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What the cereal?
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Serialization 

• Serialization: the process of converting an object into a stream of bytes

• Format can be binary, 
• or human-readable (text)
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Serialization 

• The byte stream may be: 

1. Stored to a file or database 
• Enables object persistence 

2. Transmitted to another program 
• For remote method invocation (RMI) 

3. Transmitted across a network 
• For distributed objects
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De-serialization 

• Deserialization: converts the byte stream (or text) into a recreation of the 
original object 

• i.e.  its clone
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De-serialization 

• Deserialization: converts the byte stream (or text) into a recreation of the 
original object 

• i.e.  its clone

• You will not maintain exact object jvm identity (unique id assigned to each 
object made in java)

• You will want identity of objects to be defined by
• equals()
• hashCode()

• You can maintain relative object jvm identity
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Serialization 

• When you serialize an object, you are saving its state
• i.e.  the current value of all its instance variables 

• To build a general-purpose serialization system, you need access to an object’s 
metadata 

• i.e.  requires reflection
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Java cereal
Coffee in my cereal?
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Java Serialization 

• Java has a Serializable marker interface 
• If implemented by a class, its instances can be serialized automatically to a 

binary stream

• Just use interface
java class MyClass implements Serializable

• (optional) can indicate object versioning with class variable
private static final long serialVersionUID=42L;
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Java Serialization 

• Java has a Serializable marker interface 

• java.io.ObjectInputStream

• java.io.ObjectOutputStream

• Let you read/write Serializable interface classes automatically to and from 
streamable locations
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General Mills Cereal
Coffee in my cereal?
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General Purpose Serialization 

• However a custom, general-purpose serializer that serializes to a text stream 
has several advantages: 

• The stream is easily read or modified with a text editor 

• Can send objects to a non-Java platform 

• Can be applied to third-party classes that don’t implement Serializable
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XML

• XML (eXtensible Markup Language) is an ideal format for the text stream 

• Is self-describing 

• Encodes structured, hierarchical data 

• Is well supported with facilities that do parsing, presentation, etc. 
• E.g. via libraries DOM, JDOM, SAX
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XML Structure 

• XML uses pairs of tags to create an element 

• Start tag:  <tag-name> 
• End tag:  </tag-name> 

• Content goes between the tags 
• Child elements can be nested inside an element 

• E.g.         <zoo> 
<animal>Panda</animal>   
<animal>Giraffe</animal> 

</zoo>
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Reflective Serialization 

• An empty element tag has the form 
<tag-name /> 
• Equivalent to:  <tag-name></tag-name> 

• A start tag may also contain name-value pairs called attributes
• Form:  
<tag-name attribute-name=“attribute-value”>

• E.g. 
<zoo location=“Paris” rank=“12”>
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Reflective Serialization 

• A file or stream of well-formed XML is called a document 

• Each document must contain one root element 
• Contains all other content



17

Reflective Serialization 

• We could do serialization by making code that dumps and loads objects by 
hand for each class

• (I’ve done this and it is quite feasible for 1-5 object structures)
• Doesn’t scale
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Reflective Serialization 

• Using reflection to do serialization offers several advantages: 

1. Does not require invasive changes to hundreds of classes 

2. Works with all in-house, third-party, and JDK classes 
• And any classes created in the future 

3. Debugging and maintenance is centralized to the serialization code
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One two step
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Reflective Serialization 

• The reflective serializer should serialize any type of object passed in as a 
parameter 

• Basic design: 

1. Give the object a unique identifier number 
• Could be done with java.util.IdentityHashMap
• IdentityHashMap uses == instead of equals()
• Choice to use it or HashMap depends on whether you want to maintain 

exact relative object connections
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Reflective Serialization 

2. Get a list of all the object’s fields 
• Of all visibilities 

• Use getDeclaredFields() and traverse the inheritance hierarchy 
• Filter out static fields

3. Uniquely identify each field with its 
• Declaring class 
• Field name
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Reflective Serialization 

4. Get the value for each field 
1. If a primitive, simply store it so it can be easily retrieved
2. If a non-array object, recursively serialize the object 

• Use the new object’s unique id number as a reference 
• Store the reference as the field value in the originating object 
• Don’t serialize an object more than once 

• Occurs when you have several references to the same object 
3. If an array object, serialize it 

• Then serialize each element of the array 
• Use recursion if the element is an object
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Readings 

• Forman & Forman  Chapter 2 
• www.jdom.org 
• Java API:  java.util.IdentityHashMap
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Dynamic
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Dynamic Loading 

• A ordinary class can be loaded at runtime using 

public static Class forName(String className) 

• E.g. 
String name = . . .    
Class classObject = Class.forName(name); 

• Throws ClassNotFoundException if the corresponding .class file is not found 
on the classpath



26

Dynamic Loading - Arrays 

• Array classes do not have a .class file 
• i.e. do not have a “normal” class name 
• Are generated as needed by the JVM 

• Array classes are named using codes:
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Dynamic Loading 

Encoding Element type

B byte

C char

D double

F float

I int

J long

L<element-type> reference type

S short

Z boolean
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Dynamic Loading 

• For each dimension of the array, use a [ 

• Then add the element type code 

• E.g. 
• 1D int array:   [I 
• 2D float array:   [[F 
• 1D array of objects:   [Ljava.lang.String
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Dynamic Loading 

• Array classes can be loaded using    

forName() 

• E.g.  array of String objects 
Class classObject; 
classObject = Class.forName(“[Ljava.lang.String”);
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Reverse it
Step two one
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Reflective Deserialization 

• Recreates objects from a byte stream 
• Requires: 

• Dynamic loading of classes 
• Reflective instantiation of objects 
• Setting fields reflectively 

• Basic design: 
1. Get a list of objects stored in the XML document 

• Use getRootElement() from Document class, and getChildren() from 
Element class
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Reflective Deserialization 

2. For each object, create an uninitialized instance: 
i. Dynamically load its class using forName() 

• The class name is an attribute of the object element 
ii. Create an instance of the class 

• If a non-array object, get the declared no-arg constructor, then use 
newInstance() 

• May need to setAccessible(true)
• If an array object, use Array.newInstance(. . .) 

• Use getComponentType() to find element type 
• The length is an attribute of the object element 
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Reflective Deserialization 

iii. Associate the new instance with the object’s unique identifier 
number using a table
• java.util.HashMap is ideal 

• The id is the key 
• The object reference is the value

• The id is an attribute of the object element
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Reflective Deserialization 

3. Assign values to all instance variables in each non-array object: 
i. Get a list of the child elements 

• Use getChildren() from Element class 
• Each child is a field of the object 

ii. Iterate through each field in the list 
a. Find the name of its declaring class 

• Is an attribute of field element 
b. Load the class dynamically
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Reflective Deserialization 

c. Find the field name 
• Is an attribute of field element 

d. Use getDeclaredField() to find Field metaobject 
e. Initialize the value of the field using set() 

• If a primitive type, use the stored value (use getText() and 
create appropriate wrapper object) 

• If a reference, use the unique identifier to find the 
corresponding instance in the table 

• May need to setAccessible(true)
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Reflective Deserialization 

• Array objects are treated specially: 

• Find the element type with getComponentType() 

• Iterate through each element of the array
• Set the element’s value using Array.set() 
• As above, treat primitives differently than references



Onward to … 
Java intercession.

Jonathan Hudson
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