－Quantitative
－Order
＋Variations／Length／Resolution

+チャメメニキロキーキーキレ

$$
\dagger \bullet \Delta+\boxminus 0 \bullet \star \star \boxtimes \star \ldots
$$

Shape

Find

Shape

Value

Selective

Associative
Quantitative

Order
Variations / Length / Resolution $\square<\square<\square<\square<\square<\square<\square$

Value

+ Selective
+ Associative
+/- Quantitative
+ Order
+ Variations / Length / Resolutic $\square<\square<\square<\square<\square<\square<\square$

Value

Value

ANNUAL DEATHS

Colour

Selective
Associative
Quantitative
Order

Colour

+ Selective
+ Associative
- Quantitative

- Order
+ Variations / Length / Resolution

Colour-blind

DEUTERANOMALY

PROTANOPIA

Colour-blind

- Selective
- Associative
- Quantitative
- Order
- Variations / Length / Resolution

- A b C ○ \quad E

Colour-blind

+/- Selective
+/- Associative

- Quantitative
- Order
+/- Variations / Length / Resolution

Orientation

Selective
Associative
Quantitative

Order
Variations / Length / Resolution

Orientation

+ Selective
+ Associative
- Quantitative

- Order
+ Variations / Length / Resolution / \ggg \gg ?

Texture

Selective

Associative
 Quantitative

Order
Variations / Length / Resolution

Texture

+ Selective
+ Associative
- Quantitative
- Order
+ Variations / Length / Resolution

Carpendale 2003

Visual Variable	Selective	Associative	Quantitative	Order	Length
Position	Yes	Yes	Yes	Yes	Dependant on resolution
Size	Yes	Yes	Approximate	Yes	Association: 5; Distinction: 20
Shape	With Effort	With Effort	No	No	Infinite
Value	Yes	Yes	No	Yes	Association: 7; Distinction: 10
Hue	Yes	Yes	No	No	Association: 7; Distinction: 10
Orientation	Yes	Yes	No	No	4
Grain	Yes	Yes	No	No	5
Texture	Yes	Yes	No	No	Infinite
Motion	Yes	Yes	No	Yes	Unknown

Visual Hierarchy

1. Reading patterns (many left->right, scan patterns F and Z)
2. Size dictates focus order
3. Space (texture) - emphasis
4. Type-Face - bold emphasis, italics supplemental
5. Colour - colour important, b/w distance
6. Direction - grids common structure, but breaking grid can pull focus

Onward to ... Obtaining Data

