
Refactoring: Continuous
Integration / Development
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Tuesday, August 4, 2020

2

Makefiles
To make or not to make

3

Makefiles

• make is an automation tool found in unix type operating system (and others)
like Linux

• Since 1976. Designed around c and not Java.
• As software grew from single file programs to multiple files it became common

that program could be compiled incorrectly (old compiled code vs newly fixed
code)

• Makefiles are a standardization of compile scripts into standardized text file
containing series of commands

• One key feature in a makefile is that it is designed to track dependencies of files
so that one command can track by through source and compile and connect
everything that is necessary in the right order

4

Makefile - example

all: helloworld

helloworld: helloworld.o
Commands start with TAB not spaces
$(CC) $(LDFLAGS) -o $@ $^

helloworld.o: helloworld.c
$(CC) $(CFLAGS) -c -o $@ $<

clean:
rm -f helloworld helloworld.o

make all
• Will follow all -> helloworld ->

helloworld.o -> helloworld.c
• Where it will compile it from .c

to .o
• Then it will link .o to make

binary
• Dependencies are dealt with

before own command
make clean
• Will remove binary and .o, then

follow

5

Make

• Basic idea of make commands in makefile is to be a one stop shop from
someone downloading your codebase

• The user downloads your source, looks at readme, picks target make command
with options relevant to their desired compiled result

• make target
• Many unix tools/programs are distributed or accessible as source (and not as a

binary). When you download them they expect you to make the binary
yourself.

• make is not in windows (cygwin will get you access to it)

6

First came ANT
What is this a build automation tool for ants!

7

Apache ANT

• Another Neat Tool (ANT)
• Originally Apache Tomacat project
• Ant is not limited to Java but found its first big usage there as Makefiles didn’t

really fit Java (c more naturally had .o dependencies that needed linking, Java
compiles differently)

• A lot similar to makefiles, such that simple build.xml configs were easy
• From the era of structure files (xml), rather than relying on self managed

structure like makefiles

8

Build.xml

Four different commands here
1. Setup clean (remove .class files)
2. Where to find src .java files and

where to put .class files on
compile command

3. Configuration of packing
command to make a jar

4. Configuration for out to run the
program

9

ANT

• ANT is flexible (like makefiles)
• But this means project coders can make really large and complex files which are

hard to maintain
• No original built in dependency support (was added later)
• This original frustration drove Apache Maven

10

Then came Maven
What is this a build automation tool for mavens?

11

Apache Maven

• Like ANT it uses XML files for structure
• Added a lot of regularized structure seen in most project configurations so that

certain commands could be automated
• pom.xml
• mvn compile

• Unlike ANT a standard directory structure
developed
• Rather inflexible than Ant
• Great for quick projects
• Insufficient for complex

12

Apache Maven

• A lot is direct encoded in xml
• Junit config is expected parts
• Name of jar and versioning
• Etc.

13

Now Gradle
What is this a build automation tool for gradles?

14

Gradle

• No XML (follows a recent trend
away from strict structured files)

• Actually designed around specific
language for

• Gradle needs user to add plugins to
gain most features, i.e. regular java
actions need a Java plugin

• Maven has most of market share
but lots of growing support for
Gradle (partially as it is less
language specific)

15

Continuous Integration (CI)

16

Continuous Integration

• JUnit testing enforces the idea that as a user makes changes to their changing
part of codebase, that they run Unit Tests to ensure it stays correct

• This leads to a development process where a change is made and then
immediately tested against existing unit tests

• The addition of version control leads to an environment where users are
making changes on local repositories and/or branches (such as bugfixes) and
desired to merge them back into a branch for the coming release

• Continuous integration is this process where users are continuously pushing in
code and we design automated tests to build and verify the code each time

• Think of unit tests (and others) that run against codebase after a merge request
is made

17

Continuous Integration

• Continuous integration can be done on your own systems, but is also available
through web hosting services (share with your worldwide git project)

• Gitlab/Github: when project contributor push changes to remote, or commits
to remote, a ‘pipeline’ can be triggered

• Gitlab -> .gitlab-ci.yml file
• Tells gitlab what commands to run (can also configure what triggers them)
• Ex. On a commit, run static analysis, compile code, run unit tests, compile and package into

a binary release file

18

CI Maven

19

Leads to Continuous
Deployment/Delivery (CD)

20

Continuous Deployment/Delivery

• Gitlab -> .gitlab-ci.yml file
• Tells gitlab what commands to run (can also configure what triggers them)
• Ex. On a commit, run static analysis, compile code, run unit tests, compile and package

into a binary release file

• You can declare that certain finalized artifacts like a binary release file are
created (or like a jar file)

• Continuous deployment is to make these available to manually be installed into
production setups (if you’ve seen a github project that you can download a file
from after each commit)

• Continuous delivery is to distribute these so that they are integrated into
production systems

21

CI/CD

22

CI/CD by yourself

• You need to connect the repository (passive storage) to an active system which
will run your commands

• In your regular dev environment you are used to running commands (like
compile and unit testing yourself)

• Now you want the repository (often remote) to do it by itself
• Example for class: gitlab.ucalgary.ca

• Gitlab uses program called gitlab-runner
• Put it onto a machine, register it with repo, when repo has a commit it looks at .gitlab-

ci.yml and pushes commands triggered to registered gitlab-runner
• The gitlab-runner will received these jobs and execute
• In general a job is a sequence of commands (ex. javac *.java to compile)

23

Docker

• Docker is a service/tool that hosts and provides virtual machine configurations
• Example a linux system with latest version of python 3 installed
• You can make a CI file that will load a docker config, then run commands
• Allows you to make compile setups for multiple environments (load docker for

windows and compile, load docker for linux red hat and compile, load osx
docker, etc.)

• Challenge (docker files are vm files so they aren’t small files)

• Docker often integrated into .gitlab-ci.yml files to indicate container
environments used for pipeline steps.

24

Kubernetes

• Open source automated tool for managing containers (like docker)
• If you have an account you essentially request environments to be setup in

their cloud environment to do your compile operations
• Like most cloud services it claims to scale to your needs as you add compile

environments, complexity of actions, or customizations to the process

• Tools like gitlab will include ability that you can connect to your Kubernetes
config so that you can install a gitlab-runner in their managed environment vs
having to configure your own

Onward to …
refactoring.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Refactoring: Continuous Integration / Development
	Makefiles
	Makefiles
	Makefile - example
	Make
	First came ANT
	Apache ANT
	Build.xml
	ANT
	Then came Maven
	Apache Maven
	Apache Maven
	Now Gradle
	Gradle
	Continuous Integration (CI)
	Continuous Integration
	Continuous Integration
	CI Maven
	Leads to Continuous Deployment/Delivery (CD)
	Continuous Deployment/Delivery
	CI/CD
	CI/CD by yourself
	Docker
	Kubernetes
	Onward to … �refactoring.

