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Overview

• address binding and spaces – logical vs physical
• memory management unit and virtual memory
• Paging, page faults, and general page tables
• Shared pages/copy on write pages/page table size
• Page table implementations - simple, hierarchical, inverted, hashed inverted
• Page fault handling
• Page replacement algorithms - FIFO, Optimal, LRU, Clock
• Thrashing
• Frame allocation algorithms - equal / proportional / priority
• Swapping
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Physical Address Challenges
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More memory management issues

• OS needs to protect memory of a process from other processes
• how?

• how do we write code if we don't know where the program will be loaded in memory?
• e.g. how do we write JMP instruction?
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Working with physical addresses

• consider two compiled programs, assuming they will be loaded at address 0000

• let's place them in two different locations...  

• can you spot the problem?
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Working with physical addresses

• consider two compiled programs, assuming they will be loaded at address 0000

• let's place them in two different locations...  

• can you spot the problem?
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Address Binding
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Address binding

• address binding is the process of mapping/converting addresses of a 
program from one address space to another

• can be used to solve the problem "how to write a program when it's 
final destination is not known"

• binding can happen at compile time, at load time, or at run time
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Binding of instructions and data to memory

• at compile time / link time - slowest

• once the physical location is known, absolute code can be 
generated and stored by re-compiling the code

• must recompile every time physical location changes

• not very useful for multiprocessing systems
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Binding of instructions and data to memory

• at load time - much faster

• compiler/linker outputs relocatable code 

• binding is done by loader before program starts executing

• we include position independent code (PIC) in this category, but it 
could be HW assisted via special register
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Binding of instructions and data to memory

• at run time - fastest (with HW support)

• if process can be moved during its execution, binding is done at 
run-time, dynamically

• most flexible, but need hardware support
(e.g., memory management unit (MMU))
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Address Spaces
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Logical addresses

• we can achieve execution-time address-binding and memory-protection by 'virtualizing 
memory'

• OS gives each process an illusion of logical address space (aka virtual address space)
• logical address space can be a contiguous space [0 … max]

• as process executes on CPU, the addresses generated by the CPU are logical addresses
• if logical address does not fall into the logical address space range → violation 

(exception)
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Physical addresses

• logical addresses are mapped to physical addresses before reaching memory
via hardware device called memory management unit (MMU)

• physical address - a real memory address
• physical address space of a process is the subset of RAM allocated to a process
• depending on the hardware support, physical address space does not need to be 

contiguous
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MMU
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Memory-Management Unit (MMU)

• MMU is a hardware device that maps virtual/logical addresses to physical addresses

• integrated into most/all modern CPUs

• the process running on CPU does not know what the physical addresses are, only OS knows

• execution-time binding occurs automatically whenever memory reference is made

• MMU can also help with memory protection

logical 
address

physical 
address Memory



17 http://marc.retronik.fr/motorola/68K/68000/Memory_Manage
ment_Units_for_68000_Architectures_[BYTE_1986_9p].pdf

http://marc.retronik.fr/motorola/68K/68000/Memory_Management_Units_for_68000_Architectures_%5BBYTE_1986_9p%5D.pdf
http://marc.retronik.fr/motorola/68K/68000/Memory_Management_Units_for_68000_Architectures_%5BBYTE_1986_9p%5D.pdf
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Basic MMU with a Relocation Register

• a simple MMU implementation – using a relocation register 

• logical address space starts at 0,
i.e. programs are written/compiled assuming they start at address 0

• value in the relocation register is added to every address generated by a CPU

relocation 
register

logical
address

381

physical
address

50381

MMU

+

50000

Memory
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Basic MMU ― with Relocation and Limit Registers

• adding limit register to implement address protection
• relocation (base) register = start of the physical memory address given to process
• limit register = the size of the chunk of physical memory a process is allowed to use

• achieves execution-time binding as well as memory protection

< +yes physical
address

no

limit
register

relocation
register

logical
address

trap to OS 
addressing error

Memory

MMU
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Relocation and Limit Registers Example
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Virtual Memory
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Virtual memory

• virtual memory is a memory management technique that allows 
the OS to present a process with contiguous logical address 
space, while allowing for non-contiguous physical address space

• some parts of logical address space can be even
mapped to a backing store, allowing OS to overallocate memory

• some logical addresses could even map to nowhere
• plus many additional nice features

• implemented as a combination of SW & HW
• present on nearly all modern systems

DISK

process's 
virtual 

memory

physical
memory
(RAM)
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Paging
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Paging with MMU
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Paged virtual memory

• virtual address space is divided into pages:
• blocks of fixed size, e.g. 4 KiB
• almost* always power of 2

• physical memory is divided into frames:
• fixed sized blocks, same size as pages

• pages map to frames via a lookup table called
page table (logical → physical address mapping)

• eliminates external fragmentation

• per-process page table or one system-wide page table

page 0
page 1
page 2

page n-1

frame 0
frame 1
frame 2

frame m-1

process's 
virtual 

memory

physical
memory
(RAM)

page 
table
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Paging example 

• virtual address space = 64KB
• physical address space = 32KB
• page size = 4KB
• calculate:

• frame size = ?
• # of pages = ?
• # of frames = ?

In this course I occasionally 
use the old notation:

1 KB = 1024 B
1 MB = 1024 KB
1 GB = 1024 MB

unless explicitly stated 
otherwise
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Paging example

• virtual address space = 64KB
• physical address space = 32KB
• page size = 4KB
• calculate:

• frame size = 4KB (same as page size)
• # of pages = 16 (64KB / 4KB)
• # of frames = 8 (32KB / 4KB)
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Paging example

• Assume page size is 2KB, and a process needs 71 KB to load. How many pages 
do we need?

• we need 35 + ½ pages
• OS needs to find 36 free frames

• Do the frames need to be contiguous?
• No, OS can allocate any 36 frames (discontiguous is fine)
• OS adjusts the page table to reflect the frame locations
• logical address space remains contiguous

• Notes:
• one frame will have 1KB of unused space (internal fragmentation)
• no external fragmentation since all frames are usable
• but what if there are no free frames? we can map some pages to disk…
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Address translation (logical → physical)

• address generated by CPU is split into:
• page number (p) – used as an index into a page table which contains base address of 

corresponding frame in physical memory
• page offset (d) – combined with base address to define the physical memory address that 

is sent to the memory unit

• if page sizes are powers of 2, calculating page number and offset is very simple:
• m-bit logical address space (2m possible addresses)
• n-bit page size (2n bytes in one page)
• last n bits of the logical address is the offset, the remaining m-n bits is the page number

page number page offset

p d

m-n bits n bits
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Paged virtual memory - MMU

CPU MMU Memory

logical 
address

physical 
address

page number replaced 
with frame number

p d f d

f = page_table[p];
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Paging Model of Logical and Physical Memory
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Address translation (logical → physical)

• Question:
• assume 16-bit logical address space and page size of 1024 bytes
• what is the page number and offset for a logical address 10853 ?

• Answer:
• 1024 byte page size means we need 10 bit page offset
• 10853 written as a binary number is 00101010011001012

therefore page number = 0010102 = 1010 , and page offset = 10011001012 = 61310

• another way to solve it is using regular division:
• 10853 / 1024 = 10 remainder 613

6-bit page number
0010102

10 bit page offset
10011001012
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Paging hardware

p = page number
d = page offset
f = frame number
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Paging Model of Logical and Physical Memory
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Free frames

before allocation after allocation
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Page Faults
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Page fault

• What happens when a program tries to access a page that does not map to 
physical memory?

• CPU issues a trap ― called page fault
• OS suspends the process
• OS locates the missing page on disk

• what happens if not on disk? → invalid page fault
results in a crash, segmentation fault, core dump ...

• OS loads the missing page from disk into a free frame
• if no free frames available – OS will evict one by saving it to backing store

□ OS updates the page table
• OS resumes the process by restarting the offending instruction

• if OS only loads pages as a result of page fault, we call that demand paging
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Paging performance

• paging performance is commonly evaluated via effective access time (EAT) for memory access

• let  p = probability of page fault or page fault rate ( 0 ≤ p ≤ 1)
p = 0 → all pages are in memory, no page fault
p = 1 → all pages are on disk, all memory accesses are page faults

ma = memory access time (includes page translation time)
pfst = page fault service time, ie. how long does it take to service a page fault

• then
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Expected value

• let's say we want to find out an average outcome of repeating the same experiment many 
times

• if the experiment has n possible outcomes: x1 , x2 , … , xn

• and each outcome has the probability of occurring: p1 , p2 , … , pn respectively,
where  p1 + p2 + … + pn = 1

• we can calculate the expected value of the experiment as a weighted average of the outcomes, 
using the probabilities as weights:

expected value =
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Expected value example

• if we rolled a six-sided die "many" times and recorded the outcomes…

• what would be the average of these outcomes?
• six possible outcomes: 1, 2, 3, 4, 5, 6
• probability of each outcome: ⅙

• expected value =
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Paging performance examples

• EAT = (1-p) * ma + p * (pfst + ma)

• non-realistic example:
• calculate EAT if page fault probability is 50%, ma = 1ms and pfst = 10ms
• EAT = (1-0.5) * 1ms + 0.5 * (10ms + 1ms) = 6ms

• more realistic example:
• calculate EAT if page fault probability is 1/1000, ma = 100ns and pfst = 10ms
• EAT = (1-0.001) * 100ns + 0.001 * 10,000,100ns = 10,100ns = 10.1μs
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Paging performance examples

• EAT = (1-p) * ma + p * (pfst + ma)

• non-realistic example:
• calculate EAT if page fault probability is 50%, ma = 1ms and pfst = 10ms
• EAT = (1-0.5) * 1ms + 0.5 * (10ms + 1ms) = 6ms

• more realistic example:
• calculate EAT if page fault probability is 1/1000, ma = 100ns and pfst = 10ms
• EAT = (1-0.001) * 100ns + 0.001 * 10,000,100ns = 10,100ns = 10.1μs

~100 x 
slower
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Page Fault Handling
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Page fault handling

• page fault - exception raised when a process accesses a page not currently mapped by MMU
• e.g. entry in page table marked invalid
• note: with demand paging, first reference to a page always results in a page fault

• general page fault handling:

1. operating system looks at another table to decide:

- invalid reference → abort

- reference valid, but page not in memory, eg. it's in a backing store

1. find a free frame

2. load page from backing store into frame by scheduling appropriate disk operation

3. when done, reset page tables to indicate page now in memory

4. restart the instruction that caused the page fault
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Page table with some pages not in main memory
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Page fault handling
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What happens if there are no free frames?

How does OS deal with over-allocation of memory?

• OS needs to make room by evicting an existing frame
• OS finds an occupied (victim) frame in memory and pages it out

• saves it to backing store, and remembers it so that it can find it later
i.e. update page table & other relevant data structures

• can use the modify (dirty) bit in a page table entry to reduce overhead of page transfers, 
so that only modified pages are saved to the backing store

• remember: dirty bit is automatically set by hardware on write access
• but which frame do we evict?

• we need an algorithm to find a victim page
• this algorithm must be fast, OS cannot afford to be too fancy
• also, the algorithm should minimize the overall number of page faults

• we will need a page replacement algorithm
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Basic page replacement
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Global vs. Local Replacement

• when no free frames are available, OS needs to replace a frame...

• global replacement
• OS selects a replacement frame from the set of all frames
• that means one process can steal a frame from another
• disadvantage: process execution time can vary greatly
• advantage: greater throughput, so more common

• local replacement
• each process selects only from its own set of allocated frames
• more consistent per-process performance
• but can lead to underutilized memory
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Page Replacement Algorithms
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Page replacement algorithms

• page replacement algorithm
• used when OS needs a frame, but all frames are occupied
• determines the victim frame
• in a way that minimizes number of page faults

• we will look at different algorithms by running them on a particular string of memory 
references (reference string) and computing the number of page faults on that string

• reference string is just a list of page numbers, not full addresses
• repeated access to the same page does not cause a page fault
• results will change based on number of frames available

• in all our examples, the reference string will be:

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
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FIFO
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First-In-First-Out (FIFO) Algorithm

• FIFO - replaces page that has been in memory for the longest time

• can be implemented using a FIFO queue

• example: reference string is 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3  available frames (3 pages can be in memory at a time per process)

• # page faults varies:
• by reference string, eg. consider rstring 1,2,3,4,1,2,5,1,2,3,4,5
• by number of frames available
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FIFO example 2

• example 2:
• reference string is 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• this time with 4 available frames

• only 10 page faults (compared to 15 faults with 3 available frames)

7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0 1

7 7 7 7 3 3 3 3 2 2

0 0 0 0 4 4 4 4 7

1 1 1 1 0 0 0 0

2 2 2 2 1 1 1



55

Graph of Page Faults Versus The Number of Frames
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Bélády's
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Bélády's anomaly

• Bélády's anomaly occurs when increasing the 
number of page frames results in an increase 
in the number of page faults for certain 
memory access patterns

• example:
• r-string 0 1 2 3 0 1 4 0 1 2 3 4
• FIFO with 3 frames → 9 page faults
• FIFO with 4 frames → 10 page faults
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OPT
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Optimal algorithm (OPT)

• replaces page that will not be used for longest period of time

• not practical ― requires knowing the future
• but useful for measuring how well other non-optimal algorithms perform
• eg. no algorithm can do better than 9 page faults for the above reference string

and 3 available frames
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LRU
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Least Recently Used Algorithm (LRU)

• uses past knowledge to predict future

• replaces page that has not been used in the most amount of time
• associates time of last use with each page

• 12 faults

• better than FIFO but worse than OPT
• but how can we implement it?
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LRU implementation

• counter implementation
• every page entry has a counter
• every time page is referenced through this entry, copy current clock into the counter
• when a page needs to be changed, look at the counters to find smallest value
• requires search through table

• stack implementation
• keep a stack of page numbers (eg. doubly linked list)
• when page referenced - move it to the bottom
• stack top contains the least recently used page
• each update is more expensive than counter-based implementation
• although no search needed for replacement

• LRU and OPT are examples of replacement algorithms that don’t exhibit Belady’s Anomaly
• pure LRU needs special hardware and is still slow, but there are fast approximations of LRU



63

CLOCK
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CLOCK replacement algorithm

• clock replacement is an approximation of LRU

• uses the reference bit in page table entry, which is automatically set 
by hardware any time page is accessed

• frames are organized as a circular buffer

• maintain one pointer (clock hand) pointing to the page to be 
inspected next

• if page under pointer has ref. bit = 0, replace it

• otherwise set reference bit to 0 and advance pointer to the next page

• this essentially gives a page a 'second chance'

• simple algo. with good performance, can be extended/improved if 
more bits available

• many more page replacement algorithms, eg. WSClock, Aging LRU



CLOCK replacement simulation
# inputs
n_frames = number of available frames
ref_string = array representing array string

# initialization:
pages = array of n_frames * integers, initialized to -1
refs = array of n_frames * booleans, initialized to false
hand = 0

# process each page in reference string
for p in ref_string:
    find 'ind' such that pages[ind] == p
    if ind was found: # no page fault
        refs[ind] = true # simulating H/W
        continue
    else # page fault
        while refs[hand] == true:  # give page second chance
            refs[hand] = false
            hand = (hand + 1) % n_frames
        pages[hand] = p # evict and replace
        refs[hand] = true # do we need this?!?
        hand = (hand + 1) % n_frames
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Comparative Example



Optimal with 4 frames
1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 4

2 2 2 2 2
3 3 3 3

4 5 5

LRU with 4 frames
1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 5

2 2 2 2 2 2 2
3 3 5 5 4 4

4 4 3 3 3

Clock with 4 frames
1 2 3 4 1 2 5 1 2 3 4 5

1:1 1:1 1:1 *1:1 5:1 5:1 5:1 *5:1 4:1 4:1
* 2:1 2:1 2:1 *2:0 1:1 1:1 1:1 *1:0 5:1

* 3:1 3:1 3:0 *3:0 2:1 2:1 2:0 *2:0
* 4:1 4:0 4:0 *4:0 3:1 3:0 3:0

the star (*) represents the hand position
the number after colon (:) represents the value of the referenced bit

Clock with 3 frames
1 2 3 4 1 2 5 1 2 3 4 5

1:1 1:1 *1:1 4:1 4:1 *4:1 5:1 5:1 5:1 5:0 *5:0 *5:1
* 2:1 2:1 *2:0 1:1 1:1 *1:0 *1:1 *1:1 3:1 3:1 3:1

* 3:1 3:0 *3:0 2:1 2:0 2:0 2:1 *2:0 4:1 4:1

*

*

6 page 
faults

8 page 
faults

10 page 
faults

9 page 
faults
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Trashing
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Thrashing

• if a process does not have “enough” pages, the page-fault rate is very high
• page fault to get page
• replace existing frame
• but quickly need replaced frame back

• thrashing process = process is progressing slowly due to frequent page swaps
• a process spends more time waiting for page faults than it spends executing

• this can lead to an entire system thrashing:
• many processes thrashing → low CPU utilization
• OS thinks that it needs to increase the 

degree of multiprogramming
• OS adds another process to the system

making things even worse
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Dealing with thrashing

• local page replacement
• when a process is thrashing, OS prevents it from stealing frames from other processes
• at least the thrashing process cannot cause the entire system to thrash

• working set model
• OS keeps track of pages that are actively used by a process (working set)
• working set of processes changes over time
• OS periodically updates the working set for each process, using a moving time window
• before resuming a process, OS loads the entire working set of the process

• page fault frequency
• establish acceptable bounds on page fault rate
• if actual page fault rate of a process too high

 → process gains a frame

• if actual page fault rate of a process too low
→ process loses a frame
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General Page Tables
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Page Table Implementation

• page table is kept in main memory
• page-table base register (PTBR) points to the page table
• page-table length register (PTLR) indicates size of the page table

• every instruction access requires at least two memory accesses
• one for page table lookup + one more for instruction fetch

• this can be reduced by using a translation lookaside buffer (TLB)
• TLB is a special hardware cache
• TLBs are extremely fast, but have very small capacity
• TLBs can remember a small part of the page table, ~64 to ~1K entries
• on TLB miss, value is saved in TLB for faster access next time
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TLB as associative memory

• TLB is often implemented as associative memory - hardware capable of fast parallel search based on 
content

• given a page#, TLB will return corresponding frame# in constant amount of time (TLB-hit)

• if TLB does not contain entry for page#, the search continues in page table in memory (TLB-miss)

• effective memory-access time = (1 - p) * (tlbs + 2 * ma) + p * (tlbs + ma)

p = probability of TLB-hit 
(TLB-hit ratio)

tlbs = TLB search time ma = memory access time
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Paging hardware with TLB

MMU
EAT = ma + tlbs + (1 - p) * ma
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Typical structure of page table entry

set by hardware 
automatically on any 
access

a.k.a. valid/invalid bit
invalid → page fault

a.k.a. dirty bit
set by hardware 
automatically on write 
access

protection bit(s), 
eg. read/write/execute...
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Memory protection

• memory protection is usually implemented by associating a protection bit with 
each frame

• the bit indicates if read-only or read-write access is allowed
• note: we can also add other protection bits, such as execute-only bit

• valid bit ― another bit in each page table entry:
• valid=1 indicates that the corresponding frame is in physical memory
• valid=0 (“invalid”) the corresponding frame is not in physical memory

• violations result in trap to the kernel, e.g.:
• accessing page with invalid bit set → page fault
• accessing page past the PTLR → page fault
• trying to write to a page with read-only bit set → general protection fault
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Shared Pages
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Shared Pages

• sometimes it can be useful for processes to share memory with other 
processes

• this can be implemented using shared pages

• example 1:
• running multiple instances of the same program,

or different programs using the same shared library
• only one copy of the executable code needs to be in physical memory
• implemented using shared read-only pages, with read-only bit set in page table entry

• example 2:
• shared memory for interprocess communication
• implemented using shared read-write pages
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Shared Pages Example

0

1 data 1

2 data 3

3 editor 1

4 editor 2

5

6 editor 3

7 data 2

8

shared
pages 

(frames)

process 1

editor 1

editor 2

editor 3

data 1

3
4
6
1

PT

process 3

editor 1

editor 2

editor 3

data 3

PT:
3
4
6
2

process 2

editor 1

editor 2

editor 3

data 2

3
4
6
7

PT
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Copy On Write
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Copy-on-Write

• copy-on-write (COW) allows parent and child processes to initially share some pages

• only if either process tries to modify a shared page, the page is copied and then modified
• implemented using copy-on-write bit in page table entries

• COW allows very efficient process implementation of fork(),
since only modified pages are copied (on demand)

Before process 1 tries to modify page C After process 1 tries to modify page C
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Page Table Size
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Page table size

• simple page tables can become very large

• consider a 32-bit logical address space, with page size of 4 KB (212 bytes)
• page table would have to contain ~1 million entries (232 / 212 = 220)
• if each entry is 4 bytes → page table would use up 4MB of memory (homework: verify)
• for 64-bit systems, page table can get impractically big (homework: do the math)
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Page Table Size

• consider a 64-bit logical address space (most common)
• page size of 4 KB (212)
• page table would have (264 / 212 = 252) entries
• 52 bits to address it → each entry would need to be at least ⌈52/8⌉=7 bytes long
• page table would need at minimum 252 entries * 7 bytes/entry → petabyte range!!!

• some solutions:
• hierarchical paging
• inverted page tables
• hashed inverted page tables
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Page Table Implementations



86

Hierarchical Page 
Tables
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Hierarchical Page Tables

• observation: most programs do not use all address space at the same time
• instead, only some entries in the page table are used at any given time

(temporal locality of reference)
• also, the used entries tend to be clusters / groups of consecutive pages

(spatial locality of reference)

• so let's break up the page table into multiple smaller page tables
• with the hope that not all of the smaller page tables will be used
• the ones that are not used, don't have to be in memory

x
x
x
x
x
x
x
x
x

page table with unused 
entries in the middle
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Two-Level Page-Table Example

• a simple technique is a two-level page table ― think of it as paging the page table

• we save space by not storing small page tables if all their entries are invalid … 

x
x
x
x
x
x
x
x
x

x
x
x
x

x
x
x
x

x x

x
x

table with 16 entries, 
unused entries in the 
middle two level page table

20 entries in total !!!

two level page 
table with
12 entries

outer 
page 
table

inner 
page 
table

x
x
x
x

x
x
x
x
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Two-Level Page-Table Example

• a 32-bit logical address with 4K page size is divided into:
• a page number consisting of 20 bits
• a page offset consisting of 12 bits

• we can add another level of indirection – and divide the page number further:
• a 10-bit outer page number p1
• a 10-bit inner page number p2

• p1 is an index into the outer page table
• p2 is an index into an inner page table
• also known as forward-mapped page table

dp2p1

12 bits10 bits10 bits

page number page offset

page # offset
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Address-Translation Scheme

frame

inner page 
table

outer 
page table

● 3 memory accesses per request
● on 64-bit system outer page table 

would still have 242 entries

● we could add 2nd outer page 
table
○ 232 entries for outer PT
○ 4 memory accesses per req.
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Multi-Level Page Table
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Multi-level page table example

• consider a 64-bit system, with 4KiB page size (212 bits), and 8 bytes per entry

• single page table → 2^52 entries x 8B/entry → 2^55 bytes → ~36 petabytes
• how many page table levels do we need if we want each page table fit inside a frame? 

• a frame can fit 4KiB/8B = 512 = 29 entries
• with 12-bit offsets, that means we need ⌈52bits/9bits-per-level⌉ = 6 levels!!!

• with 6-level hierarchical PT each memory request would require 7 memory accesses
• 6 accesses for translating logical address → physical address
• 1 access for the actual memory location

• newest Intel processors support 5-level page tables, AMD supports 4-level PTs 

dp6p5p4p3p2p1

12 bits9 bits9 bits9 bits9 bits9 bits7 bits
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Inverted Page Table
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Inverted Page Table

• rather than each process having its own page table,
let's track all physical pages in one global inverted page table (IPT)

• this global IPT has one entry for each real page of memory, containing:
• virtual address, and
• owning process ID

• IPT decreases memory needed to store a page table:
• IPT size is proportional to the amount of physical memory available
• eg. 16GB memory with 4KB page size and 8B/entry → only 32MB page table

• but IPT increases time needed to search the table when a page reference occurs
• with above example, page table has ~4 million entries, on average a translation would 

require ~2 million memory accesses !!!
• TLB could help accelerate the lookup somewhat, but TLB is very tiny ...

• another (smaller) problem: shared pages are problematic with IPT
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Inverted Page Table Architecture
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Hash Inverted Page 
Table



97

Hashed Inverted Page Table

• used in some 64-bit systems

• the virtual page number and process ID is hashed into a page table

• this page table contains chains of elements
which hash to the same location

• each element contains: PID, virtual page number
and a pointer to the next element

• virtual page numbers are compared in the chain
until a match is found

• if a match is found, the corresponding physical frame
is extracted, otherwise page fault

• with a good hash function → average access time is O(1)



Operating Systems: Internals and Design Principles, 
9th Edition, William Stallings ©2018 Pearson 

https://www.pearson.com/us/higher-education/program/Stallings-Operating-Systems-Internals-and-Design-Principles-9th-Edition/PGM1262980.html?tab=order
https://www.pearson.com/us/higher-education/program/Stallings-Operating-Systems-Internals-and-Design-Principles-9th-Edition/PGM1262980.html?tab=order
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Frame Allocation
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Frame allocation

• frame allocation algorithm determines how many frames to give to each process

• for a single-process system the OS claims some frames and leaves the rest to the running 
process

• for a multiprogramming system, each process needs a minimum number of frames 
(OS/architecture dependent)

• but what about maximum?

• examples of allocation schemes:
• fixed allocation (equal and proportional)
• priority allocation
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Fixed allocation

• equal allocation – for example, if there are 100 frames (after allocating frames for the OS)
and 5 processes, OS gives each process 20 frames

• proportional allocation – allocate according to the size of process
• dynamic ― as degree of multiprogramming and process sizes change

example with 2 processes:
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Priority allocation

• similar to proportional allocation scheme
• but using priorities rather than size
• the higher the priority of a process, the more frames it gets
• the lower the priority of a process, the less frames it gets
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Swapping
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Swapping

• older form of paging (entire process vs parts)

• swapping allows the OS to load more processes
than the available physical memory

• a process can be swapped temporarily out of 
memory to a backing store, and then brought back
into memory for continued execution

• backing store – fast storage large enough to
accommodate copies of all memory images for all
processes

• why would we want that?!?
– programs grow over time
– program don't always use all allocated memory at 
the same time
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Swapping and memory

• memory allocation changes as processes are swapped out and swapped in

• the shaded regions are unused memory

A is swapped out B is swapped out A is swapped in
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Swapping

• does the swapped out process need to swap back into the same physical addresses?
• depends on address binding method
• much easier if MMU is used
• must be careful with pending I/O, especially when using memory-mapped device registers
• I/O results could be sent to kernel, then to the process (double-buffering)

• context switch time can be extremely high

• standard swapping not used in modern operating systems
• note: Linux uses the term 'swapping' to mean paging

• paging is similar to swapping, but paging can swap out parts of a process
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Review
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Review

• Name two registers used in a simple MMU implementation.

• Explain logical address / physical address.

• What is the purpose of an MMU?

• Best fit memory allocation is faster than first fit. True or False

• Virtual address space is the same as physical address space. True or False
• Page size is the same as frame size. True or False

• Define: page, frame, demand paging, page table, page fault
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Review

• Which one of the following page replacement algorithms requires future knowledge about 
memory referencing?

A. FIFO
B. Optimal
C. LRU

• What is Belady’s Anomaly?
• Which one of the above page replacement algorithms suffers from Belady’s Anomaly?

• What is thrashing?

• Describe copy-on-write.
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Review - Basic page replacement

1. find the location of the desired page on disk

2. find a free frame:
- if there is a free frame, go to step 3
- if there is no free frame, use a page replacement algorithm to select a victim frame

- if victim frame is dirty, write it to backing store
- set the invalid bit in page table corresponding to victim frame

1. load desired page into the free frame and update the page and frame tables

- frame table is a (simple) data structure that keeps track of free frames
1. restart the instruction that caused the trap

Note: now potentially 2 page transfers for page fault, further increasing EAT
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