
Refactoring: Git
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Tuesday, August 4, 2020



2

Not an acronym



3

Not an acronym

• (from the source code read-me)
• "git" can mean anything, depending on your mood.

• random three-letter combination that is pronounceable, and not actually used by any 
common UNIX command. The fact that it is a mispronunciation of "get" may or may not be 
relevant.

• stupid. contemptible and despicable. simple. Take your pick from the dictionary of slang.
• "global information tracker": you're in a good mood, and it actually works for you. Angels 

sing, and a light suddenly fills the room.
• "goddamn idiotic truckload of sh*t": when it breaks



4

The Rise of Git

• Git is the most popular implementation of a distributed version control system.
• Development started in 2005 by Linus Torvalds.

• Linux kernel source host dispute with BitKeeper
• Same reason resulted in another DVCS -> Mercurial

• It is used by many popular open source projects as well as many commercial
organizations.

1. Take Concurrent Versions System (CVS) as an example of what not to do; if in 
doubt, make the exact opposite decision.

2. Support a distributed, BitKeeper-like workflow. (‘He’s dead Jim’ -> BitKeeper)
3. Include very strong safeguards against corruption, either accidental or 

malicious.



5

Why Git?

• Git’s the most popular version control system in the industry. 
• Most popular VCS are similar to Git

Source: Stackoverflow 2018 survey



6

Why Git?

• Git is distributed
• i.e. there is generally are remote repo (like the single svn one) and a local repo 

on your own machine 
• SVN required repo to be only local, or only remote
• GIT lets each developer have their own version of repo
• Each developer can make changes and make commits to own repo and periodically 

push/pull from remote to bring together development
• Frees programmer, code on a plane and still do multiple local commits 

Source: Stackoverflow 2018 survey



7

This is how you do it



8

Git: *New* Version Control Terminology

1. SHA

2. Staging Area/Index



9

Git: *New* Version Control Terminology

1. SHA
2. Staging Area/Index

SHA
• A SHA is basically an ID number for each commit.
• Ex. E2adf8ae3e2e4ed40add75cc44cf9d0a869afeb6
• Instead of version numbering (SVN)

Staging Area
• You can think of the staging area as a prep table where Git will take the next commit. 
• Files on the Staging Index are ready to be added to the repository.



10

Git: Getting Started

• Three trees of Git
• The HEAD

• last commit snapshot, next parent
• Index

• Proposed next commit snapshot
• Working directory

• Sandbox



11

Git: Basic Commands

• git init – Initialize a Git repository/working directory
• git init NAME

• git status – Status of your working directory
• git status

• git add <filename> or git add . (for all files in your working directory)
• git commit – Stash changes in your working directory
• git log – View your commit history
• git clone – Create an identical copy



12

Git: A Basic Workflow

• A basic workflow
• Init a repo (or clone an existing one)
• Edit files
• Stage the changes
• Review your changes
• Commit the changes



13

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes



14

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

• Git add filename



15

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

• Git status



16

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

• Git commit



17

Git: Informational

• View changes
• git diff

• Show the difference between working directory and staged
• git diff --cached

• Show the difference between staged and the HEAD

• View history
• git log



18

Git: Revert

• Revert changes (Get back to a previous version)
• git checkout commit_hash



19

Git: Commit Tree

• Git sees commit this way…
• Branch annotates which commit we are working on



20

Git: Branching



21

Git: Branching



22

Git: Branching



23

Git: Merging

• What do we do with this mess?
• Merge them



24

Git: Merging

• Steps to merge two branch
• Checkout the branch you want to merge onto
• Merge the branch you want to merge



25

Git: Merging

• We can continue working one whichever branch we want (the trunk default or 
on experiment)



26

Git: Branching and Merging

• Why this is cool?
• Non-linear development

clone the code that is in production
create a branch for issue #53 (iss53)
work for 10 minutes
someone asks for a hotfix for issue #102
checkout ‘production’
create a branch (iss102)
fix the issue
checkout ‘production’, merge ‘iss102’
push ‘production’
checkout ‘iss53’ and keep working



27

GitHub, UofC GitLab

• It’s a hosting medium/website for your Git repositories

• Offers powerful collaborative abilities

• A good indicator of what you code/how much you code/quality of your code



28

Git: Working with a remote repository

• Remote? 
The common central repository
By default, remote name is origin and default branch is main (previously master).



29

How to access GitHub/UofC GitLab

• Access on https://github.com/ or https://gitlab.cpsc.ucalgary.ca
• Get a clone link
• github.com/intley/Version_Control_Workshop



30

Git: Remote Commands

• git push – push your changes into the remote repository 
• git pull – pull your latest changes from the remote repository



31

Git: Collaborate

C1

C2

Master

Alice Bob

Remote Repo



32

Git: Collaborate

C1

C2

Master

Alice Bob

git clone git clone

C1

C2

Master

C1

C2

Master

Remote Repo



33

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA git add
git commit

CB git add
git commit

Remote Repo



34

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA CB

git push

C3

Remote Repo



35

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA CB

git fetch

C3

C3

Remote Repo



36

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA

CB

git merge

C3 C3

Remote Repo



37

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA

CB

git push

C3 C3

CB

Remote Repo



38

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA

CB

git pull

C3 C3

CB

Remote Repo

CB



Onward to … 
comparison.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Refactoring: Git
	Not an acronym
	Not an acronym
	The Rise of Git
	Why Git?
	Why Git?
	This is how you do it
	Git: *New* Version Control Terminology
	Git: *New* Version Control Terminology
	Git: Getting Started
	Git: Basic Commands
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: Informational
	Git: Revert
	Git: Commit Tree
	Git: Branching
	Git: Branching
	Git: Branching
	Git: Merging
	Git: Merging
	Git: Merging
	Git: Branching and Merging
	GitHub, UofC GitLab
	Git: Working with a remote repository
	How to access GitHub/UofC GitLab
	Git: Remote Commands
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Onward to … �comparison.

