
Reflection: Serialization
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Wednesday, August 5, 2020

2

What the cereal?

3

Serialization

• Serialization: the process of converting an object into a stream of bytes

• Format can be binary,
• or human-readable (text)

4

Serialization

• The byte stream may be:

1. Stored to a file or database
• Enables object persistence

2. Transmitted to another program
• For remote method invocation (RMI)

3. Transmitted across a network
• For distributed objects

5

De-serialization

• Deserialization: converts the byte stream (or text) into a recreation of the
original object

• i.e. its clone

6

De-serialization

• Deserialization: converts the byte stream (or text) into a recreation of the
original object

• i.e. its clone

• You will not maintain exact object jvm identity (unique id assigned to each
object made in java)

• You will want identity of objects to be defined by
• equals()
• hashCode()

• You can maintain relative object jvm identity

7

Serialization

• When you serialize an object, you are saving its state
• i.e. the current value of all its instance variables

• To build a general-purpose serialization system, you need access to an object’s
metadata

• i.e. requires reflection

8

Java cereal
Coffee in my cereal?

9

Java Serialization

• Java has a Serializable marker interface
• If implemented by a class, its instances can be serialized automatically to a

binary stream

• Just use interface
java class MyClass implements Serializable

• (optional) can indicate object versioning with class variable
private static final long serialVersionUID=42L;

10

Java Serialization

• Java has a Serializable marker interface

• java.io.ObjectInputStream

• java.io.ObjectOutputStream

• Let you read/write Serializable interface classes automatically to and from
streamable locations

11

General Mills Cereal
Coffee in my cereal?

12

General Purpose Serialization

• However a custom, general-purpose serializer that serializes to a text stream
has several advantages:

• The stream is easily read or modified with a text editor

• Can send objects to a non-Java platform

• Can be applied to third-party classes that don’t implement Serializable

13

XML

• XML (eXtensible Markup Language) is an ideal format for the text stream

• Is self-describing

• Encodes structured, hierarchical data

• Is well supported with facilities that do parsing, presentation, etc.
• E.g. via libraries DOM, JDOM, SAX

14

XML Structure

• XML uses pairs of tags to create an element

• Start tag: <tag-name>
• End tag: </tag-name>

• Content goes between the tags
• Child elements can be nested inside an element

• E.g. <zoo>
<animal>Panda</animal>
<animal>Giraffe</animal>

</zoo>

15

Reflective Serialization

• An empty element tag has the form
<tag-name />
• Equivalent to: <tag-name></tag-name>

• A start tag may also contain name-value pairs called attributes
• Form:
<tag-name attribute-name=“attribute-value”>

• E.g.
<zoo location=“Paris” rank=“12”>

16

Reflective Serialization

• A file or stream of well-formed XML is called a document

• Each document must contain one root element
• Contains all other content

17

Reflective Serialization

• We could do serialization by making code that dumps and loads objects by
hand for each class

• (I’ve done this and it is quite feasible for 1-5 object structures)
• Doesn’t scale

18

Reflective Serialization

• Using reflection to do serialization offers several advantages:

1. Does not require invasive changes to hundreds of classes

2. Works with all in-house, third-party, and JDK classes
• And any classes created in the future

3. Debugging and maintenance is centralized to the serialization code

19

One two step

20

Reflective Serialization

• The reflective serializer should serialize any type of object passed in as a
parameter

• Basic design:

1. Give the object a unique identifier number
• Could be done with java.util.IdentityHashMap
• IdentityHashMap uses == instead of equals()
• Choice to use it or HashMap depends on whether you want to maintain

exact relative object connections

21

Reflective Serialization

2. Get a list of all the object’s fields
• Of all visibilities

• Use getDeclaredFields() and traverse the inheritance hierarchy
• Filter out static fields

3. Uniquely identify each field with its
• Declaring class
• Field name

22

Reflective Serialization

4. Get the value for each field
1. If a primitive, simply store it so it can be easily retrieved
2. If a non-array object, recursively serialize the object

• Use the new object’s unique id number as a reference
• Store the reference as the field value in the originating object
• Don’t serialize an object more than once

• Occurs when you have several references to the same object
3. If an array object, serialize it

• Then serialize each element of the array
• Use recursion if the element is an object

23

Readings

• Forman & Forman Chapter 2
• www.jdom.org
• Java API: java.util.IdentityHashMap

24

Dynamic

25

Dynamic Loading

• A ordinary class can be loaded at runtime using

public static Class forName(String className)

• E.g.
String name = . . .
Class classObject = Class.forName(name);

• Throws ClassNotFoundException if the corresponding .class file is not found
on the classpath

26

Dynamic Loading - Arrays

• Array classes do not have a .class file
• i.e. do not have a “normal” class name
• Are generated as needed by the JVM

• Array classes are named using codes:

27

Dynamic Loading

Encoding Element type

B byte

C char

D double

F float

I int

J long

L<element-type> reference type

S short

Z boolean

28

Dynamic Loading

• For each dimension of the array, use a [

• Then add the element type code

• E.g.
• 1D int array: [I
• 2D float array: [[F
• 1D array of objects: [Ljava.lang.String

29

Dynamic Loading

• Array classes can be loaded using

forName()

• E.g. array of String objects
Class classObject;
classObject = Class.forName(“[Ljava.lang.String”);

30

Reverse it
Step two one

31

Reflective Deserialization

• Recreates objects from a byte stream
• Requires:

• Dynamic loading of classes
• Reflective instantiation of objects
• Setting fields reflectively

• Basic design:
1. Get a list of objects stored in the XML document

• Use getRootElement() from Document class, and getChildren() from
Element class

32

Reflective Deserialization

2. For each object, create an uninitialized instance:
i. Dynamically load its class using forName()

• The class name is an attribute of the object element
ii. Create an instance of the class

• If a non-array object, get the declared no-arg constructor, then use
newInstance()

• May need to setAccessible(true)
• If an array object, use Array.newInstance(. . .)

• Use getComponentType() to find element type
• The length is an attribute of the object element

33

Reflective Deserialization

iii. Associate the new instance with the object’s unique identifier
number using a table
• java.util.HashMap is ideal

• The id is the key
• The object reference is the value

• The id is an attribute of the object element

34

Reflective Deserialization

3. Assign values to all instance variables in each non-array object:
i. Get a list of the child elements

• Use getChildren() from Element class
• Each child is a field of the object

ii. Iterate through each field in the list
a. Find the name of its declaring class

• Is an attribute of field element
b. Load the class dynamically

35

Reflective Deserialization

c. Find the field name
• Is an attribute of field element

d. Use getDeclaredField() to find Field metaobject
e. Initialize the value of the field using set()

• If a primitive type, use the stored value (use getText() and
create appropriate wrapper object)

• If a reference, use the unique identifier to find the
corresponding instance in the table

• May need to setAccessible(true)

36

Reflective Deserialization

• Array objects are treated specially:

• Find the element type with getComponentType()

• Iterate through each element of the array
• Set the element’s value using Array.set()
• As above, treat primitives differently than references

Onward to …
Java intercession.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Reflection: Serialization
	What the cereal?
	Serialization
	Serialization
	De-serialization
	De-serialization
	Serialization
	Java cereal
	Java Serialization
	Java Serialization
	General Mills Cereal
	General Purpose Serialization
	XML
	XML Structure
	Reﬂective Serialization
	Reﬂective Serialization
	Reﬂective Serialization
	Reﬂective Serialization
	One two step
	Reﬂective Serialization
	Reﬂective Serialization
	Reﬂective Serialization
	Readings
	Dynamic
	Dynamic Loading
	Dynamic Loading - Arrays
	Dynamic Loading
	Dynamic Loading
	Dynamic Loading
	Reverse it
	Reﬂective Deserialization
	Reﬂective Deserialization
	Reﬂective Deserialization
	Reﬂective Deserialization
	Reﬂective Deserialization
	Reﬂective Deserialization
	Onward to … �Java intercession.

