
Refactoring
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Wednesday, August 5, 2020

2

We’re actually doing it?
We’re actually doing it!

3

Refactoring Tools

• Automate the refactoring process
• Restructures code while preserving behavior
• Reduces the need to test

• Are incorporated into some IDEs
• Xcode supports 6 common refactorings:

• Rename, Extract, Create Superclass, Move up, Move down, Encapsulate
• Eclipse supports ~18 refactorings

• But note that Fowler (text) lists ~72 refactorings
• Manual refactoring will still often be necessary

4

Refactoring Principles

• Refactoring: is the disciplined process of changing the
internal structure of software to make it easier to
understand and maintain, without changing its external
observable behavior

5

Refactoring Principles

• Why refactor?
1. Improves the design of software

• Reverses the “decay” of cumulative ad hoc changes

2. Makes software more readable
• A clear design is easier to understand and maintain
• Use refactoring to learn about unfamiliar code

3. Helps you find and eliminate bugs

4. Helps you program faster
• A poor design prevents rapid development

6

Refactoring Principles

• When should you refactor?
1. Continuously, as you develop or modify code

2. Whenever you duplicate code

3. When adding functionality to code
• i.e. change the design to make adding features easy

4. As you find and fix bugs
• It’s easier to spot bugs when the design is clear

5. As you do a code review

7

Not so fast

8

Refactoring Principles

• Problems with Refactoring

• Many refactorings change a class’s public interface
• E.g. methods may be renamed or removed
• Not a problem if you can edit all calling code

• If the interface is published, you need a transition period where the old
interface is kept until clients adopt the new interface

• Mark an old method as deprecated and have it call the new method

9

Refactoring Principles

• You may not be able to refactor your way out of a design mistake
• May be necessary to do more upfront design

• If software is tightly coupled to a database, changing the object model
may cause changes to the database schema

• Forces you to migrate data, which is difficult and expensive
• Isolate changes by putting a layer between the database and object

model

10

Rule of thumb
Which thumb?

11

Refactoring Principles

• Don’t refactor when:
• Its easier to rewrite from scratch
• You are close to a release deadline

• Refactoring and design
• Refactoring is not a replacement for upfront design
• But it lets you create a simple, upfront design that does not build in

unneeded flexibility
• i.e. you can always refactor later if necessary

12

Refactoring Principles

• Refactoring and performance
• Refactoring often makes software run more slowly

• More function structure is complexity with runtime cost
• But also more amenable to performance tuning

• If well factored, “hot spots” will be isolated to a few short methods
• Found using a profiler late in development

• Tune the hot spots only
• Tuning the other code is a waste

13

When to Refactor

• No hard and fast rules
• Best to use informed intuition

• i.e. try to detect “Bad smells in code”

14

Ok lots of ‘rules’
Lots of thumbs?

15

Names may be slightly different
between these edition 1 and 2018

edition 2

16

Duplicated Code

17

When to Refactor - Duplicated code

• Duplicated code
• If the same code in two or more places in the same class

• Extract Method, and call it from each place
• If the same code in two sibling classes

• Extract Method, if necessary
• Pull Up Method into common superclass

18

When to Refactor - Duplicated code

• Duplicated code
• If similar code in sibling classes

• Extract Method, if necessary
• Form Template Method to put common code in superclass,

differing code in subclasses
• If the same code in unrelated classes

• Extract Class in one class, and use the new class in the other
classes

19

Long Code

20

When to Refactor – Long Method

• Long method
• Decompose into small methods

• Sometimes just one line long
• Extract Method on blocks of code that can be separated

out
• Look for “clumps”

• E.g. Commented blocks, loops, conditionals, etc.
• May need to Replace Temp with Query to enable the

extraction

21

Long Code – Replace
temp with query

22

Replace Temp with Query

• You have parameter initialization that is temporary
• Replace this code with a function query that returns the

result that was initialization

23

Replace Temp with Query

• Change above into the following

24

Large Class

25

When to Refactor – Large Class

• Large class
• Tries to do too many different things (not cohesive)

• Too many instance variables, and/or
• Too much code

• Extract Class or Extract Subclass to separate out
“bundles” of data and responsibilities

26

Long Parameter List

27

When to Refactor - Long Parameter List

• Long parameter list
• Better to pass in an object, so the method can get the

data it needs
• Shorten list with Preserve Whole Object (pass in object

instead of pulling of data as multiple parameters) or
Introduce Parameter Object

28

Divergent Change

29

When to Refactor – Divergent Change

• Divergent change
• Occurs when a class changes in distinct ways for differing

reasons
• E.g. You change 3 methods together for one reason, and 5

other methods for another
• Determine what changes for a single cause, and Extract

Class to bundle these together

30

Shotgun Surgery

31

When to Refactor – Shotgun surgery

• Shotgun surgery
• A single change causes many little changes to several

different classes
• Use Move Method and Move Field to put changes into a

single class
• Sometimes best to Inline Class

32

Feature Envy

33

When to Refactor – Feature Envy

• Feature Envy
• A class does a calculation that belongs elsewhere

• i.e. it uses too much data from another class
• Put it into the proper class with Move Method

34

Data Clumps

35

When to Refactor – Data clumps

• Data clumps
• Data clusters together in fields or parameter lists
• Extract Class to change clumps into an object
• Shrink parameter lists with Introduce Parameter Object

or Preserve Whole Object

36

Primitive Obsession

37

When to Refactor – Primitive Obsession

• Primitive Obsession
• Often better to use a class instead of a primitive type

• Allows things like range checking, formatting, etc.
• Done with Replace Data Value with Object

• If the primitive is a type code, use
• Replace Type Code with

• Class, or
• Subclasses, or
• State/Strategy

38

Switch Statements

39

When to Refactor – Switch statements

• Switch statements
• Are rare in good OO code
• If switching on a type code, Replace Conditional with

Polymorphism
• Easier to add subclasses than changing many switch

statements

40

Parallel Inheritance

41

When to Refactor – Parallel inheritance

• Parallel inheritance hierarchies
• When you make a subclass of one class, you also make a

subclass of another
• Special case of shotgun surgery

• Eliminate one hierarchy by shifting data and
responsibilities to the other

• Move Method and Move Field

42

Lazy Class

43

When to Refactor – Lazy class

• Lazy class
• A class doesn’t do enough to justify its existence

• May result from other refactorings like Move Method
• Eliminate it with Collapse Hierarchy or Inline Class

44

Speculative Generality

45

When to Refactor – Speculative generality

• Speculative generality
• You added code for future expansion that never

occurred
• Remove useless abstract classes with Collapse Hierarchy
• Remove unneeded delegation with Inline Class
• Remove unused parameters with Remove Parameter

46

Temporary Field

47

When to Refactor – Temporary Field

• Temporary field
• An instance variable is set and used only part of the time
• Extract Class, moving over the “orphan variables” and

related methods

48

Message Chains

49

When to Refactor – Message chains

• Message chains
• A client follows a chain of referring objects, and sends a

message to the last object
• Any change to intermediate relationships causes client code

to change
• Hide Delegate on the first object in the chain so it

returns the last object

50

Message Chains – Hide
delegate

51

Hide Delegate

• Client talks to one object to get data, then talks to
object in that data to do something

• Maybe farther down chain
• Put method in first object that is in charge of passing on

message (detaches client from chain structure)

52

Hide Delegate

53

Middle Man

54

When to Refactor – Middle Man

• Middle Man
• Where most methods of a class delegate to another

class
• Remove Middle Man, so you talk to the delegated

object directly

55

Inappropriate Intimacy

56

When to Refactor - Inappropriate intimacy

• Inappropriate intimacy
• A class knows too much about another class’s private

parts
• Move Method and Move Field to the first class
• Or Extract Class to put commonality in a safe place
• Replace Inheritance with Delegation if a subclass knows

too much about its parents

57

Inappropriate Intimacy
– Replace Inheritance

with Delegation

58

Replace Inheritance with Delegation

• Inheritance structures can leave parts of a super-class
exposed by a sub-class

• Instead of a class extending a parent, the previous super-class
can instead be initialized as a data object in the previous sub-
class

• This protects things exposed via regular inheritance

59

Replace Inheritance with Delegation

60

Alternative Classes

61

When to Refactor – Alternative classes

• Alternative classes with different interfaces
• Two or more classes do the same thing, but have

inconsistent interfaces
• Use Rename Method and Move Method to give the

classes identical interfaces
• If redundant, Extract Superclass

62

Incomplete Library
Class

63

When to Refactor – Incomplete Library Class

• Incomplete Library Class
• You can’t use Move Method on code you can’t change
• Introduce Foreign Method into a client class

• Best for only one or two methods
• Introduce Local Extension to create a subclass or

wrapper of the original

64

Incomplete Library
Class – Introduce
Foreign Method

65

Introduce Foreign Method

• A utility class doesn’t contain the method that you need
and you can’t add the method to the class.

• Add the method to a client class and pass an object of the
utility class to it as an argument.

66

Introduce Foreign Method

66

67

Data Class

68

When to Refactor – Data Class

• Data Class
• Is a class with no behavior

• i.e. has only get and set methods
• Move Methods (that apply to that data) into the data

class
• May need to Extract Method first

69

Refused Bequest

70

When to Refactor - Refused Bequest

• Refused Bequest
• A subclass doesn’t use all the methods and data that it

inherits
• Reorganize the class hierarchy

• Push Down Method and Push Down Field to create a sibling
for the unused behavior

• If the subclass does not support the superclass interface,
Replace Inheritance with Delegation

71

Worrisome Comments

72

When to Refactor - Worrisome comments

• Comments that explain bad code
• Extract Method on commented blocks of code
• Rename Method to make purpose clearer

73

That was a lot of things
I don’t remember all the changes

74

Catalog of Refactorings

• Format:
• Name
• Summary
• Motivation
• Mechanics
• Examples

75

Catalog of Refactorings

• Organized into chapters with related refactorings:
• Composing Methods

• Are refactorings that reorganize the methods of a class
• And deal with troublesome local variables

• Extract Method most commonly used

76

Catalog of Refactorings

• Organized into chapters with related refactorings:
• Composing Methods

• Are refactorings that reorganize the methods of a class
• And deal with troublesome local variables

• Extract Method most commonly used
• Moving Features Between Objects

• Reassigns responsibilities to other classes
• Move Method, Move Field, and Extract Class are commonly

used

77

Catalog of Refactorings

• Organized into chapters with related refactorings:
• Organizing Data

• Make working with data easier
• Some refactorings promote better encapsulation

• E.g. Encapsulate Field
• Others eliminate type codes

• Simplifying Conditional Expressions
• Used to make logic within a method clearer

• E.g. Decompose Conditional
• Replace Conditional with Polymorphism changes the class structure

78

Catalog of Refactorings

• Organized into chapters with related refactorings:
• Making Method Calls Simpler

• Use Rename Method to make intentions clearer
• Some refactorings shorten parameter lists

• E.g. Preserve Whole Object
• Others simplify a class’s interface

• E.g. Hide Method and Remove Setting Method

79

Catalog of Refactorings

• Organized into chapters with related refactorings:
• Dealing with Generalization

• Some refactorings move responsibilities up/down the class
hierarchy

• E.g. Pull Up Field, Push Down Method
• Other change the hierarchy by creating/destroying classes

• E.g. Extract Subclass, Collapse Hierarchy

80

Catalog of Refactorings

• Organized into chapters with related refactorings:
• Big Refactorings

• Are much lengthier and time consuming than the previous
refactorings

• Involves many small refactorings
• Tease Apart Inheritance
• Convert Procedural Design to Objects
• Separate Domain from Presentation
• Extract Hierarchy

81

If you are reading textbook

• Fowler:
• Read chapter 5 (Catalog of Refactorings)
• Browse chapters 6 – 12 (individual methods)

Onward to …
example.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Refactoring
	We’re actually doing it?
	Refactoring Tools
	Refactoring Principles
	Refactoring Principles
	Refactoring Principles
	Not so fast	
	Refactoring Principles
	Refactoring Principles
	Rule of thumb
	Refactoring Principles
	Refactoring Principles
	When to Refactor
	Ok lots of ‘rules’
	Slide Number 15
	Slide Number 16
	When to Refactor - Duplicated code
	When to Refactor - Duplicated code
	Slide Number 19
	When to Refactor – Long Method
	Slide Number 21
	Replace Temp with Query
	Replace Temp with Query
	Slide Number 24
	When to Refactor – Large Class
	Slide Number 26
	When to Refactor - Long Parameter List
	Slide Number 28
	When to Refactor – Divergent Change
	Slide Number 30
	When to Refactor – Shotgun surgery
	Slide Number 32
	When to Refactor – Feature Envy
	Slide Number 34
	When to Refactor – Data clumps
	Slide Number 36
	When to Refactor – Primitive Obsession
	Slide Number 38
	When to Refactor – Switch statements
	Slide Number 40
	When to Refactor – Parallel inheritance
	Slide Number 42
	When to Refactor – Lazy class
	Slide Number 44
	When to Refactor – Speculative generality
	Slide Number 46
	When to Refactor – Temporary Field
	Slide Number 48
	When to Refactor – Message chains
	Slide Number 50
	Hide Delegate
	Hide Delegate
	Slide Number 53
	When to Refactor – Middle Man
	Slide Number 55
	When to Refactor - Inappropriate intimacy
	Slide Number 57
	Replace Inheritance with Delegation
	Replace Inheritance with Delegation
	Slide Number 60
	When to Refactor – Alternative classes
	Slide Number 62
	When to Refactor – Incomplete Library Class
	Slide Number 64
	Introduce Foreign Method
	Introduce Foreign Method
	Slide Number 67
	When to Refactor – Data Class
	Slide Number 69
	When to Refactor - Refused Bequest
	Slide Number 71
	When to Refactor - Worrisome comments
	That was a lot of things
	Catalog of Refactorings
	Catalog of Refactorings
	Catalog of Refactorings
	Catalog of Refactorings
	Catalog of Refactorings
	Catalog of Refactorings
	Catalog of Refactorings
	If you are reading textbook
	Onward to … �example.

