
Reflection: Aspects
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Wednesday, August 5, 2020

2

Intercession via aspects

3

Introduction

• What is AspectJ?
• Aspect oriented programming (AOP) extension to Java

• What is an Aspect?
• a particular part or feature of something.

4

History

• Developed at Xerox PARC (Palo Alto RC)
• Launched in 1998
• PARC transferred AspectJ to an openly-developed eclipse.org project in

December of 2002.

For more info: www.eclipse.org/aspectj

5

Introduction

• What are goals of AOP?
1. Separation of concerns
2. Modularity

• No more tangled code
• Simplicity
• Maintainability
• Reusability

3. Aspects
• encapsulate behaviors that affect multiple classes (OO) into

reusable modules.

6

I’m concerned?

7

Cross-Cutting Concern

• What is a cross-cutting concern?

• Behavior that cuts across the typical divisions of responsibility, such as
logging or debugging

• A problem which a program tries to solve.

• Aspects of a program that do not relate to the core concerns directly, but
which proper program execution nevertheless requires.

8

Language: Dynamic VS Static crosscutting

• Dynamic crosscutting
• define additional behavior to run at certain well-defined points in the

execution of the program

• Static crosscutting
• modify the static structure of a program (e.g., adding new methods,

implementing new interfaces, modifying the class hierarchy)

9

We’ll build around this

10

Reference Object Structured for Following

11

Join In

12

Language: Join Points

• Join Points: well-defined points in the execution of a program

• Method call, Method execution
• Constructor call, Constructor execution
• Static initializer execution
• Object pre-initialization, Object initialization
• Field reference, Field set
• Handler execution
• Advice execution

13

Method-call

“Point.incrXY(..)”

Language: Join Points

Method-execution

“Test.main(..)”

Constructor-call

“Point(..)”

14

Language: Join Points
Static initialization

“Point._clinit_”

Pre-initialization

“Point(..)”

Initialization

“Point(..)”

Constructor-execution

“Point(..)”
Field-set

“Point.x”

Field-set

“Point.y”

Method-execution

“Point.incrXY(..)”
Field-set

“Point.y”

Field-set

“Point.x”

15

Cut in

16

Language: Pointcuts

• A set of join point, plus, optionally, some of the values in the execution context
of those join points.

• Can be composed using boolean operators || , &&

• Matched at runtime

17

Matches if the join point is a method call with this signature.

Matches if the join point is a method call to any kind of FigureElement.

Matches any call to setX OR setY

Language
Pointcut examples

18

Language
Pointcut examples

• There is a cross-cutting concern here relating to moving
• We can capture these in our own user defined pointcut

19

Language: Wildcards and cflow

A void method on Figure whose name begins with make regardless of parameters
(both makePoint and makeLine)

Each call to all Figure’s public methods

Identify all join points that occur between when move() is called and it returns (in
dynamic flow of move())

20

When to cut in?

21

Language: Advice

• Method-like mechanism used to declare that certain code should execute at
each of the join points in the pointcut.

• Advice:

• before
• around
• after

• after
• after returning
• after throwing

22

Language: Advice

23

Language: Exposing context

We can also interact with parameters of pointcut

Filling in an applicable pointcut

24

Cut in all over the place

25

Language: Inter-type declarations

Suppose we want to have Screen objects observe changes to Point objects
where Point is an existing class.

We can implement this by writing an aspect

Each point has an instance field observers that keep track of the Screen objects
that are observing Points.

26

Language: Inter-type declarations

Suppose we want to have Screen objects observe changes to Point objects
where Point is an existing class.

We can implement this by writing an aspect
Each point has an instance field observers that keep track of the Screen objects
that are observing Points.

27

Language: Inter-type declarations

28

Language: Inter-type declarations

29

All together now

30

Language: Aspects

• Mix everything we’ve seen up to now and put it one or more modular units
called Aspects.

• Looks a lot like a class!

• Can contain pointcuts, advice declarations, methods, variables ….

• Single instances (default behavior)

31

Log example

32

Language: Aspects

33

The methods we weave

34

Implementation

• Aspect weaving: makes sure that applicable advice runs at the appropriate join
points.

• In AspectJ, almost all the weaving is done at compile-time to expose errors and
avoid runtime overhead.

• cflow (and maybe others) require dynamic dispatch.

35

Developmental Aspects

36

Developmental Aspects

• What are some places Aspects can assist developmental processes
• Exist in along-side but apart from existing coding
• Tracing, profiling, logging, pre-post conditions, contract enforcement

37

Tracing

• Enabling tracing as an ‘weaved’ in process that doesn’t exist in production

38

Profiling and Logging

• Although many sophisticated profiling tools are available, and these can gather
a variety of information and display the results in useful ways, you may
sometimes want to profile or log some very specific behavior.

39

Pre-Post Condition Checking

• "Design by Contract" style where explicit pre-conditions test that callers of a
method call it properly and explicit post-conditions test that methods properly
do the work they are supposed to.

40

Contract Enforcement

• The property-based crosscutting mechanisms can be very useful in defining
more sophisticated contract enforcement.

• One very powerful use of these mechanisms is to identify method calls that, in
a correct program, should not exist.

41

Production Aspects

42

Production Aspects

• What are some places Aspects can assist production code
• Expected to be enabled and in operation
• Change monitoring, Context passing, Consistent Behaviour,

43

Change Monitoring

• Sometimes simple functionality is hard to do explicitly.
• Ex. maintain a dirty bit associated with object having moved since last display

occurred

44

Change Monitoring: Cross-cutting concern

Consider implementing this functionality with ordinary Java:
1. there would likely be a helper class that contained the dirty flag, the

testAndClear method, as well as a setFlag method.
2. Each of the methods that could move a figure element would include a call to

the setFlag method.
3. Those calls, or rather the concept that those calls should happen at each

move operation, are the crosscutting concern in this case.

45

AspectJ Advantages over Standard Implementation

1. The structure of the crosscutting concern is captured explicitly.
2. Evolution is easier
3. The functionality is easy to plug in and out.
4. The implementation is more stable.

46

Context Passing

• Consider implementing functionality that would allow a client of the figure
editor to set the color of any figure elements that are created.

• Typically this requires passing a color, or a color factory, from the client, down
through the calls that lead to the figure element factory.

47

Context Passing

• The following code adds after advice that runs only when the factory methods
of Figure are called in the control flow of a method on a ColorControllingClient.

48

Providing Consistent Behavior

• This aspect ensures that all public methods of the com.bigboxco package log
any Errors they throw to their caller

49

Complex Example from Research

50

My Experience: Advised Multi-Agent System

51

My Experience : Advised Multi-Agent System

52

My Experience: Advised Multi-Agent System

• Advisor monitors each agent when actions happened (collecting histories)
• From histories environment reconstructed, as well as agent behaviour
• Agent behaviour compared to optimal (ish)
• Rules to attempt to make agents act like optimal
• Rules added to agent

53

My Experience: Advised Multi-Agent System

• Aspects:
• Advisor Aspect that hooks onto Agents when actions occur and records them (methods are

called)
• Also is able to notice when simulation runs have finished and do its number crunching to

extract info, optimize, derive rules, and communicate them
• Aspect around each agent to store advisor communicated rules and inter-cede in methods

to change their behaviour decisions based on rules

54

My Experience: Advised Multi-Agent System

1. The MAS designer never had to change his code
2. The distributed aspect concerns related to the advisor were all centralized

into very few classes, despite their interaction with code base being
distributed

3. Could be flagged on and off at runtime

• The negative was a negligible runtime cost of hooking in aspects (the
optimization AI step was much longer)

• Code always had to be run with additional configuration setup than basic Java
code

Onward to …
next topic.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Reflection: Aspects
	Intercession via aspects
	Introduction
	History
	Introduction
	I’m concerned?
	Cross-Cutting Concern
	Language: Dynamic VS Static crosscutting
	We’ll build around this
	Reference Object Structured for Following
	Join In
	Language: Join Points
	Language: Join Points
	Language: Join Points
	Cut in
	Language: Pointcuts
	Language�Pointcut examples
	Language�Pointcut examples
	Language: Wildcards and cflow
	When to cut in?
	Language: Advice
	Language: Advice
	Language: Exposing context
	Cut in all over the place
	Language: Inter-type declarations
	Language: Inter-type declarations
	Language: Inter-type declarations
	Language: Inter-type declarations
	All together now
	Language: Aspects
	Log example
	Language: Aspects
	The methods we weave
	Implementation
	Developmental Aspects
	Developmental Aspects
	Tracing
	Profiling and Logging
	Pre-Post Condition Checking
	Contract Enforcement
	Production Aspects
	Production Aspects
	Change Monitoring
	Change Monitoring: Cross-cutting concern
	AspectJ Advantages over Standard Implementation
	Context Passing
	Context Passing
	Providing Consistent Behavior
	Complex Example from Research
	My Experience: Advised Multi-Agent System
	My Experience : Advised Multi-Agent System
	My Experience: Advised Multi-Agent System
	My Experience: Advised Multi-Agent System
	My Experience: Advised Multi-Agent System
	Onward to … �next topic.

