
Optimization: More
Optimization
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Wednesday, August 5, 2020

2

Strength Reduction

3

Code Tuning – Strength Reduction

• Strength Reduction

• Is where you replace an expensive operation with a cheaper operation

• E.g. Replace multiplication with addition
• Remember: multiplication is repeated addition

• E.g.

4

Code Tuning – Strength Reduction (cont’d)

• After strength reduction:

5

Routines

6

Code Tuning – Routines - Inline

• Routines
• Rewrite routines inline
• (looks like function but is code replacement)

• C++ has the inline keyword
• With other languages, use macros

• E.g. in C
#define SQUARE(x) ((x) * (x))
. . .
int a = 5, b;
b = SQUARE(a);

7

Code Tuning – Routines – Re-Code

• Recode in a low-level language
• E.g. If in Java, use a native method written in C
• E.g. If in C or C++, use assembly
• Portability is lost
• Best applied to small routines or sections of code
• E.g. SPARC assembly

.global cube
cube: smul %o0, %o0, %o1

smul %o0, %o1, %o0
retl
nop

8

Code Tuning – Routine - Rewrite

• Rewrite expensive system routines
• E.g. double log2(double x) may give more precision than you need

• Rounding integer version:
unsigned int log2(unsigned int x) {

if (x < 2) return 0;
if (x < 4) return 1;
if (x < 8) return 2;
. . .
if (x < 2147483648) return 30;
return 31;

}

9

Data Format

10

Code Tuning – Data Transformation – Float/Int

• Data Transformation techniques
• Replace f.p. numbers with integers
• (in OO maybe also be able to replace object type with primitive type)
• E.g. Visual Basic

Dim x As Single
For x = 0 to 99

a(x) = 0
Next

• Is faster as:
Dim x As Integer
. . .

11

Code Tuning – Data Transformation – Array Dims

• Reduce array dimensions where possible
• E.g. C or C++ array

• Is faster as a 1D array:

12

Code Tuning – Data Transformation – Array Refs

• Minimize array references
• E.g.

• Is better as:

13

Code Tuning – Data Transformation – Supp

• Use supplementary indices

• Length index for arrays
• E.g. Add a string-length field to C strings

• Faster than using strlen(), which loops until null found Parallel index
structure

• E.g. Often easier to sort an array of references to a data array, than
the data array itself

• Avoids swapping data that’s expensive to move (i.e. is large or on
disk)

14

Code Tuning – Data Transformation – Caching

• Use caching
• Save commonly used values, instead of recomputing or rereading them
• Java example:

15

Expressions

16

Code Tuning - Expressions

• Expressions
• Exploit algebraic identities

• i.e. replace expensive expressions with cheaper ones

• E.g. not a and not b
• Better as: not (a or b)

• E.g. if (sqrt(x) < sqrt(y))
• Better as: if (x < y)

17

Code Tuning – Expressions – Strength Reduction

• Use strength reduction
• Replace expensive operations with cheaper ones
• Some possibilities:

Original Replacement

Multiplication Addition

Exponentiation Multiplication

Trig routines Tri. Identities

Long ints Ints

f.p. numbers Fixed point numbers/ints

Doubles Floats

Mult/div by power 2 Left/right shift

18

Code Tuning – Expressions – Compile Time

• Initialize at compile time
• i.e. use constants where possible
• E.g.

unsigned int Log2(unsigned int x) {
return (unsigned int)(log(x) / log(2));

}
• Is better as:

const double LOG2 = 0.69314718;
unsigned int Log2(unsigned int x) {

return (unsigned int)(log(x) / LOG2);
}

19

Code Tuning – Expressions – Data Type

• Use the proper data type for constants
• i.e. avoid runtime type conversions
• E.g.

double x;
. . .
x = 5;

• Is better as:
x = 5.0;

20

Code Tuning – Expressions – Common Sub-Exp

• Eliminate common subexpressions
• Assign to a variable, and use it instead of recomputing
• E.g.

p = (1.0 - (r / 12.0)) / (r / 12.0);
• Is better as:

y = r / 12.0;
p = (1.0 - y) / y;

21

Code Tuning – Expressions – Precompute

• Precompute results
• Often better to look up values than to recompute them
• Values could be stored in constants, arrays, or files

22

I/O

23

Code Tuning – I/O

• I/O techniques
• Minimize disk and network accesses

• Use buffered I/O, instead of single reads/writes
• Use RAM instead of disk whenever possible

• Cache commonly used data
• Localize memory accesses

• Reading/writing registers is faster than cache memory, which is faster
than DRAM

• C and C++ provide the register keyword
• Is a hint to the compiler to use a register instead of RAM
• E.g. register int x;

Onward to …
assembly optimization.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Optimization: More Optimization
	Strength Reduction
	Code Tuning – Strength Reduction
	Code Tuning – Strength Reduction (cont’d)
	Routines
	Code Tuning – Routines - Inline
	Code Tuning – Routines – Re-Code
	Code Tuning – Routine - Rewrite
	Data Format
	Code Tuning – Data Transformation – Float/Int
	Code Tuning – Data Transformation – Array Dims
	Code Tuning – Data Transformation – Array Refs
	Code Tuning – Data Transformation – Supp
	Code Tuning – Data Transformation – Caching
	Expressions
	Code Tuning - Expressions
	Code Tuning – Expressions – Strength Reduction
	Code Tuning – Expressions – Compile Time
	Code Tuning – Expressions – Data Type
	Code Tuning – Expressions – Common Sub-Exp
	Code Tuning – Expressions – Precompute
	I/O
	Code Tuning – I/O
	Onward to … �assembly optimization.

