
Virtual Memory and Paging
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Friday, 25 November 2024

Copyright © 2024

2

Overview

• address binding and spaces – logical vs physical
• memory management unit and virtual memory
• Paging, page faults, and general page tables
• Shared pages/copy on write pages/page table size
• Page table implementations - simple, hierarchical, inverted, hashed inverted
• Page fault handling
• Page replacement algorithms - FIFO, Optimal, LRU, Clock
• Thrashing
• Frame allocation algorithms - equal / proportional / priority
• Swapping

3

Physical Address Challenges

4

More memory management issues

• OS needs to protect memory of a process from other processes
• how?

• how do we write code if we don't know where the program will be loaded in memory?
• e.g. how do we write JMP instruction?

5

Working with physical addresses

• consider two compiled programs, assuming they will be loaded at address 0000

• let's place them in two different locations...

• can you spot the problem?

6

Working with physical addresses

• consider two compiled programs, assuming they will be loaded at address 0000

• let's place them in two different locations...

• can you spot the problem?

7

Address Binding

8

Address binding

• address binding is the process of mapping/converting addresses of a
program from one address space to another

• can be used to solve the problem "how to write a program when it's
final destination is not known"

• binding can happen at compile time, at load time, or at run time

9

Binding of instructions and data to memory

• at compile time / link time - slowest

• once the physical location is known, absolute code can be
generated and stored by re-compiling the code

• must recompile every time physical location changes

• not very useful for multiprocessing systems

10

Binding of instructions and data to memory

• at load time - much faster

• compiler/linker outputs relocatable code

• binding is done by loader before program starts executing

• we include position independent code (PIC) in this category, but it
could be HW assisted via special register

11

Binding of instructions and data to memory

• at run time - fastest (with HW support)

• if process can be moved during its execution, binding is done at
run-time, dynamically

• most flexible, but need hardware support
(e.g., memory management unit (MMU))

12

Address Spaces

13

Logical addresses

• we can achieve execution-time address-binding and memory-protection by 'virtualizing
memory'

• OS gives each process an illusion of logical address space (aka virtual address space)
• logical address space can be a contiguous space [0 … max]

• as process executes on CPU, the addresses generated by the CPU are logical addresses
• if logical address does not fall into the logical address space range → violation

(exception)

14

Physical addresses

• logical addresses are mapped to physical addresses before reaching memory
via hardware device called memory management unit (MMU)

• physical address - a real memory address
• physical address space of a process is the subset of RAM allocated to a process
• depending on the hardware support, physical address space does not need to be

contiguous

15

MMU

16

Memory-Management Unit (MMU)

• MMU is a hardware device that maps virtual/logical addresses to physical addresses

• integrated into most/all modern CPUs

• the process running on CPU does not know what the physical addresses are, only OS knows

• execution-time binding occurs automatically whenever memory reference is made

• MMU can also help with memory protection

logical
address

physical
address Memory

17 http://marc.retronik.fr/motorola/68K/68000/Memory_Manage
ment_Units_for_68000_Architectures_[BYTE_1986_9p].pdf

http://marc.retronik.fr/motorola/68K/68000/Memory_Management_Units_for_68000_Architectures_%5BBYTE_1986_9p%5D.pdf
http://marc.retronik.fr/motorola/68K/68000/Memory_Management_Units_for_68000_Architectures_%5BBYTE_1986_9p%5D.pdf

18

Basic MMU with a Relocation Register

• a simple MMU implementation – using a relocation register

• logical address space starts at 0,
i.e. programs are written/compiled assuming they start at address 0

• value in the relocation register is added to every address generated by a CPU

relocation
register

logical
address

381

physical
address

50381

MMU

+

50000

Memory

19

Basic MMU ― with Relocation and Limit Registers

• adding limit register to implement address protection
• relocation (base) register = start of the physical memory address given to process
• limit register = the size of the chunk of physical memory a process is allowed to use

• achieves execution-time binding as well as memory protection

< +yes physical
address

no

limit
register

relocation
register

logical
address

trap to OS
addressing error

Memory

MMU

20

Relocation and Limit Registers Example

21

Virtual Memory

22

Virtual memory

• virtual memory is a memory management technique that allows
the OS to present a process with contiguous logical address
space, while allowing for non-contiguous physical address space

• some parts of logical address space can be even
mapped to a backing store, allowing OS to overallocate memory

• some logical addresses could even map to nowhere
• plus many additional nice features

• implemented as a combination of SW & HW
• present on nearly all modern systems

DISK

process's
virtual

memory

physical
memory
(RAM)

23

Paging

24

Paging with MMU

25

Paged virtual memory

• virtual address space is divided into pages:
• blocks of fixed size, e.g. 4 KiB
• almost* always power of 2

• physical memory is divided into frames:
• fixed sized blocks, same size as pages

• pages map to frames via a lookup table called
page table (logical → physical address mapping)

• eliminates external fragmentation

• per-process page table or one system-wide page table

page 0
page 1
page 2

page n-1

frame 0
frame 1
frame 2

frame m-1

process's
virtual

memory

physical
memory
(RAM)

page
table

26

Paging example

• virtual address space = 64KB
• physical address space = 32KB
• page size = 4KB
• calculate:

• frame size = ?
• # of pages = ?
• # of frames = ?

In this course I occasionally
use the old notation:

1 KB = 1024 B
1 MB = 1024 KB
1 GB = 1024 MB

unless explicitly stated
otherwise

27

Paging example

• virtual address space = 64KB
• physical address space = 32KB
• page size = 4KB
• calculate:

• frame size = 4KB (same as page size)
• # of pages = 16 (64KB / 4KB)
• # of frames = 8 (32KB / 4KB)

28

Paging example

• Assume page size is 2KB, and a process needs 71 KB to load. How many pages
do we need?

• we need 35 + ½ pages
• OS needs to find 36 free frames

• Do the frames need to be contiguous?
• No, OS can allocate any 36 frames (discontiguous is fine)
• OS adjusts the page table to reflect the frame locations
• logical address space remains contiguous

• Notes:
• one frame will have 1KB of unused space (internal fragmentation)
• no external fragmentation since all frames are usable
• but what if there are no free frames? we can map some pages to disk…

29

Address translation (logical → physical)

• address generated by CPU is split into:
• page number (p) – used as an index into a page table which contains base address of

corresponding frame in physical memory
• page offset (d) – combined with base address to define the physical memory address that

is sent to the memory unit

• if page sizes are powers of 2, calculating page number and offset is very simple:
• m-bit logical address space (2m possible addresses)
• n-bit page size (2n bytes in one page)
• last n bits of the logical address is the offset, the remaining m-n bits is the page number

page number page offset

p d

m-n bits n bits

30

Paged virtual memory - MMU

CPU MMU Memory

logical
address

physical
address

page number replaced
with frame number

p d f d

f = page_table[p];

31

Paging Model of Logical and Physical Memory

32

Address translation (logical → physical)

• Question:
• assume 16-bit logical address space and page size of 1024 bytes
• what is the page number and offset for a logical address 10853 ?

• Answer:
• 1024 byte page size means we need 10 bit page offset
• 10853 written as a binary number is 00101010011001012

therefore page number = 0010102 = 1010 , and page offset = 10011001012 = 61310

• another way to solve it is using regular division:
• 10853 / 1024 = 10 remainder 613

6-bit page number
0010102

10 bit page offset
10011001012

33

Paging hardware

p = page number
d = page offset
f = frame number

34

Paging Model of Logical and Physical Memory

35

Free frames

before allocation after allocation

36

Page Faults

37

Page fault

• What happens when a program tries to access a page that does not map to
physical memory?

• CPU issues a trap ― called page fault
• OS suspends the process
• OS locates the missing page on disk

• what happens if not on disk? → invalid page fault
results in a crash, segmentation fault, core dump ...

• OS loads the missing page from disk into a free frame
• if no free frames available – OS will evict one by saving it to backing store

□ OS updates the page table
• OS resumes the process by restarting the offending instruction

• if OS only loads pages as a result of page fault, we call that demand paging

38

Paging performance

• paging performance is commonly evaluated via effective access time (EAT) for memory access

• let p = probability of page fault or page fault rate (0 ≤ p ≤ 1)
p = 0 → all pages are in memory, no page fault
p = 1 → all pages are on disk, all memory accesses are page faults

ma = memory access time (includes page translation time)
pfst = page fault service time, ie. how long does it take to service a page fault

• then

39

Expected value

• let's say we want to find out an average outcome of repeating the same experiment many
times

• if the experiment has n possible outcomes: x1 , x2 , … , xn

• and each outcome has the probability of occurring: p1 , p2 , … , pn respectively,
where p1 + p2 + … + pn = 1

• we can calculate the expected value of the experiment as a weighted average of the outcomes,
using the probabilities as weights:

expected value =

40

Expected value example

• if we rolled a six-sided die "many" times and recorded the outcomes…

• what would be the average of these outcomes?
• six possible outcomes: 1, 2, 3, 4, 5, 6
• probability of each outcome: ⅙

• expected value =

41

Paging performance examples

• EAT = (1-p) * ma + p * (pfst + ma)

• non-realistic example:
• calculate EAT if page fault probability is 50%, ma = 1ms and pfst = 10ms
• EAT = (1-0.5) * 1ms + 0.5 * (10ms + 1ms) = 6ms

• more realistic example:
• calculate EAT if page fault probability is 1/1000, ma = 100ns and pfst = 10ms
• EAT = (1-0.001) * 100ns + 0.001 * 10,000,100ns = 10,100ns = 10.1μs

42

Paging performance examples

• EAT = (1-p) * ma + p * (pfst + ma)

• non-realistic example:
• calculate EAT if page fault probability is 50%, ma = 1ms and pfst = 10ms
• EAT = (1-0.5) * 1ms + 0.5 * (10ms + 1ms) = 6ms

• more realistic example:
• calculate EAT if page fault probability is 1/1000, ma = 100ns and pfst = 10ms
• EAT = (1-0.001) * 100ns + 0.001 * 10,000,100ns = 10,100ns = 10.1μs

~100 x
slower

43

Page Fault Handling

44

Page fault handling

• page fault - exception raised when a process accesses a page not currently mapped by MMU
• e.g. entry in page table marked invalid
• note: with demand paging, first reference to a page always results in a page fault

• general page fault handling:

1. operating system looks at another table to decide:

- invalid reference → abort

- reference valid, but page not in memory, eg. it's in a backing store

1. find a free frame

2. load page from backing store into frame by scheduling appropriate disk operation

3. when done, reset page tables to indicate page now in memory

4. restart the instruction that caused the page fault

45

Page table with some pages not in main memory

46

Page fault handling

47

What happens if there are no free frames?

How does OS deal with over-allocation of memory?

• OS needs to make room by evicting an existing frame
• OS finds an occupied (victim) frame in memory and pages it out

• saves it to backing store, and remembers it so that it can find it later
i.e. update page table & other relevant data structures

• can use the modify (dirty) bit in a page table entry to reduce overhead of page transfers,
so that only modified pages are saved to the backing store

• remember: dirty bit is automatically set by hardware on write access
• but which frame do we evict?

• we need an algorithm to find a victim page
• this algorithm must be fast, OS cannot afford to be too fancy
• also, the algorithm should minimize the overall number of page faults

• we will need a page replacement algorithm

48

Basic page replacement

49

Global vs. Local Replacement

• when no free frames are available, OS needs to replace a frame...

• global replacement
• OS selects a replacement frame from the set of all frames
• that means one process can steal a frame from another
• disadvantage: process execution time can vary greatly
• advantage: greater throughput, so more common

• local replacement
• each process selects only from its own set of allocated frames
• more consistent per-process performance
• but can lead to underutilized memory

50

Page Replacement Algorithms

51

Page replacement algorithms

• page replacement algorithm
• used when OS needs a frame, but all frames are occupied
• determines the victim frame
• in a way that minimizes number of page faults

• we will look at different algorithms by running them on a particular string of memory
references (reference string) and computing the number of page faults on that string

• reference string is just a list of page numbers, not full addresses
• repeated access to the same page does not cause a page fault
• results will change based on number of frames available

• in all our examples, the reference string will be:

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

52

FIFO

53

First-In-First-Out (FIFO) Algorithm

• FIFO - replaces page that has been in memory for the longest time

• can be implemented using a FIFO queue

• example: reference string is 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 available frames (3 pages can be in memory at a time per process)

• # page faults varies:
• by reference string, eg. consider rstring 1,2,3,4,1,2,5,1,2,3,4,5
• by number of frames available

54

FIFO example 2

• example 2:
• reference string is 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• this time with 4 available frames

• only 10 page faults (compared to 15 faults with 3 available frames)

7 0 1 2 0 3 0 4 2 3 0 3 0 3 2 1 2 0 1 7 0 1

7 7 7 7 3 3 3 3 2 2

0 0 0 0 4 4 4 4 7

1 1 1 1 0 0 0 0

2 2 2 2 1 1 1

55

Graph of Page Faults Versus The Number of Frames

56

Bélády's

57

Bélády's anomaly

• Bélády's anomaly occurs when increasing the
number of page frames results in an increase
in the number of page faults for certain
memory access patterns

• example:
• r-string 0 1 2 3 0 1 4 0 1 2 3 4
• FIFO with 3 frames → 9 page faults
• FIFO with 4 frames → 10 page faults

58

OPT

59

Optimal algorithm (OPT)

• replaces page that will not be used for longest period of time

• not practical ― requires knowing the future
• but useful for measuring how well other non-optimal algorithms perform
• eg. no algorithm can do better than 9 page faults for the above reference string

and 3 available frames

60

LRU

61

Least Recently Used Algorithm (LRU)

• uses past knowledge to predict future

• replaces page that has not been used in the most amount of time
• associates time of last use with each page

• 12 faults

• better than FIFO but worse than OPT
• but how can we implement it?

62

LRU implementation

• counter implementation
• every page entry has a counter
• every time page is referenced through this entry, copy current clock into the counter
• when a page needs to be changed, look at the counters to find smallest value
• requires search through table

• stack implementation
• keep a stack of page numbers (eg. doubly linked list)
• when page referenced - move it to the bottom
• stack top contains the least recently used page
• each update is more expensive than counter-based implementation
• although no search needed for replacement

• LRU and OPT are examples of replacement algorithms that don’t exhibit Belady’s Anomaly
• pure LRU needs special hardware and is still slow, but there are fast approximations of LRU

63

CLOCK

64

CLOCK replacement algorithm

• clock replacement is an approximation of LRU

• uses the reference bit in page table entry, which is automatically set
by hardware any time page is accessed

• frames are organized as a circular buffer

• maintain one pointer (clock hand) pointing to the page to be
inspected next

• if page under pointer has ref. bit = 0, replace it

• otherwise set reference bit to 0 and advance pointer to the next page

• this essentially gives a page a 'second chance'

• simple algo. with good performance, can be extended/improved if
more bits available

• many more page replacement algorithms, eg. WSClock, Aging LRU

CLOCK replacement simulation
inputs
n_frames = number of available frames
ref_string = array representing array string

initialization:
pages = array of n_frames * integers, initialized to -1
refs = array of n_frames * booleans, initialized to false
hand = 0

process each page in reference string
for p in ref_string:
 find 'ind' such that pages[ind] == p
 if ind was found: # no page fault
 refs[ind] = true # simulating H/W
 continue
 else # page fault
 while refs[hand] == true: # give page second chance
 refs[hand] = false
 hand = (hand + 1) % n_frames
 pages[hand] = p # evict and replace
 refs[hand] = true # do we need this?!?
 hand = (hand + 1) % n_frames

66

Comparative Example

Optimal with 4 frames
1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 4

2 2 2 2 2
3 3 3 3

4 5 5

LRU with 4 frames
1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 5

2 2 2 2 2 2 2
3 3 5 5 4 4

4 4 3 3 3

Clock with 4 frames
1 2 3 4 1 2 5 1 2 3 4 5

1:1 1:1 1:1 *1:1 5:1 5:1 5:1 *5:1 4:1 4:1
* 2:1 2:1 2:1 *2:0 1:1 1:1 1:1 *1:0 5:1

* 3:1 3:1 3:0 *3:0 2:1 2:1 2:0 *2:0
* 4:1 4:0 4:0 *4:0 3:1 3:0 3:0

the star (*) represents the hand position
the number after colon (:) represents the value of the referenced bit

Clock with 3 frames
1 2 3 4 1 2 5 1 2 3 4 5

1:1 1:1 *1:1 4:1 4:1 *4:1 5:1 5:1 5:1 5:0 *5:0 *5:1
* 2:1 2:1 *2:0 1:1 1:1 *1:0 *1:1 *1:1 3:1 3:1 3:1

* 3:1 3:0 *3:0 2:1 2:0 2:0 2:1 *2:0 4:1 4:1

*

*

6 page
faults

8 page
faults

10 page
faults

9 page
faults

68

Trashing

69

Thrashing

• if a process does not have “enough” pages, the page-fault rate is very high
• page fault to get page
• replace existing frame
• but quickly need replaced frame back

• thrashing process = process is progressing slowly due to frequent page swaps
• a process spends more time waiting for page faults than it spends executing

• this can lead to an entire system thrashing:
• many processes thrashing → low CPU utilization
• OS thinks that it needs to increase the

degree of multiprogramming
• OS adds another process to the system

making things even worse

70

Dealing with thrashing

• local page replacement
• when a process is thrashing, OS prevents it from stealing frames from other processes
• at least the thrashing process cannot cause the entire system to thrash

• working set model
• OS keeps track of pages that are actively used by a process (working set)
• working set of processes changes over time
• OS periodically updates the working set for each process, using a moving time window
• before resuming a process, OS loads the entire working set of the process

• page fault frequency
• establish acceptable bounds on page fault rate
• if actual page fault rate of a process too high

 → process gains a frame

• if actual page fault rate of a process too low
→ process loses a frame

71

General Page Tables

72

Page Table Implementation

• page table is kept in main memory
• page-table base register (PTBR) points to the page table
• page-table length register (PTLR) indicates size of the page table

• every instruction access requires at least two memory accesses
• one for page table lookup + one more for instruction fetch

• this can be reduced by using a translation lookaside buffer (TLB)
• TLB is a special hardware cache
• TLBs are extremely fast, but have very small capacity
• TLBs can remember a small part of the page table, ~64 to ~1K entries
• on TLB miss, value is saved in TLB for faster access next time

73

TLB as associative memory

• TLB is often implemented as associative memory - hardware capable of fast parallel search based on
content

• given a page#, TLB will return corresponding frame# in constant amount of time (TLB-hit)

• if TLB does not contain entry for page#, the search continues in page table in memory (TLB-miss)

• effective memory-access time = (1 - p) * (tlbs + 2 * ma) + p * (tlbs + ma)

p = probability of TLB-hit
(TLB-hit ratio)

tlbs = TLB search time ma = memory access time

74

Paging hardware with TLB

MMU
EAT = ma + tlbs + (1 - p) * ma

75

Typical structure of page table entry

set by hardware
automatically on any
access

a.k.a. valid/invalid bit
invalid → page fault

a.k.a. dirty bit
set by hardware
automatically on write
access

protection bit(s),
eg. read/write/execute...

76

Memory protection

• memory protection is usually implemented by associating a protection bit with
each frame

• the bit indicates if read-only or read-write access is allowed
• note: we can also add other protection bits, such as execute-only bit

• valid bit ― another bit in each page table entry:
• valid=1 indicates that the corresponding frame is in physical memory
• valid=0 (“invalid”) the corresponding frame is not in physical memory

• violations result in trap to the kernel, e.g.:
• accessing page with invalid bit set → page fault
• accessing page past the PTLR → page fault
• trying to write to a page with read-only bit set → general protection fault

77

Shared Pages

78

Shared Pages

• sometimes it can be useful for processes to share memory with other
processes

• this can be implemented using shared pages

• example 1:
• running multiple instances of the same program,

or different programs using the same shared library
• only one copy of the executable code needs to be in physical memory
• implemented using shared read-only pages, with read-only bit set in page table entry

• example 2:
• shared memory for interprocess communication
• implemented using shared read-write pages

79

Shared Pages Example

0

1 data 1

2 data 3

3 editor 1

4 editor 2

5

6 editor 3

7 data 2

8

shared
pages

(frames)

process 1

editor 1

editor 2

editor 3

data 1

3
4
6
1

PT

process 3

editor 1

editor 2

editor 3

data 3

PT:
3
4
6
2

process 2

editor 1

editor 2

editor 3

data 2

3
4
6
7

PT

80

Copy On Write

81

Copy-on-Write

• copy-on-write (COW) allows parent and child processes to initially share some pages

• only if either process tries to modify a shared page, the page is copied and then modified
• implemented using copy-on-write bit in page table entries

• COW allows very efficient process implementation of fork(),
since only modified pages are copied (on demand)

Before process 1 tries to modify page C After process 1 tries to modify page C

82

Page Table Size

83

Page table size

• simple page tables can become very large

• consider a 32-bit logical address space, with page size of 4 KB (212 bytes)
• page table would have to contain ~1 million entries (232 / 212 = 220)
• if each entry is 4 bytes → page table would use up 4MB of memory (homework: verify)
• for 64-bit systems, page table can get impractically big (homework: do the math)

84

Page Table Size

• consider a 64-bit logical address space (most common)
• page size of 4 KB (212)
• page table would have (264 / 212 = 252) entries
• 52 bits to address it → each entry would need to be at least ⌈52/8⌉=7 bytes long
• page table would need at minimum 252 entries * 7 bytes/entry → petabyte range!!!

• some solutions:
• hierarchical paging
• inverted page tables
• hashed inverted page tables

85

Page Table Implementations

86

Hierarchical Page
Tables

87

Hierarchical Page Tables

• observation: most programs do not use all address space at the same time
• instead, only some entries in the page table are used at any given time

(temporal locality of reference)
• also, the used entries tend to be clusters / groups of consecutive pages

(spatial locality of reference)

• so let's break up the page table into multiple smaller page tables
• with the hope that not all of the smaller page tables will be used
• the ones that are not used, don't have to be in memory

x
x
x
x
x
x
x
x
x

page table with unused
entries in the middle

88

Two-Level Page-Table Example

• a simple technique is a two-level page table ― think of it as paging the page table

• we save space by not storing small page tables if all their entries are invalid …

x
x
x
x
x
x
x
x
x

x
x
x
x

x
x
x
x

x x

x
x

table with 16 entries,
unused entries in the
middle two level page table

20 entries in total !!!

two level page
table with
12 entries

outer
page
table

inner
page
table

x
x
x
x

x
x
x
x

89

Two-Level Page-Table Example

• a 32-bit logical address with 4K page size is divided into:
• a page number consisting of 20 bits
• a page offset consisting of 12 bits

• we can add another level of indirection – and divide the page number further:
• a 10-bit outer page number p1
• a 10-bit inner page number p2

• p1 is an index into the outer page table
• p2 is an index into an inner page table
• also known as forward-mapped page table

dp2p1

12 bits10 bits10 bits

page number page offset

page # offset

90

Address-Translation Scheme

frame

inner page
table

outer
page table

● 3 memory accesses per request
● on 64-bit system outer page table

would still have 242 entries

● we could add 2nd outer page
table
○ 232 entries for outer PT
○ 4 memory accesses per req.

91

Multi-Level Page Table

92

Multi-level page table example

• consider a 64-bit system, with 4KiB page size (212 bits), and 8 bytes per entry

• single page table → 2^52 entries x 8B/entry → 2^55 bytes → ~36 petabytes
• how many page table levels do we need if we want each page table fit inside a frame?

• a frame can fit 4KiB/8B = 512 = 29 entries
• with 12-bit offsets, that means we need ⌈52bits/9bits-per-level⌉ = 6 levels!!!

• with 6-level hierarchical PT each memory request would require 7 memory accesses
• 6 accesses for translating logical address → physical address
• 1 access for the actual memory location

• newest Intel processors support 5-level page tables, AMD supports 4-level PTs

dp6p5p4p3p2p1

12 bits9 bits9 bits9 bits9 bits9 bits7 bits

93

Inverted Page Table

94

Inverted Page Table

• rather than each process having its own page table,
let's track all physical pages in one global inverted page table (IPT)

• this global IPT has one entry for each real page of memory, containing:
• virtual address, and
• owning process ID

• IPT decreases memory needed to store a page table:
• IPT size is proportional to the amount of physical memory available
• eg. 16GB memory with 4KB page size and 8B/entry → only 32MB page table

• but IPT increases time needed to search the table when a page reference occurs
• with above example, page table has ~4 million entries, on average a translation would

require ~2 million memory accesses !!!
• TLB could help accelerate the lookup somewhat, but TLB is very tiny ...

• another (smaller) problem: shared pages are problematic with IPT

95

Inverted Page Table Architecture

96

Hash Inverted Page
Table

97

Hashed Inverted Page Table

• used in some 64-bit systems

• the virtual page number and process ID is hashed into a page table

• this page table contains chains of elements
which hash to the same location

• each element contains: PID, virtual page number
and a pointer to the next element

• virtual page numbers are compared in the chain
until a match is found

• if a match is found, the corresponding physical frame
is extracted, otherwise page fault

• with a good hash function → average access time is O(1)

Operating Systems: Internals and Design Principles,
9th Edition, William Stallings ©2018 Pearson

https://www.pearson.com/us/higher-education/program/Stallings-Operating-Systems-Internals-and-Design-Principles-9th-Edition/PGM1262980.html?tab=order
https://www.pearson.com/us/higher-education/program/Stallings-Operating-Systems-Internals-and-Design-Principles-9th-Edition/PGM1262980.html?tab=order

99

Frame Allocation

100

Frame allocation

• frame allocation algorithm determines how many frames to give to each process

• for a single-process system the OS claims some frames and leaves the rest to the running
process

• for a multiprogramming system, each process needs a minimum number of frames
(OS/architecture dependent)

• but what about maximum?

• examples of allocation schemes:
• fixed allocation (equal and proportional)
• priority allocation

101

Fixed allocation

• equal allocation – for example, if there are 100 frames (after allocating frames for the OS)
and 5 processes, OS gives each process 20 frames

• proportional allocation – allocate according to the size of process
• dynamic ― as degree of multiprogramming and process sizes change

example with 2 processes:

102

Priority allocation

• similar to proportional allocation scheme
• but using priorities rather than size
• the higher the priority of a process, the more frames it gets
• the lower the priority of a process, the less frames it gets

103

Swapping

104

Swapping

• older form of paging (entire process vs parts)

• swapping allows the OS to load more processes
than the available physical memory

• a process can be swapped temporarily out of
memory to a backing store, and then brought back
into memory for continued execution

• backing store – fast storage large enough to
accommodate copies of all memory images for all
processes

• why would we want that?!?
– programs grow over time
– program don't always use all allocated memory at
the same time

105

Swapping and memory

• memory allocation changes as processes are swapped out and swapped in

• the shaded regions are unused memory

A is swapped out B is swapped out A is swapped in

106

Swapping

• does the swapped out process need to swap back into the same physical addresses?
• depends on address binding method
• much easier if MMU is used
• must be careful with pending I/O, especially when using memory-mapped device registers
• I/O results could be sent to kernel, then to the process (double-buffering)

• context switch time can be extremely high

• standard swapping not used in modern operating systems
• note: Linux uses the term 'swapping' to mean paging

• paging is similar to swapping, but paging can swap out parts of a process

107

Review

108

Review

• Name two registers used in a simple MMU implementation.

• Explain logical address / physical address.

• What is the purpose of an MMU?

• Best fit memory allocation is faster than first fit. True or False

• Virtual address space is the same as physical address space. True or False
• Page size is the same as frame size. True or False

• Define: page, frame, demand paging, page table, page fault

109

Review

• Which one of the following page replacement algorithms requires future knowledge about
memory referencing?

A. FIFO
B. Optimal
C. LRU

• What is Belady’s Anomaly?
• Which one of the above page replacement algorithms suffers from Belady’s Anomaly?

• What is thrashing?

• Describe copy-on-write.

110

Review - Basic page replacement

1. find the location of the desired page on disk

2. find a free frame:
- if there is a free frame, go to step 3
- if there is no free frame, use a page replacement algorithm to select a victim frame

- if victim frame is dirty, write it to backing store
- set the invalid bit in page table corresponding to victim frame

1. load desired page into the free frame and update the page and frame tables

- frame table is a (simple) data structure that keeps track of free frames
1. restart the instruction that caused the trap

Note: now potentially 2 page transfers for page fault, further increasing EAT

Onward to…
Disk Scheduling and RAID

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Virtual Memory and Paging
	Overview
	Physical Address Challenges
	More memory management issues
	Working with physical addresses
	Working with physical addresses
	Address Binding
	Address binding
	Binding of instructions and data to memory
	Binding of instructions and data to memory
	Binding of instructions and data to memory
	Address Spaces
	Logical addresses
	Physical addresses
	MMU
	Memory-Management Unit (MMU)
	Slide Number 17
	Basic MMU with a Relocation Register
	Basic MMU ― with Relocation and Limit Registers
	Relocation and Limit Registers Example
	Virtual Memory
	Virtual memory
	Paging
	Paging with MMU
	Paged virtual memory
	Paging example
	Paging example
	Paging example
	Address translation (logical → physical)
	Paged virtual memory - MMU
	Paging Model of Logical and Physical Memory
	Address translation (logical → physical)
	Paging hardware
	Paging Model of Logical and Physical Memory
	Free frames
	Page Faults
	Page fault
	Paging performance
	Expected value
	Expected value example
	Paging performance examples
	Paging performance examples
	Page Fault Handling
	Page fault handling
	Page table with some pages not in main memory
	Page fault handling
	What happens if there are no free frames?
	Basic page replacement
	Global vs. Local Replacement
	Page Replacement Algorithms
	Page replacement algorithms
	Slide Number 52
	First-In-First-Out (FIFO) Algorithm
	FIFO example 2
	Graph of Page Faults Versus The Number of Frames
	Slide Number 56
	Bélády's anomaly
	Slide Number 58
	Optimal algorithm (OPT)
	Slide Number 60
	Least Recently Used Algorithm (LRU)
	LRU implementation
	Slide Number 63
	CLOCK replacement algorithm
	CLOCK replacement simulation
	Slide Number 66
	Slide Number 67
	Trashing
	Thrashing
	Dealing with thrashing
	Slide Number 71
	Page Table Implementation
	TLB as associative memory
	Paging hardware with TLB
	Typical structure of page table entry
	Memory protection
	Slide Number 77
	Shared Pages
	Shared Pages Example
	Slide Number 80
	Copy-on-Write
	Slide Number 82
	Page table size
	Page Table Size
	Page Table Implementations
	Slide Number 86
	Hierarchical Page Tables
	Two-Level Page-Table Example
	Two-Level Page-Table Example
	Address-Translation Scheme
	Slide Number 91
	Multi-level page table example
	Slide Number 93
	Inverted Page Table
	Inverted Page Table Architecture
	Slide Number 96
	Hashed Inverted Page Table
	Slide Number 98
	Frame Allocation
	Frame allocation
	Fixed allocation
	Priority allocation
	Swapping
	Swapping
	Swapping and memory
	Swapping
	Review
	Review
	Review
	Review - Basic page replacement
	Onward to…�Disk Scheduling and RAID

