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We’re actually doing it?
We’re actually doing it!
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Refactoring Tools 

• Automate the refactoring process 
• Restructures code while preserving behavior 
• Reduces the need to test 

• Are incorporated into some IDEs 
• Xcode supports 6 common refactorings: 

• Rename, Extract, Create Superclass, Move up, Move down, Encapsulate 
• Eclipse supports ~18 refactorings

• But note that Fowler (text) lists ~72 refactorings
• Manual refactoring will still often be necessary
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Refactoring Principles

• Refactoring:  is the disciplined process of changing the 
internal structure of software to make it easier to 
understand and maintain, without changing its external
observable behavior



5

Refactoring Principles

• Why refactor? 
1. Improves the design of software 

• Reverses the “decay” of cumulative ad hoc changes 

2. Makes software more readable 
• A clear design is easier to understand and maintain 
• Use refactoring to learn about unfamiliar code 

3. Helps you find and eliminate bugs 

4. Helps you program faster 
• A poor design prevents rapid development
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Refactoring Principles

• When should you refactor? 
1. Continuously, as you develop or modify code 

2. Whenever you duplicate code 

3. When adding functionality to code 
• i.e.  change the design to make adding features easy 

4. As you find and fix bugs 
• It’s easier to spot bugs when the design is clear 

5. As you do a code review
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Not so fast
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Refactoring Principles

• Problems with Refactoring 

• Many refactorings change a class’s public interface 
• E.g.  methods may be renamed or removed 
• Not a problem if you can edit all calling code 

• If the interface is published, you need a transition period where the old 
interface is kept until clients adopt the new interface 

• Mark an old method as deprecated and have it call the new method
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Refactoring Principles

• You may not be able to refactor your way out of a design mistake 
• May be necessary to do more upfront design 

• If software is tightly coupled to a database, changing the object model 
may cause changes to the database schema 

• Forces you to migrate data, which is difficult and expensive 
• Isolate changes by putting a layer between the database and object 

model
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Rule of thumb
Which thumb?
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Refactoring Principles

• Don’t refactor when: 
• Its easier to rewrite from scratch 
• You are close to a release deadline

• Refactoring and design 
• Refactoring is not a replacement for upfront design
• But it lets you create a simple, upfront design that does not build in 

unneeded flexibility 
• i.e.  you can always refactor later if necessary
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Refactoring Principles

• Refactoring and performance 
• Refactoring often makes software run more slowly 

• More function structure is complexity with runtime cost 
• But also more amenable to performance tuning 

• If well factored, “hot spots” will be isolated to a few short methods 
• Found using a profiler late in development 

• Tune the hot spots only 
• Tuning the other code is a waste
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When to Refactor 

• No hard and fast rules 
• Best to use informed intuition 

• i.e.  try to detect “Bad smells in code” 
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Ok lots of ‘rules’
Lots of thumbs?
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Names may be slightly different 
between these edition 1 and  2018 

edition 2
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Duplicated Code
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When to Refactor - Duplicated code 

• Duplicated code 
• If the same code in two or more places in the same class 

• Extract Method, and call it from each place
• If the same code in two sibling classes 

• Extract Method, if necessary 
• Pull Up Method into common superclass 
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When to Refactor - Duplicated code 

• Duplicated code 
• If similar code in sibling classes 

• Extract Method, if necessary 
• Form Template Method to put common code in superclass, 

differing code in subclasses 
• If the same code in unrelated classes 

• Extract Class in one class, and use the new class in the other 
classes
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Long Code
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When to Refactor – Long Method 

• Long method 
• Decompose into small methods 

• Sometimes just one line long 
• Extract Method on blocks of code that can be separated 

out 
• Look for “clumps” 

• E.g.  Commented blocks, loops, conditionals, etc. 
• May need to Replace Temp with Query to enable the 

extraction
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Long Code – Replace 
temp with query



22

Replace Temp with Query 

• You have parameter initialization that is temporary
• Replace this code with a function query that returns the 

result that was initialization
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Replace Temp with Query 

• Change above into the following
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Large Class
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When to Refactor – Large Class 

• Large class 
• Tries to do too many different things (not cohesive)

• Too many instance variables, and/or 
• Too much code 

• Extract Class or Extract Subclass to separate out 
“bundles” of data and responsibilities



26

Long Parameter List
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When to Refactor  - Long Parameter List

• Long parameter list 
• Better to pass in an object, so the method can get the 

data it needs 
• Shorten list with Preserve Whole Object (pass in object 

instead of pulling of data as multiple parameters) or 
Introduce Parameter Object
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Divergent Change
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When to Refactor – Divergent Change 

• Divergent change 
• Occurs when a class changes in distinct ways for differing 

reasons 
• E.g.  You change 3 methods together for one reason, and 5 

other methods for another 
• Determine what changes for a single cause, and Extract

Class to bundle these together
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Shotgun Surgery
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When to Refactor – Shotgun surgery 

• Shotgun surgery 
• A single change causes many little changes to several 

different classes 
• Use Move Method and Move Field to put changes into a 

single class 
• Sometimes best to Inline Class
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Feature Envy
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When to Refactor – Feature Envy 

• Feature Envy 
• A class does a calculation that belongs elsewhere 

• i.e.  it uses too much data from another class 
• Put it into the proper class with Move Method



34

Data Clumps
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When to Refactor – Data clumps 

• Data clumps 
• Data clusters together in fields or parameter lists 
• Extract Class to change clumps into an object 
• Shrink parameter lists with Introduce Parameter Object

or Preserve Whole Object
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Primitive Obsession
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When to Refactor – Primitive Obsession 

• Primitive Obsession 
• Often better to use a class instead of a primitive type 

• Allows things like range checking, formatting, etc. 
• Done with Replace Data Value with Object 

• If the primitive is a type code, use 
• Replace Type Code with 

• Class, or 
• Subclasses, or 
• State/Strategy
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Switch Statements
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When to Refactor – Switch statements 

• Switch statements 
• Are rare in good OO code 
• If switching on a type code, Replace Conditional with

Polymorphism
• Easier to add subclasses than changing many switch 

statements
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Parallel Inheritance
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When to Refactor – Parallel inheritance 

• Parallel inheritance hierarchies 
• When you make a subclass of one class, you also make a 

subclass of another 
• Special case of shotgun surgery 

• Eliminate one hierarchy by shifting data and 
responsibilities to the other 

• Move Method and Move Field
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Lazy Class
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When to Refactor – Lazy class 

• Lazy class 
• A class doesn’t do enough to justify its existence 

• May result from other refactorings like Move Method
• Eliminate it with Collapse Hierarchy or Inline Class
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Speculative Generality
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When to Refactor – Speculative generality 

• Speculative generality 
• You added code for future expansion that never 

occurred 
• Remove useless abstract classes with Collapse Hierarchy
• Remove unneeded delegation with Inline Class
• Remove unused parameters with Remove Parameter
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Temporary Field
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When to Refactor – Temporary Field 

• Temporary field 
• An instance variable is set and used only part of the time 
• Extract Class, moving over the “orphan variables” and 

related methods
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Message Chains
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When to Refactor – Message chains 

• Message chains 
• A client follows a chain of referring objects, and sends a 

message to the last object 
• Any change to intermediate relationships causes client code 

to change 
• Hide Delegate on the first object in the chain so it 

returns the last object
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Message Chains – Hide 
delegate
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Hide Delegate

• Client talks to one object to get data, then talks to 
object in that data to do something 

• Maybe farther down chain
• Put method in first object that is in charge of passing on 

message (detaches client from chain structure)
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Hide Delegate
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Middle Man
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When to Refactor – Middle Man 

• Middle Man 
• Where most methods of a class delegate to another 

class 
• Remove Middle Man, so you talk to the delegated 

object directly
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Inappropriate Intimacy
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When to Refactor - Inappropriate intimacy 

• Inappropriate intimacy 
• A class knows too much about another class’s private 

parts 
• Move Method and Move Field to the first class 
• Or Extract Class to put commonality in a safe place 
• Replace Inheritance with Delegation if a subclass knows 

too much about its parents
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Inappropriate Intimacy 
– Replace Inheritance 

with Delegation
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Replace Inheritance with Delegation

• Inheritance structures can leave parts of a super-class 
exposed by a sub-class

• Instead of a class extending a parent, the previous super-class 
can instead be initialized as a data object in the previous sub-
class

• This protects things exposed via regular inheritance
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Replace Inheritance with Delegation
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Alternative Classes
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When to Refactor – Alternative classes 

• Alternative classes with different interfaces
• Two or more classes do the same thing, but have 

inconsistent interfaces 
• Use Rename Method and Move Method to give the 

classes identical interfaces 
• If redundant, Extract Superclass
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Incomplete Library 
Class
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When to Refactor – Incomplete Library Class 

• Incomplete Library Class 
• You can’t use Move Method on code you can’t change 
• Introduce Foreign Method into a client class 

• Best for only one or two methods 
• Introduce Local Extension to create a subclass or 

wrapper of the original
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Incomplete Library 
Class – Introduce 
Foreign Method



65

Introduce Foreign Method 

• A utility class doesn’t contain the method that you need 
and you can’t add the method to the class.

• Add the method to a client class and pass an object of the 
utility class to it as an argument.
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Introduce Foreign Method 

66
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Data Class
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When to Refactor – Data Class 

• Data Class 
• Is a class with no behavior 

• i.e.  has only get and set methods 
• Move Methods (that apply to that data) into the data 

class 
• May need to Extract Method first
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Refused Bequest
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When to Refactor  - Refused Bequest

• Refused Bequest 
• A subclass doesn’t use all the methods and data that it 

inherits 
• Reorganize the class hierarchy 

• Push Down Method and Push Down Field to create a sibling 
for the unused behavior 

• If the subclass does not support the superclass interface, 
Replace Inheritance with Delegation
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Worrisome Comments
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When to Refactor  - Worrisome comments

• Comments that explain bad code 
• Extract Method on commented blocks of code
• Rename Method to make purpose clearer
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That was a lot of things
I don’t remember all the changes
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Catalog of Refactorings

• Format: 
• Name 
• Summary 
• Motivation 
• Mechanics 
• Examples
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Catalog of Refactorings

• Organized into chapters with related refactorings: 
• Composing Methods 

• Are refactorings that reorganize the methods of a class 
• And deal with troublesome local variables 

• Extract Method most commonly used
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Catalog of Refactorings

• Organized into chapters with related refactorings: 
• Composing Methods 

• Are refactorings that reorganize the methods of a class 
• And deal with troublesome local variables 

• Extract Method most commonly used
• Moving Features Between Objects 

• Reassigns responsibilities to other classes 
• Move Method, Move Field, and Extract Class are commonly 

used 
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Catalog of Refactorings

• Organized into chapters with related refactorings: 
• Organizing Data 

• Make working with data easier 
• Some refactorings promote better encapsulation 

• E.g.  Encapsulate Field 
• Others eliminate type codes

• Simplifying Conditional Expressions 
• Used to make logic within a method clearer 

• E.g.  Decompose Conditional 
• Replace Conditional with Polymorphism changes the class structure
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Catalog of Refactorings

• Organized into chapters with related refactorings: 
• Making Method Calls Simpler 

• Use Rename Method to make intentions clearer 
• Some refactorings shorten parameter lists 

• E.g.  Preserve Whole Object 
• Others simplify a class’s interface 

• E.g.  Hide Method and Remove Setting Method
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Catalog of Refactorings

• Organized into chapters with related refactorings: 
• Dealing with Generalization 

• Some refactorings move responsibilities up/down the class 
hierarchy 

• E.g.  Pull Up Field, Push Down Method 
• Other change the hierarchy by creating/destroying classes 

• E.g.  Extract Subclass, Collapse Hierarchy
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Catalog of Refactorings

• Organized into chapters with related refactorings: 
• Big Refactorings

• Are much lengthier and time consuming than the previous 
refactorings

• Involves many small refactorings
• Tease Apart Inheritance
• Convert Procedural Design to Objects 
• Separate Domain from Presentation 
• Extract Hierarchy
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If you are reading textbook

• Fowler: 
• Read chapter 5 (Catalog of Refactorings)
• Browse chapters 6 – 12 (individual methods)



Onward to … 
example.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/
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