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MNIST
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One MNIST Database

• Each image is a 28x28 array, flattened out to be a 1-d tensor of size 784
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Model

• Input to model
• X: image of a handwritten digit
• Y: the digit value

• Goal: trained model that recognizes the digit in the image
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Model

• Inference: Y_predicted = softmax(X * w + b)
• We want network that predicts 10 digits
• We also want the sum of our probabilities across output layer to be 1
• Sigmoid activation would give use between 0 and 1
• Softmax goes step further and makes sure sum of the 10 probabilities are 1 in total
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Model

• Cross entropy loss: -log(Y_predicted)
• Made for measuring performance of models where output is 0 to 1
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Pre-process
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Process data

#TF2 Includes MNIST data already (mostly for learning purposes)
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
#We need to level color data to 0 to 1 range
x_train, x_test = x_train / 255.0, x_test / 255.0

#We are classifying digits 0 to 9
class_names = list(range(10))
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Graph (Neural Network)
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Phase 1: Assemble our graph

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)), 
tf.keras.layers.Dense(10, activation='softmax')

])

Two layers
1. First we flatten image 2d array to a 1d tensor input
2. Then we make a connection from every image spot to every 0-9 integer 

output spot
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Optimizer



12

Specify loss function

model.compile(
optimizer='adam’,
loss='sparse_categorical_crossentropy’,
metrics=['accuracy’])

Use ‘adam’ optimizer
We’ll discuss the loss function later in slides
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Train
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Train our model and evaluate it’s quality

model.fit(x_train, y_train, epochs=5)

model_loss, model_acc = model.evaluate(x_test, y_test, verbose=2)

print(f"Model Loss: {model_loss*100:.1f}%")
print(f"Model Accuray:{model_acc*100:.1f}%")
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Output
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Train our model and evaluate it’s quality
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Train our model and evaluate it’s quality
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Saving and Loading
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Save/Load our model

model.save(‘MINST.h5’)

new_model = tf.keras.models.load_model('MINST.h5’)

Can use this model exactly the same way we were the one we made and trained

How most apps works. Make model on the development end, spend a bunch of 
time testing it in dev, once the accuracy is good see if size/speed can be 
optimized, dump into production as finished product
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Dropout
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Dropout

• During training, some number of layer outputs are randomly ignored or 
“dropped out.” 

• the layer look-like and be treated-like a layer with a different number of nodes 
and connectivity to the prior layer

• In effect, each update to a layer during training is performed with a different 
“view” of the configured layer.
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Dropout

• Dropout has the effect of making the training process noisy, forcing nodes 
within a layer to probabilistically take on more or less responsibility for the 
inputs.

• Makes it hard for network to overfit, it can’t focus on creating singular paths for 
singular inputs to the trained output, has to try and represent the pattern
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Dropout

• One gain is that each training step is faster
• Generally takes longer to train as less error updating is done (some nodes are 

idle each execution)
• Sometimes you need bigger network than you had previously

• Often larger dropout rates earlier (in CNN think of this is that we want to ignore 
little tiny features earlier on)

• Often lower dropout rates later (in CNN think of this as that we’ve made more 
complex ideas, they are less likely to be overfitted)
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Learning Rate
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Learning Rate

• Neural networks update their weights between neuron during backpropogation
• How large this update can be is dependant on the learning rate
• A high learning rate means they update the value by a large amount, a low 

learning rate means a small adjustment
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Learning Rate

• Alpha is the learning rate 
• J is the loss function
• You can see the derivative of the loss function/ the current weight (the 

activation function) being the ratio of update
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Learning Rate
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Learning Rate Decay

• Start with large learning rate and then reduce it over time

initial_learning_rate = 0.1
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(

initial_learning_rate,
decay_steps=100000,
decay_rate=0.96,
staircase=True)
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Learning Rate Decay

• Start with large learning rate and then reduce it over time

model.compile(
optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule),
loss='sparse_categorical_crossentropy’,
metrics=['accuracy'])

model.fit(data, labels, epochs=5)
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Keras Optimizers

SGD 
• stochastic gradient descent, update based on learning rate multiplied by 

gradient (derivative ratio of loss and activation)
Adagrad
• SGD that adapts learning rates for parameters based on how often they are 

update
Adadelta
• robust Adagrad (adapts learning rate itself based on moving window), no need 

for learning rate to be set
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Optimizers
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Keras Optimizers

RMSprop
• maintain moving average of square of gradients, divide gradient by this square 

when considering an update
Adam 
• SGD based on adaptive estimation of first and second –order moments 

(average and variance)
• basically RMSprop with momentum
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Keras Optimizers

Adamax – Adam but based on infinity norm
Nadam – like Adam with Nesterov momentum

Ftrl – (newer addition, explanation vague in API)
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Loss Functions
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Keras loss functions – basic error

MeanSquaredError: 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝
2
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Keras loss functions – basic error

MeanSquaredError: 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝
2

Huber: green
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Keras loss functions – basic error

MeanSquaredLogarithmicError: log 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − log 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝
2

MeanAbsoluteError: |𝑦𝑦_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦_𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝|

MeanAbsolutePercentageError : 100 ∗ |𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝|
𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Poisson: 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ log(𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝)

KLDivergence (Kullback-Leibler): 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ log(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

)
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Keras loss functions (y_true and y_pred)

CosineSimilarity: cosine similarity 
Hinge: 𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 , 0)
• Inputs expected to be -1 or 1

SquaredHinge: 𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 , 0 2

CategoricalHinge: 𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛𝑡𝑡𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝 + 1, 0)
• where 𝑛𝑛𝑡𝑡𝑛𝑛 = 𝑝𝑝𝑡𝑡𝑚𝑚(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝) and 𝑝𝑝𝑝𝑝𝑝𝑝 = max(1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)



39

Keras loss functions – cross-entropy
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Keras loss functions – cross-entropy

BinaryCrossentropy: 
• only two label classes (0 and 1)
CategoricalCrossentropy:
• 2 or more labels in one-hot encoding 0 = [1,0,0,0] 1= [0,1,0,0] 2=[0,0,1,0], 

3=[0,0,0,1]
SparseCategoricalCrossentropy: 
• can use regular integer labels, 1,2,3,4



Onward to … 
convolutional neural 
networks.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/
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