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Fourier Theorem
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Fourier Theorem

• Fourier Theorem:

• Any continuous, periodic waveform can be expressed as the sum of a series 
of sine and cosine terms, each having specific amplitude and phase 
coefficients

• Any physical function that varies periodically with time with a frequency f 
can be expressed as a superposition of sinusoidal components of 
frequencies:  𝑓𝑓,2𝑓𝑓,3𝑓𝑓,4𝑓𝑓, . . ."
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Additive synthesis

• Pure tones can be added together to form a complex tone (additive synthesis): 
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Fourier decomposition

• Fourier analysis decomposes a complex signal into its component parts

• i.e.  its spectrum

• The Fourier transform calculates the spectrum of a continuous signal
• Transforms from the time domain to the frequency domain
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Discrete Fourier Transform



7

Discrete Fourier Transform

• The discrete Fourier transform (DFT) calculates the spectrum of a digital signal
• Definition:

𝐷𝐷𝐷𝐷𝐷𝐷 𝑥𝑥 𝑛𝑛 = 𝑋𝑋 𝑘𝑘

= ∑𝑛𝑛=0𝑁𝑁−1 𝑥𝑥 𝑛𝑛 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑛𝑛 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁 − 1

• N is the number of samples per period of the waveform
• k is the harmonic number
• and ω = 2π/N
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What frequencies are present

• The discrete Fourier transform (DFT) calculates the spectrum of a digital signal
• Spectrum -> Which frequencies are present
• Harmonic Numbers -> we go up multiples of frequencies (this gives us regular 

components to break signal down into)
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Breakdown

• Since 𝑒𝑒𝑗𝑗𝑗𝑗 = cos(𝑥𝑥) + 𝑗𝑗 sin(𝑥𝑥), can be expressed as:

�
𝑛𝑛=0

𝑁𝑁−1

𝑥𝑥 𝑛𝑛 cos 𝜔𝜔𝑛𝑛𝑘𝑘 − 𝑗𝑗 �
𝑛𝑛=0

𝑁𝑁−1

𝑥𝑥 𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛 𝜔𝜔𝑛𝑛𝑘𝑘 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁 − 1

• We must calculate the real part 𝑎𝑎𝑘𝑘 and the imaginary part 𝑏𝑏𝑘𝑘 separately

Real part 𝑎𝑎𝑘𝑘 Imaginary part 𝑏𝑏𝑘𝑘
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In code
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Get initial summation values

• C implementation:
#define PI     3.141592653589793
#define TWO_PI (2.0 * PI)
void dft(double x[], int N, double a[], double b[]){    

int n, k;    
double omega = TWO_PI / (double)N;    
for (k = 0; k < N; k++) {

a[k] = b[k] = 0.0;
for (n = 0; n < N; n++) {

a[k] += (x[n] * cos(omega * n * k));
b[k] -= (x[n] * sin(omega * n * k));

}   }   }
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Process result

• The results must be further processed : 
• 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 must be scaled by N:

for (k = 0; k < N; k++) {
a[k] /= (double)N;        
b[k] /= (double)N;    

}
• The magnitude or amplitude |X(k)| is given by:

𝑋𝑋 𝑘𝑘 = 𝑎𝑎𝑘𝑘2 + 𝑏𝑏𝑘𝑘2

for (k = 0; k < N; k++)   
amplitude[k] = sqrt( (a[k] * a[k]) + (b[k] * b[k]) )
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What we get?
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Harmonic numbers

• The DFT gives amplitudes for both positive and negative frequencies 
(harmonics)

• If N = 8:
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Final amplitudes

• Add these together to get the amplitude of a harmonic:
x[0] = amplitude[0];
x[N/2] = amplitude[N/2];
for (k = 1, j = N-1; k < N/2; k++, j--)

x[k] = amplitude[k] + amplitude[j];
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Performance?
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Performance

• The DFT is 𝑂𝑂(𝑁𝑁2)
• Not practical for large data sets 
• Can be calculated more efficiently with the fast Fourier transform (FFT)

• Is O(N log N)

• There are many variants of the FFT
• Most work by reordering the data, and then recursively subdividing it in half

• Thus data size must be a power of 2

• Most FFTs work with complex numbers
• The signal is the real part
• The imaginary part is set to 0
• This data is packed into an array of size*2:



18

FFT
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Spectral Analysis
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Spectral Analysis

• Like the DFT, the output of the FFT must be further processed to give 
meaningful results

• The DFT calculates the spectrum for a single cycle of a waveform
• Result can be displayed as a bar graph
• Shows the relative amplitudes of the harmonics
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Signals as frequency bar graphs
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DFT Window

• The DFT can be applied to an arbitrary “window” of a longer waveform
• Is a “snapshot” of the spectrum at a particular time
• Window is typically 512 or 1024 samples long
• Instead of harmonics, the output represents how much energy is present in 

particular “bins”
• When graphed, the amplitudes are joined together to form a 

continuous line
• E.g.
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Example frequency outputs
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Within an application
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Spectral Analysis

• The spectrum can be plotted as it changes over time

• The analysis window slides along the time axis
• Can be end to end
• Or overlapping

• Can be graphed as a 3D “waterfall”
• E.g.
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Spectral Analysis
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Spectral Analysis

• Can also be displayed as a spectrogram
• X axis:  time
• Y axis:  frequency
• Darkness of pixel represents amplitude

• White:  0 amplitude
• Black:  full amplitude

• E.g.
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Spectral Analysis
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Spectral Analysis
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Spectral Analysis



Onward to … 
convolution.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/
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