
AI: TensorFlow Neural
Network
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Wednesday, August 12, 2020

2

MNIST

3

One MNIST Database

• Each image is a 28x28 array, flattened out to be a 1-d tensor of size 784

4

Model

• Input to model
• X: image of a handwritten digit
• Y: the digit value

• Goal: trained model that recognizes the digit in the image

5

Model

• Inference: Y_predicted = softmax(X * w + b)
• We want network that predicts 10 digits
• We also want the sum of our probabilities across output layer to be 1
• Sigmoid activation would give use between 0 and 1
• Softmax goes step further and makes sure sum of the 10 probabilities are 1 in total

6

Model

• Cross entropy loss: -log(Y_predicted)
• Made for measuring performance of models where output is 0 to 1

7

Pre-process

8

Process data

#TF2 Includes MNIST data already (mostly for learning purposes)
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
#We need to level color data to 0 to 1 range
x_train, x_test = x_train / 255.0, x_test / 255.0

#We are classifying digits 0 to 9
class_names = list(range(10))

9

Graph (Neural Network)

10

Phase 1: Assemble our graph

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(10, activation='softmax')

])

Two layers
1. First we flatten image 2d array to a 1d tensor input
2. Then we make a connection from every image spot to every 0-9 integer

output spot

11

Optimizer

12

Specify loss function

model.compile(
optimizer='adam’,
loss='sparse_categorical_crossentropy’,
metrics=['accuracy’])

Use ‘adam’ optimizer
We’ll discuss the loss function later in slides

13

Train

14

Train our model and evaluate it’s quality

model.fit(x_train, y_train, epochs=5)

model_loss, model_acc = model.evaluate(x_test, y_test, verbose=2)

print(f"Model Loss: {model_loss*100:.1f}%")
print(f"Model Accuray:{model_acc*100:.1f}%")

15

Output

16

Train our model and evaluate it’s quality

17

Train our model and evaluate it’s quality

18

Saving and Loading

19

Save/Load our model

model.save(‘MINST.h5’)

new_model = tf.keras.models.load_model('MINST.h5’)

Can use this model exactly the same way we were the one we made and trained

How most apps works. Make model on the development end, spend a bunch of
time testing it in dev, once the accuracy is good see if size/speed can be
optimized, dump into production as finished product

20

Dropout

21

Dropout

• During training, some number of layer outputs are randomly ignored or
“dropped out.”

• the layer look-like and be treated-like a layer with a different number of nodes
and connectivity to the prior layer

• In effect, each update to a layer during training is performed with a different
“view” of the configured layer.

22

Dropout

• Dropout has the effect of making the training process noisy, forcing nodes
within a layer to probabilistically take on more or less responsibility for the
inputs.

• Makes it hard for network to overfit, it can’t focus on creating singular paths for
singular inputs to the trained output, has to try and represent the pattern

23

Dropout

• One gain is that each training step is faster
• Generally takes longer to train as less error updating is done (some nodes are

idle each execution)
• Sometimes you need bigger network than you had previously

• Often larger dropout rates earlier (in CNN think of this is that we want to ignore
little tiny features earlier on)

• Often lower dropout rates later (in CNN think of this as that we’ve made more
complex ideas, they are less likely to be overfitted)

24

Learning Rate

25

Learning Rate

• Neural networks update their weights between neuron during backpropogation
• How large this update can be is dependant on the learning rate
• A high learning rate means they update the value by a large amount, a low

learning rate means a small adjustment

26

Learning Rate

• Alpha is the learning rate
• J is the loss function
• You can see the derivative of the loss function/ the current weight (the

activation function) being the ratio of update

27

Learning Rate

28

Learning Rate Decay

• Start with large learning rate and then reduce it over time

initial_learning_rate = 0.1
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(

initial_learning_rate,
decay_steps=100000,
decay_rate=0.96,
staircase=True)

29

Learning Rate Decay

• Start with large learning rate and then reduce it over time

model.compile(
optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule),
loss='sparse_categorical_crossentropy’,
metrics=['accuracy'])

model.fit(data, labels, epochs=5)

30

Keras Optimizers

SGD
• stochastic gradient descent, update based on learning rate multiplied by

gradient (derivative ratio of loss and activation)
Adagrad
• SGD that adapts learning rates for parameters based on how often they are

update
Adadelta
• robust Adagrad (adapts learning rate itself based on moving window), no need

for learning rate to be set

31

Optimizers

32

Keras Optimizers

RMSprop
• maintain moving average of square of gradients, divide gradient by this square

when considering an update
Adam
• SGD based on adaptive estimation of first and second –order moments

(average and variance)
• basically RMSprop with momentum

33

Keras Optimizers

Adamax – Adam but based on infinity norm
Nadam – like Adam with Nesterov momentum

Ftrl – (newer addition, explanation vague in API)

34

Loss Functions

35

Keras loss functions – basic error

MeanSquaredError: 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝
2

36

Keras loss functions – basic error

MeanSquaredError: 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝
2

Huber: green

37

Keras loss functions – basic error

MeanSquaredLogarithmicError: log 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − log 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝
2

MeanAbsoluteError: |𝑦𝑦_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦_𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝|

MeanAbsolutePercentageError : 100 ∗ |𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝|
𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Poisson: 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ log(𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝)

KLDivergence (Kullback-Leibler): 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ log(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

)

38

Keras loss functions (y_true and y_pred)

CosineSimilarity: cosine similarity
Hinge: 𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 , 0)
• Inputs expected to be -1 or 1

SquaredHinge: 𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 , 0 2

CategoricalHinge: 𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛𝑡𝑡𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝 + 1, 0)
• where 𝑛𝑛𝑡𝑡𝑛𝑛 = 𝑝𝑝𝑡𝑡𝑚𝑚(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝) and 𝑝𝑝𝑝𝑝𝑝𝑝 = max(1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

39

Keras loss functions – cross-entropy

40

Keras loss functions – cross-entropy

BinaryCrossentropy:
• only two label classes (0 and 1)
CategoricalCrossentropy:
• 2 or more labels in one-hot encoding 0 = [1,0,0,0] 1= [0,1,0,0] 2=[0,0,1,0],

3=[0,0,0,1]
SparseCategoricalCrossentropy:
• can use regular integer labels, 1,2,3,4

Onward to …
convolutional neural
networks.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	AI: TensorFlow Neural Network
	MNIST
	One MNIST Database
	Model
	Model
	Model
	Pre-process
	Process data
	Graph (Neural Network)
	Phase 1: Assemble our graph
	Optimizer
	Specify loss function
	Train
	Train our model and evaluate it’s quality
	Output
	Train our model and evaluate it’s quality
	Train our model and evaluate it’s quality
	Saving and Loading
	Save/Load our model
	Dropout
	Dropout
	Dropout
	Dropout
	Learning Rate
	Learning Rate
	Learning Rate
	Learning Rate
	Learning Rate Decay
	Learning Rate Decay
	Keras Optimizers
	Optimizers
	Keras Optimizers
	Keras Optimizers
	Loss Functions
	Keras loss functions – basic error
	Keras loss functions – basic error
	Keras loss functions – basic error
	Keras loss functions (y_true and y_pred)
	Keras loss functions – cross-entropy
	Keras loss functions – cross-entropy
	Onward to … �convolutional neural networks.

