
Refactoring: Version Control
CPSC 501: Advanced Programming Techniques
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Tuesday, August 4, 2020

2

Version control … quick history

3

Version control … quick history

• Three generations
1. Concurrency though lock operations on one file at a time (1972 antiquated)
2. Centralized repository - CVCS (SVN, Team Foundation Server)

• Merge your change in case someone else made changes to central repo, then you can
commit a change.

• Managers like the control

3. Distributed repositories – DVCS (Git [by far market leader], Mercurial, more)
• Can do work on a local repo
• Developers like flexibility (managers can adapt)

4

First up some definitions
Contrast and compare … later

5

Version Control

• Version control:

1. Stores source code files for a project in a central place
• Allows multiple developers to work on the same code base in a controlled way

2. Keeps a record of changes made to source code files over time
• You can recall any version of a file based on a date or version number

3. Allows you to maintain multiple, concurrent releases of your software
• i.e. the mainline (or trunk) plus one or more branch releases

6

Version
Control:
Repository

• Repository: the place where source code files for
projects are stored

• Will contain all versions of the files
• Actually stored as differences

• much smaller than full copies
• but means you need to history to recreate a full file

• Can be local but often network accessible

7

Version
Control:
Repository

• Repository: the place where source code files for
projects are stored

• Will contain all versions of the files
• Actually stored as differences

• much smaller than full copies
• But means you need to history to recreate a full file

• Can be local but often network accessible

• Often stores non-code project artifacts such as:
• Ant/Maven files, Makefiles, etc.
• External documentation (analysis, design, etc.)

• Generally does not to store generated artifacts
• E.g. Object code, .class files, linking files, executables,

temp files, etc

8

Version Control: Basic Terms
Workspace: the place where you work
on a copy of a project’s files Files in the repository are not changed by you directly

Checking out: populates your workspace with up-to-date copies of files and
directories from the repository

Committing: saves your changes back
into the repository

Sometimes called checking in
The repository keeps track of changes using revision
numbers

Updating/pulling: repopulates your
workspace with the latest versions of files

Useful when other developers are also working
concurrently on the same project

9

Version Control: Versioning

• Revision: Each version of a file (or a set of files) is given a unique identifier

• Is time stamped and should be commented to describe the change made

• In SVN:
• 1 for the initial version
• 2, 3, etc. for subsequent committed versions

• In GIT
• no revision numbers, generated hash values
• You have to name revisions for context with tagging

10

Version Control: Versioning

1.Retrieve a specific revision of a file or set of
files (i.e. a directory or a project)

2.List the differences between revisions
3.Retrieve all source code as it appeared at some

date in the past

Revisions

11

Version Control: Tagging

• A tag allows you to name a particular revision of your project (or particular
directories or subsets of files)

• E.g. “PreRelease1” might tag revision 34 of file1.java, revision 27 of
file2.java, etc.

• Checking out using the tag retrieves the same set of files despite
subsequent revisions

12

• Normally, developers work on the same shared code base for a project
• Called the mainline (or trunk)

Version Control: Trunk/Mainline

13

Version Control: Branching

• A branch is a separate, independent line of development
• Is like a separate repository for the same project
• Allows parallel development on the same code base
• Useful for creating a release branch

14

Basic Concepts: Merging

• Merging allows you to apply changes made in a release branch back into the
mainline

• E.g. Bug fixes, Refactorings!!!

15

Basic Concepts : Conflicts

• Two or more developers editing the same file can lead to conflicts
• Strict locking allows only one person at a time to have write access to the file (gen 1)

• SVN (normally) uses optimistic locking
• If you try to commit a shared file, you are forced to update the file first
• SVN merges changes from other developers into the working copy
• If no conflicts, you simply commit the file
• Else, you must manually resolve the conflicts

• GIT
• Will attempt to do merge itself, even within files
• Will have ‘conflict’ if file is gone, or same line is edited
• Will produce file with both lines and you’ll have to pick (or to make more changes)

Onward to …
svn.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Refactoring: Version Control
	Version control … quick history
	Version control … quick history
	First up some definitions
	Version Control
	Version Control: Repository
	Version Control: Repository
	Version Control: Basic Terms
	Version Control: Versioning
	Version Control: Versioning
	Version Control: Tagging
	Version Control: Trunk/Mainline
	Version Control: Branching
	Basic Concepts: Merging
	Basic Concepts : Conflicts
	Onward to … �svn.

