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Overview

 address binding and spaces — logical vs physical

* memory management unit and virtual memory

* Paging, page faults, and general page tables

* Shared pages/copy on write pages/page table size

* Page table implementations - simple, hierarchical, inverted, hashed inverted
* Page fault handling

* Page replacement algorithms - FIFO, Optimal, LRU, Clock

* Thrashing

* Frame allocation algorithms - equal / proportional / priority

* Swapping
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Physical Address Challenges
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More memory management issues

* OS needs to protect memory of a process from other processes
* how?

* how do we write code if we don't know where the program will be loaded in memory?
* e.g. how do we write JMP instruction?
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Working with physical addresses

e consider two compiled programs, assuming they will be loaded at address 0000

* let's place them in two different locations...

* can you spot the problem?

12:
16:
20:
24:

MOV

MoV

SUB

JMP 20+

ADD

MUL =

MOV

0000:
0ad st 0000 o
0012:
0016:
©:| ADD 0020
4: MOV
8:| CMP =—
12:| ADD
1000:
1004:

ADD

MOV

CMP

ADD

ADD

JMP

MOV

MOV

1008:

SuUB

1012:

JMP

20

1016:

ADD

1020:

MUL

1024:

MOV

N7



Working with physical addresses

e consider two compiled programs, assuming they will be loaded at address 0000

* let's place them in two different locations...

* can you spot the problem?

0000:
" 0004:
0008:
0012:
0016:
0020:
2nd program would
not work, it would
jump to the wrong
address 1000
-~\\~:ESE$:=;::'1004:
1008:
. 1012:
another problem is
lack of memory 1ele:
protection 1020:
1024:
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Address Binding
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Address binding

* address binding is the process of mapping/converting addresses of a
program from one address space to another

* can be used to solve the problem "how to write a program when it's
final destination is not known"

* binding can happen at compile time, at load time, or at run time

0000:
0004:
0008:
0012:
0016:
0020:

1000:
1004:
1008:
1012:
1016:
1020:
1024:

ADD

MOV

CMP

ADD

ADD

JMP

MOV

MOV

SUB

JMP

20

ADD

MUL

MOV
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Binding of instructions and data to memory
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Binding of instructions and data to memory
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Binding of instructions and data to memory

- at run time - fastest (with HW support)

- if process can be moved during its execution, binding is done at

run-time, dynamically

- most flexible, but need hardware support

(e.g., memory management unit (MMU))
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Address Spaces
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Logical addresses

* we can achieve execution-time address-binding and memory-protection by 'virtualizing
memory'
* OS gives each process an illusion of logical address space (aka virtual address space)
* |ogical address space can be a contiguous space [0 .. max]
* as process executes on CPU, the addresses generated by the CPU are logical addresses

* if logical address does not fall into the logical address space range — violation
(exception)
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Physical addresses

* logical addresses are mapped to physical addresses before reaching memory
via hardware device called memory management unit (MMU)
* physical address - a real memory address
* physical address space of a process is the subset of RAM allocated to a process

* depending on the hardware support, physical address space does not need to be
contiguous
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MMU
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Memory-Management Unit (MMU)

cPU Iggical : @ pZydsicaI
___ address address Memory

* MMU is a hardware device that maps virtual/logical addresses to physical addresses

nNnNnNn

Uuuvu

* integrated into most/all modern CPUs
* the process running on CPU does not know what the physical addresses are, only OS knows
* execution-time binding occurs automatically whenever memory reference is made

* MMU can also help with memory protection
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most of the time, the MMU attaches
directly to the CPU address bus and
intercepts each CPU read or write
cycle. The CPU and MMU combine to
form a new functional unit. Several
manufacturers have even moved the
MMU onto the same silicon as the
CPU. in effect declaring that you can't
have one without the other.

The most important function pro-
vided by all MMU designs is the abili-
ty to relocate a program to another
part of memory according to a set of
pre-assigned translation rules. This
relocation is done in hardware, with-
out requiring any modification to the
application software.

Before a system with an MMU runs
a program, the operating system con-
figures the MMU so that the program
can be moved to and run in an avail-
able section of memory. The program
then begins execution. unaware of the
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he Motorola 68000 family
of microprocessors has
spawned a whole new
group of computer sys-

tems The original 68000. with its
large, linear addressing range, makes
it a natural for single-user, personal
graphics workstations such as the
Macintosh. And multiuser systems
based on the 68020 can offer com-
puting power and speed that rival
many minicomputers—often at a frac-
tion of the cost. Not surprisingly.
many of the design features for these
larger systems have evolved from well-
established minicomputer architec-
tures. Memory management units, or
MMUs, are one example. The MMU
function came about as minicomputer
designers began to include special
hardware to expand the amount of
addressable memory. MMUs have
now become a key feature in modern
computer architectures. In fact,
several MMUs designed specifically
for the 68000-family architecture are
available (see table 1).

THEORY OF OPERATION

The MMU functions at a very low level
in the computer system. Unlike a
UART or other peripheral chip that at-

BY GREGG ZEHR

MEMORY
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UNITS FOR 68000
ARCHITECTURES

taches to the system bus and is idle
most of the time, the MMU attaches
directly to the CPU address bus and
intercepts each CPU read or write
cycle. The CPU and MMU combine to
form a new functional unit. Several
manufacturers have even moved the
MMU onto the same silicon as the
CPU. in effect declaring that youcan't
have one without the other.

The most important function pro-
vided by all MMU designs is the abili-
ty to relocate a program to another
part of memory according to a set of
pre-assigned translation rules. This
relocation is done in hardware, with-
out requiring any modification to the
application software.

Before a system with an MMU runs
a program, the operating system con-
figures the MMU so that the program
can be moved to and run in an avail-
able section of memory. The program
then begins execution. unaware of the
MMU's actions. For example. if a pro-
gram has been compiled and linked
with a starting location of 400 but that
location is being used for some other
purpose, the operating system con-
figures the MMU hardware to convert
all the program’s memory references

NOVEMBER 1986 * BYTE

to an unused section of memory. AF
though the MMU is obviously useful
in a system that has multiple users
running separate programs, it is just
as useful in a multitasking single-user
system.

In a simple 68000 system that does
not have an MMU (figure 1). a typical
memory read cycle begins when the
CPU asserts an address and address
strobe (AS), and the cycle ends when
the memory places data on the data
bus and activates the data transfer
acknowledge (DTACK) line. Assuming
that the memory is very fast, the cycle
can be completed in eight transitions
of the clock, or 500 nanoseconds for
an 8-MHz CPU.

In a 68000 system that has an MMU
in series with the CPU's address bus
(figure 2), foreach read cyde the CPU
asserts a logical address and logical
address strobe (LAS). (The address
and address strobe lines are now

(continued)
Gregg Zehr is a senior design engineer at
Altos Computer Systems (2641 Orchard
Parkway, San Jose, CA 95121). He received
his M.S.E.E. from the University of lllinois
and is interested in advanced computer
architectures.
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Basic MMU with a Relocation Register

* asimple MMU implementation — using a relocation register

* logical address space starts at O,
i.e. programs are written/compiled assuming they start at address 0

* value in the relocation register is added to every address generated by a CPU

"""""""""""""

relocation |
~ register
50000
nonn logical physical ! -
o e (WRRECRERN
q/crulk — e
e > 381 | \-I_j 50381
UuJUuy"u
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Basic MMU — with Relocation and Limit Registers

* adding limit register to implement address protection
* relocation (base) register = start of the physical memory address given to process
* limit register = the size of the chunk of physical memory a process is allowed to use

* achieves execution-time binding as well as memory protection

______________________________________________________________________

limit relocation
register register

ANN0N . # 0 =
e EPU > logical yes - ' physical E
g > address | '  address
OuUvuUvU | I
MMU

trap to OS
addressing error
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Relocation and Limit Registers Example

©:| ADD
0:| MOV 0:| ADD 4:| MOV
4: MOV 4:1 MOV 8:| CMP <
8:| SUB 8:| CMP base register: 12:| ADD
12:| JMP 20 12:| ADD 0 16:| ADD
16:| ADD 16:( ADD 20:| JMP 8
20:| MUL 20:| JMP 8 limit register:
24:| MOV = |
1000:| MOV
_ 1004:| MOV
base register: 1008:| SUB
1000 1012:| JMP 20 -
each process gets its 1016:| ADD
own pair of base/limit 1020:| MUL =
registers .
9 7 limit register: 1624 : il
'L_/" UNIVERSITY OF
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Virtual Memory
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Virtual memory

physical
memory
(RAM)

process's
virtual
memory

* virtual memory is a memory management technique that allows
the OS to present a process with contiguous logical address
space, while allowing for non-contiguous physical address space

* some parts of logical address space can be even
mapped to a backing store, allowing OS to overallocate memory

* some logical addresses could even map to nowhere

* plus many additional nice features

* implemented as a combination of SW & HW

* present on nearly all modern systems
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Paging
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Paging with MMU

The CPU sends virtual

CPU addresses to the MMU
package
CPU ——
Memory
éf management | Memory
unit

§ |

Disk
controller

l Bus

N\

The MMU sends physical
addresses to the memory

24
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Paged virtual memory

* virtual address space is divided into pages:
* blocks of fixed size, e.g. 4 KiB
* almost™* always power of 2

* physical memory is divided into frames:
* fixed sized blocks, same size as pages

* pages map to frames via a lookup table called
page table (logical & physical address mapping)

* eliminates external fragmentation

* per-process page table or one system-wide page table

process's
virtual
memory

page 0

page 1

page 2

page
table

page n-1

v \ 4 A 4 \ 4 \ 4 \ 4 A 4 A 4 A 4 \ 4 \4 \4

o

physical
memory
(RAM)

frame O

frame 1

frame 2

frame m-1

\
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Paging example

virtual address space = 64KB

physical address space = 32KB

page size = 4KB

calculate:
* frame size =7?
* #of pages="7
* # of frames ="

In this course | occasionally
use the old notation:

1 KB = 1024 B
1 MB = 1024 KB
1 GB = 1024 MB

unless explicitly stated
otherwise

LGN UNIVERSITY OF

S8Z

CALGARY



27

Paging example

virtual address space = 64KB

physical address space = 32KB

page size = 4KB

calculate:
* frame size = 4KB (same as page size)
* # of pages = 16 (64KB / 4KB)
* # of frames = 8 (32KB / 4KB)
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Paging example

* Assume page size is 2KB, and a process needs 71 KB to load. How many pages
do we need?

* we need 35 + % pages
* OS needs to find 36 free frames

* Do the frames need to be contiguous?
* No, OS can allocate any 36 frames (discontiguous is fine)
* OS adjusts the page table to reflect the frame locations
* |ogical address space remains contiguous

* Notes:
* one frame will have 1KB of unused space (internal fragmentation)
* no external fragmentation since all frames are usable
28 * but what if there are no free frames? we can map some pages to disk...
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Address translation (logical = physical)

* address generated by CPU is split into:

* page number (p) — used as an index into a page table which contains base address of
corresponding frame in physical memory

* page offset (d) — combined with base address to define the physical memory address that
is sent to the memory unit

* if page sizes are powers of 2, calculating page number and offset is very simple:
* m-bit logical address space (2™ possible addresses)
* n-bit page size (2" bytes in one page)
* last n bits of the logical address is the offset, the remaining m-n bits is the page number

page number page offset
P d
m-n blts n blts [ UNIVERSITY OF
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Paged virtual memory - MMU

logical physical
address address
CPU > MMU * Memory
P d f d
f = page_table[p]; "o
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Paging Model of Logical and Physical Memory

frame
number
page 0 \ 0
Of1 |-
pagel | — 4[4, »1| page 0
2[3]-.
age2 |— o
pag / 3[7]. \
page 3 pagetable, . 3| page2
logical AY “4| page 1
memory i
5
.6
P
7| page 3
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Address translation (logical = physical)

* Question:
* assume 16-bit logical address space and page size of 1024 bytes
* what is the page number and offset for a logical address 10853 ?

* Answer:
* 1024 byte page size means we need 10 bit page offset
* 10853 written as a binary number is 0010101001100101,
St M
6-bit page number 10 bit page offset
001010, 1001100101,

therefore page number =001010, = 10, ,, and page offset = 1001100101, = 613,

* another way to solve it is using regular division:
* 10853 /1024 = 10 remainder 613
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Paging hardware

Q T

CPU

page number
page offset
frame number

logical physical
address address  f0000 ... 0000
v
p| d d
L B i T e
p{
— f
page table

physical
memory
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Paging Model of Logical and Physical Memory

logical address
space

4 bytes per page

0:| a
1:| b
2:] C
3:| d
4:| e
5:1 f
6:| g
7:1 h
8:l 1
9:1 j
10:| k
11:] 1
12: m
13: n
14:| o
15:| p

Q:] 5

1:| 6

2:0 1

3: 2
page table

12:

16:

20:
21:
22:
23:

24

28:

00 =~ O Ul P

T O 5 S ([ AU

DS hM[(an oo

physical
memory

UNIVERSITY OF

¥ CALGARY



Free frames

free-frame list
14
13
18
20
15

",_.--"—'—'--.__\
[

page 0
page 1
page 2
page 3

new proce

® before allocation

13

14

15

16

17

18

19

20

21

free-frame list
15

.
e~

page 0
page 1
page 2
page 3

ew proces

14
13
18
20

new-process page table

L =0

after allocation

13

14

15

16

17

18

19

20

21

Ipage 1

lpage O

lpage 2

lpage 3
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Page Faults
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Page fault

* What happens when a program tries to access a page that does not map to
physical memory?
* CPU issues a trap — called page fault
OS suspends the process

OS locates the missing page on disk

* what happens if not on disk? = invalid page fault
results in a crash, segmentation fault, core dump ...

OS loads the missing page from disk into a free frame

* if no free frames available — OS will evict one by saving it to backing store
0 OS updates the page table
* OS resumes the process by restarting the offending instruction

* if OS only loads pages as a result of page fault, we call that demand paging
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Paging performance

* paging performance is commonly evaluated via effective access time (EAT) for memory access
* |let p = probability of page fault or page faultrate (0<p <1)
p =0 - all pages are in memory, no page fault
p =1 - all pages are on disk, all memory accesses are page faults
ma = memory access time (includes page translation time)
pfst = page fault service time, ie. how long does it take to service a page fault

° then

access time if not
experiencing page fault access time if page fault

! —
EAT = (1-p) * ma + p * (pfst + ma)

/7

probability of not probability of page fault
38 experiencing page fault
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Expected value

* let's say we want to find out an average outcome of repeating the same experiment many
times

* if the experiment has n possible outcomes: x;, x,, ..., x,

 and each outcome has the probability of occurring: p,, p,, ..., p, respectively,
where p, +p, + ... +p, =1

* we can calculate the expected value of the experiment as a weighted average of the outcomes,
using the probabilities as weights:

expected value = Z TiPi = T1P1 + T2P2 + **+ + TnPn
1=1
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Expected value example

* if we rolled a six-sided die "many" times and recorded the outcomes...
* what would be the average of these outcomes?
* six possible outcomes: 1, 2, 3,4,5,6

* probability of each outcome: %

1 1 1 1 1
’ =1 -4+2--4+3--+4-—+5--+6--=3.5.
expected value 6 + ; + : + ; + 6+ :
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Paging performance examples

 EAT =(1-p) * ma +p * (pfst + ma)

* non-realistic example:
* calculate EAT if page fault probability is 50%, ma = 1ms and pfst = 10ms
* EAT =(1-0.5) * Ims + 0.5 * (10ms + 1ms) = 6ms

* more realistic example:
* calculate EAT if page fault probability is 1/1000, ma = 100ns and pfst = 10ms
* EAT =(1-0.001) * 100ns + 0.001 * 10,000,100ns = 10,100ns = 10.1us
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Paging performance examples

 EAT =(1-p) * ma +p * (pfst + ma)

* non-realistic example:
* calculate EAT if page fault probability is 50%, ma = 1ms and pfst = 10ms
* EAT =(1-0.5) * Ims + 0.5 * (10ms + 1ms) = 6ms

* more realistic example:
* calculate EAT if page fault probability is 1/1000, ma = 100ns and pfst = 10ms
* EAT =(1-0.001) * 100ns + 0.001 * 10,000,100ns = 10,100ns = 10.1us

~100 x
slower
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Page Fault Handling

""""""""""""""

7 CALGARY



Page fault handling

* page fault - exception raised when a process accesses a page not currently mapped by MMU
* e.g.entryin page table marked invalid
* note: with demand paging, first reference to a page always results in a page fault

* general page fault handling:
1. operating system looks at another table to decide:
- invalid reference - abort
- reference valid, but page not in memory, eg. it's in a backing store
1. find a free frame
2. load page from backing store into frame by scheduling appropriate disk operation
3. when done, reset page tables to indicate page now in memory

4. restart the instruction that caused the page fault

44
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Page table with some pages not in main memory

=~ & M & W M

R mm|O| ]| o0 >

logical
memaory

frame

valid=invalid
bit
N

4 |v

6

P [T ] ) B

- G th & O N = O

page table

]

i

2

3 e N
N |
5

5] C A B
y c| [D] [E
38

o e El [6] [F
10

11

o -
13

14
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Page fault handling

page is on
backing store

operating
system

©

reference
trap

load M = ~ i
restart page table
instruction

free frame —
® ®

reset page bring in
table missing page
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What happens if there are no free frames?

How does OS deal with over-allocation of memory?
* OS needs to make room by evicting an existing frame

* OS finds an occupied (victim) frame in memory and pages it out

* saves it to backing store, and remembers it so that it can find it later
i.e. update page table & other relevant data structures

* can use the modify (dirty) bit in a page table entry to reduce overhead of page transfers,
so that only modified pages are saved to the backing store

* remember: dirty bit is automatically set by hardware on write access

* but which frame do we evict?
* we need an algorithm to find a victim page
* this algorithm must be fast, OS cannot afford to be too fancy
* also, the algorithm should minimize the overall number of page faults

* we will need a page replacement algorithm
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Basic page replacement

frame valid—invalid bit

N Y

change

0 |i to Invalid

T1®

reset page

page table table for

new page

swap out
victim

victim 7
Q...
desired
page in
physical

memory
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Global vs. Local Replacement

* when no free frames are available, OS needs to replace a frame...

* global replacement
* OS selects a replacement frame from the set of all frames
* that means one process can steal a frame from another
* disadvantage: process execution time can vary greatly
* advantage: greater throughput, so more common

* local replacement
* each process selects only from its own set of allocated frames
* more consistent per-process performance
* but can lead to underutilized memory

N
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Page Replacement Algorithms
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Page replacement algorithms

* page replacement algorithm
* used when OS needs a frame, but all frames are occupied
* determines the victim frame
* in a way that minimizes number of page faults
* we will look at different algorithms by running them on a particular string of memory
references (reference string) and computing the number of page faults on that string
* reference string is just a list of page numbers, not full addresses
* repeated access to the same page does not cause a page fault
* results will change based on number of frames available

* in all our examples, the reference string will be:
/,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,06,1,7,0,1

51
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FIFO

“ UNIVERSITY OF

CALGARY



53

First-In-First-Out (FIFO) Algorithm

* FIFO - replaces page that has been in memory for the longest time

* can be implemented using a FIFO queue

* example: reference stringis/7/,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
* 3 available frames (3 pages can be in memory at a time per process)

} 20 3 0 &4 23 D 3 8 19

1

page frames

* # page faults varies:
* by reference string, eg. consider rstring1,2,3,4,1,2,5,1,2,3,4,5
* by number of frames available
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FIFO example 2

* example 2:
* reference stringis/,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
* this time with 4 available frames

/7 6120306423603 632120601701
/7.7 7 7 3 3 3 3 2 2
0 0 0 0 4 4 4 4 7
1 1 1 1 0 00 0
2 2 2 2 1 1 1

* only 10 page faults (compared to 15 faults with 3 available frames)
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Graph of Page Faults Versus The Number of Frames

number of page faults

1 2 3 4 5 6

number of frames UNIVERSITY OF
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Bélady's
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Bélady's anomaly

16
* Bélady's anomaly occurs when increasing the o 14F
number of page frames results in an increase E ol
in the number of page faults for certain o
memory access patterns g 10
¢ example: E 8
crstringd 1236061461234 € 6r
* FIFO with 3 frames - 9 page faults g 4 ]
* FIFO with 4 frames - 10 page faults ol
| | | | | |

1 2 3 4 5 6 7
number of frames
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Optimal algorithm (OPT)

* replaces page that will not be used for longest period of time
reference string
f§ B3 B %3 § &3 3 5 3 1 29 7TT Q9 3

2l 2| [2 2
E 0] E 0] 0 E m Qoaae faults
b @B (8 1, 1)

page frames

* not practical — requires knowing the future
* but useful for measuring how well other non-optimal algorithms perform

* eg. no algorithm can do better than 9 page faults for the above reference string
and 3 available frames

N
W
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Least Recently Used Algorithm (LRU)

* uses past knowledge to predict future
* replaces page that has not been used in the most amount of time
* associates time of last use with each page

reference string

2 0 3 0 4 o B 9 &
a
E

7 2 n
0
3 2 2 2

* 12 faults page frames

* better than FIFO but worse than OPT

* but how can we implement it?
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LRU implementation

counter implementation
* every page entry has a counter
* every time page is referenced through this entry, copy current clock into the counter
* when a page needs to be changed, look at the counters to find smallest value
* requires search through table

stack implementation
* keep a stack of page numbers (eg. doubly linked list)
* when page referenced - move it to the bottom
 stack top contains the least recently used page
* each update is more expensive than counter-based implementation
* although no search needed for replacement

LRU and OPT are examples of replacement algorithms that don’t exhibit Belady’s Anomaly

pure LRU needs special hardware and is still slow, but there are fast approximations of LRU
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CLOCK replacement algorithm

* clock replacement is an approximation of LRU
refer.ence pages
* uses the reference bit in page table entry, which is automatically set o

by hardware any time page is accessed [0] T
* frames are organized as a circular buffer (0] i
* maintain one pointer (clock hand) pointing to the page to be it == .
inspected next
* if page under pointer has ref. bit = 0, replace it ¥
* otherwise set reference bit to 0 and advance pointer to the next page EI
* this essentially gives a page a 'second chance'
* simple algo. with good performance, can be extended/improved if .
more bits available \_/

* many more page replacement algorithms, eg. WSClock, Aging LRU

reference pages

(o]
J
(o]
J
[o]
I
(o]
J
=po] (%
1]
J
1]
N/
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CLOCK replacement simulation

# inputs
n_frames = number of available frames
ref_string = array representing array string

# initialization:

pages = array of n_frames * integers, initialized to -1
refs = array of n_frames * booleans, initialized to false
hand = 0

# process each page in reference string
for p in ref_string:
find 'ind' such that pages[ind] == p
if ind was found: # no page fault
refs[ind] = true # simulating H/W
continue
else # page fault
while refs[hand] == true: # give page second chance
refs[hand] = false
hand = (hand + 1) % n_frames
pages[hand] = p # evict and replace
refs[hand] = true # do we need this?!?
hand = (hand + 1) % n_frames
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Optimal with 4 frames

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 4 6 page
2 2 2 2 2 Fauite
3 3 3 3
4 5 5
1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 5
2 2 2 2 2 2 2 8 page
faults
3 3 5 5 4 4
4 4 3 3 3
1 2 3 4 1 2 5 1 2 3 4 5
1:1 1:1 1:1 *1:1 5:1 5:1 5:1 *5:1 4:1 4:1
* 2:1 2:1 2:1 *2:0 1:1 1:1 1:1 *1:0 5:1 10 page
* 3:1 3:1 3:0 *3:0 2:1 2:1 2:0 *2:0 faults
* 4:1 4:0 4:0 *4:0 31 3.0 3:0
the star (*) represents the hand position
the number after colon (:) represents the value of the referenced bit
1 2 3 4 1 2 5 1 2 3 4 5
1:1 1:1 *1:1 4:1 4:1 *4:1 5:1 5:1 5:1 5:0 *5:0 *5:1
* 2:1 2:1 *2:0 1:1 1:1 *1:0 *1:1 *1:1 3:1 3:1 3:1 ?azftie
* 3:1 3:0 *3:0 2:1 2:0 2:0 2:1 *2:0 4:1 4:1
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Trashing
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Thrashing

* if a process does not have “enough” pages, the page-fault rate is very high
* page fault to get page
* replace existing frame
* but quickly need replaced frame back

* thrashing process = process is progressing slowly due to frequent page swaps
* a process spends more time waiting for page faults than it spends executing

A

* this can lead to an entire system thrashing:
* many processes thrashing - low CPU utilization

* OS thinks that it needs to increase the
degree of multiprogramming

* OS adds another process to the system
making things even worse

| 5

| thrashing

CPU utilization

L J

69
degree of multiprogramming
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Dealing with thrashing

* local page replacement

* when a process is thrashing, OS prevents it from stealing frames from other processes
* at least the thrashing process cannot cause the entire system to thrash

* working set model

* OS keeps track of pages that are actively used by a process (working set)

* working set of processes changes over time

* OS periodically updates the working set for each process, using a moving time window
* before resuming a process, OS loads the entire working set of the process

* page fault frequency
 establish acceptable bounds on page fault rate

* if actual page fault rate of a process too high
—> process gains a frame

* if actual page fault rate of a process too low
—> process loses a frame

page-fault rate

increase number
of frames

upper bound

lower bound
decrease number
of frames

f OF
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Page Table Implementation

* page table is kept in main memory
* page-table base register (PTBR) points to the page table
* page-table length register (PTLR) indicates size of the page table

* every instruction access requires at least two memory accesses
* one for page table lookup + one more for instruction fetch

* this can be reduced by using a translation lookaside buffer (TLB)
* TLB is a special hardware cache
* TLBs are extremely fast, but have very small capacity
* TLBs can remember a small part of the page table, ~¥64 to ~1K entries
* on TLB miss, value is saved in TLB for faster access next time
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TLB as associative memory

* TLB is often implemented as associative memory - hardware capable of fast parallel search based on
content

TLB
Page # Frame #
/ 10 7
il B R
forpage __ 31 4 ——— result = frame 4
31 \ 12 8

* given a page#, TLB will return corresponding frame# in constant amount of time (TLB-hit)

 if TLB does not contain entry for page#, the search continues in page table in memory (TLB-miss)

* effective memory-access time = (1_- p) * (tlbs + 2 * ma) + p * (tlbs + ma)\

LGN UNIVERSITY OF

S8Z

p = probability of TLB-hit tlbs = TLB search time ~ ma = memory access time % CALGARY

(TLB-hit ratio)
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Paging hardware with TLB

EAT =ma + tlbs + (1 - p) * ma

74

CPU

|
| address
|

1 logical

P

d

number number

page frame

TLB hit

YYYYYYY

TLB

p {
TLB miss

=

addres$
L

physical

d

TS

physical
memory
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Typical structure of page table entry

/

Caching
disabled

Modified

/

a.k.a. dirty bit
set by hardware
automatically on write

access a.k.a. valid/invalid bit

invalid — page fault

Present/absent

/

7

Page frame number

set by hardware
automatically on any
access

75

\\

\

Referenced Protection

protection bit(s),
eg. read/write/execute...
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Memory protection

* memory protection is usually implemented by associating a protection bit with
each frame
* the bit indicates if read-only or read-write access is allowed
* note: we can also add other protection bits, such as execute-only bit

* valid bit — another bit in each page table entry:
 valid=1 indicates that the corresponding frame is in physical memory
* valid=0 (“invalid”) the corresponding frame is not in physical memory

* violations result in trap to the kernel, e.g.:
e accessing page with invalid bit set - page fault
* accessing page past the PTLR - page fault
* trying to write to a page with read-only bit set - general protection fault
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Shared Pages

sometimes it can be useful for processes to share memory with other
processes

this can be implemented using shared pages

example 1:

* running multiple instances of the same program,
or different programs using the same shared library

* only one copy of the executable code needs to be in physical memory
* implemented using shared read-only pages, with read-only bit set in page table entry

* example 2:

* shared memory for interprocess communication
* implemented using shared read-write pages
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Shared Pages Example

’

process 1
editor 1
3
editor 2 4
6
editor 3 1
PT
data 1
process 3
editor 1
PT:
editor 2 3
4
editor 3 6
2
data 3

~

process 2

editor 1

editor 2

editor 3

data 1

data 3

editor 1

editor 2

editor 3

data 2

shared
pages
(frames)
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Copy On Write
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Copy-on-Write

copy-on-write (COW) allows parent and child processes to initially share some pages

only if either process tries to modify a shared page, the page is copied and then modified

implemented using copy-on-write bit in page table entries

COW allows very efficient process implementation of fork(),
since only modified pages are copied (on demand)

~

- Before process 1 tries to modify page C After process 1 tries to modify page C
physical physical
process; memory process, process, memory process,
4|—> pageA [« _,—- page A
T — page B — | L— page B o |
age —
> page C —1 | i i page C
. > Copy of page C w OF
ARY
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Page table size

* simple page tables can become very large

* consider a 32-bit logical address space, with page size of 4 KB (212 bytes)
* page table would have to contain ~1 million entries (232 / 212 = 220)
* if each entry is 4 bytes - page table would use up 4MB of memory (homework: verify)
 for 64-bit systems, page table can get impractically big (homework: do the math)
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Page Table Size

* consider a 64-bit logical address space (most common)
* page size of 4 KB (21?)
* page table would have (2% / 212 = 2°2) entries
* 52 bits to address it - each entry would need to be at least [52/8]=7 bytes long
» page table would need at minimum 2°2 entries * 7 bytes/entry > petabyte range!!!

* some solutions:

* hierarchical paging in 2021 petabyte IS

. inverteo! page tables still a problem
* hashed inverted page tables
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Page Table Implementations
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Hierarchical Page
Tables
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Hierarchical Page Tables

* observation: most programs do not use all address space at the same time

* instead, only some entries in the page table are used at any given time
(temporal locality of reference)

* also, the used entries tend to be clusters / groups of consecutive pages
(spatial locality of reference)

* so let's break up the page table into multiple smaller page tables
* with the hope that not all of the smaller page tables will be used
* the ones that are not used, don't have to be in memory

87

X | X [ X | X | X | X | X [X | X

page table with unused
entries in the middle
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Two-Level Page-Table Example

* asimple technique is a two-level page table — think of it as paging the page table

* we save space by not storing small page tables if all their entries are invalid ...
inner

page
table

X X
X X
X : /////////' X > X
X X X
X
: \ i
X outer X
X page X
X table X
X
table with 16 entries,
unused entries in the two level page
: two level page table )
middle o table with
20 entries in total I!! )
12 entries

88
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Two-Level Page-Table Example

* a 32-bit logical address with 4K page size is divided into:
* a page number consisting of 20 bits
* a page offset consisting of 12 bits

page #

offset

* we can add another level of indirection — and divide the page number further:

* a 10-bit outer page number p1
a 10-bit inner page number p2

page number page offset
Pi P> d
10 bits 10 bits 12 bits

p,is an index into the outer page table
p,is an index into an inner page table
also known as forward-mapped page table

89
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Address-Translation Scheme

logical address

table

Pi1 | P2

d

.

fo=
3 memory accesses per request
on 64-bit system outer page table outer
would still have 24 entries page table
we could add 2nd outer page
o 232 entries for outer PT
o 4 memory accesses per req.
2nd outer page ., outer page | innerpage  offset
P1 P2 P3 d
32 10 10 e

P2

Inner page
table

2

frame
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Multi-Level Page Table
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Multi-level page table example

* consider a 64-bit system, with 4KiB page size (2 bits), and 8 bytes per entry
* single page table - 2752 entries x 8B/entry - 2755 bytes - ~36 petabytes

* how many page table levels do we need if we want each page table fit inside a frame?
* aframe can fit 4KiB/8B = 512 = 2° entries
« with 12-bit offsets, that means we need [52bits/9bits-per-level] = 6 levels!!!

Pi P> P3 Py Ps Ps d

7 bits O bits 9 bits 9 bits O bits 9 bits 12 bits

* with 6-level hierarchical PT each memory request would require 7 memory accesses
* 6 accesses for translating logical address - physical address
* 1 access for the actual memory location

* newest Intel processors support 5-level page tables, AMD supports 4-level PTs

92
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Inverted Page Table
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Inverted Page Table

* rather than each process having its own page table,
let's track all physical pages in one global inverted page table (IPT)
* this global IPT has one entry for each real page of memory, containing:
* virtual address, and
* owning process ID

* IPT decreases memory needed to store a page table:
* |IPT size is proportional to the amount of physical memory available
* eg. 16GB memory with 4KB page size and 8B/entry - only 32MB page table

* but IPT increases time needed to search the table when a page reference occurs

* with above example, page table has ~4 million entries, on average a translation would
require ~2 million memory accesses !!!

* TLB could help accelerate the lookup somewhat, but TLB is very tiny ...

* another (smaller) problem: shared pages are problematic with IPT
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Inverted Page Table Architecture

CPU

agical physical
et I v address
pd| p | d i d >
/ $
search l }i
pd| p

page table

physical
memory
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Hash Inverted Page
Table
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Hashed Inverted Page Table

* used in some 64-bit systems
* the virtual page number and process ID is hashed into a page table

* this page table contains chains of elements
which hash to the same location

* each element contains: PID, virtual page number
and a pointer to the next element

* virtual page numbers are compared in the chain
until a match is found

* if a match is found, the corresponding physical frame
is extracted, otherwise page fault

* with a good hash function - average access time is O(1)

0x18F1B

0x123

pid vp offset
0 oxl ) | (0x123
Index |PID| VPN
0x0 | 1 | 0xA63
Ox18F1B 60— 0xl )
0xISFIC| 3 |0x31AB

ppn

offset
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Return to
faulted instruction

( Start )

Page fault
handling routine

OS instructs CPU
to read the page
from disk

» CPU checks the TLB

entry in
TLB?

Page table

Access page

table

Page

No in main

CPU activates
1/O hardware

Page transferred
from disk to
main memory

Memory
full?

No

A

Yes

memory?

Update TLB

CPU generates
physical address

Y

-
x

Y

Page tables
updated

Perform page
replacement

Operating Systems: Internals and Design Principles,

9th Edition, William Stallings ©2018 Pearson
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Frame allocation

frame allocation algorithm determines how many frames to give to each process

for a single-process system the OS claims some frames and leaves the rest to the running
process

for a multiprogramming system, each process needs a minimum number of frames
(OS/architecture dependent)

* but what about maximum?

examples of allocation schemes:
* fixed allocation (equal and proportional)
* priority allocation
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Fixed allocation

* equal allocation — for example, if there are 100 frames (after allocating frames for the OS)
and 5 processes, OS gives each process 20 frames

e proportional allocation — allocate according to the size of process
* dynamic — as degree of multiprogramming and process sizes change

~

example with 2 processes:

s; = size of process p; m = 62
S = Z S S = 10
Sy = 127
m = total number of frames 0
e a) = —— X 62 ~ 4
s : Y 137
. a; = allocation for p; = — X m
127

il UNIVERSITY OF
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Priority allocation

 similar to proportional allocation scheme
* but using priorities rather than size
* the higher the priority of a process, the more frames it gets
* the lower the priority of a process, the less frames it gets

ezl UNIVERSITY OF

[1IE3
=/

&% CALGARY

102



Swapping
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Swapping

older form of paging (entire process vs parts)

swapping allows the OS to load more processes
than the available physical memory

a process can be swapped temporarily out of
memory to a backing store, and then brought back
into memory for continued execution

backing store — fast storage large enough to
accommodate copies of all memory images for all
processes

why would we want that?!?

— programs grow over time

— program don't always use all allocated memory at
the same time

operating B
system
@ swap out pictoss 2
process P,
@ swap in
— )
=
user \\_/,_,//
220 backing store
main memory
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Swapping and memory

* the shaded regions are unused memory

* memory allocation changes as processes are swapped out and swapped in

Time —
C C C C C
%
B B B B %
A
% %
A A A 4 /
/ D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

N\

Ais swapped out

B is swapped out

A'is swapped in
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Swapping

does the swapped out process need to swap back into the same physical addresses?
* depends on address binding method
* much easier if MMU is used
* must be careful with pending I/0O, especially when using memory-mapped device registers
* |/O results could be sent to kernel, then to the process (double-buffering)

context switch time can be extremely high

standard swapping not used in modern operating systems

note: Linux uses the term 'swapping' to mean paging
* paging is similar to swapping, but paging can swap out parts of a process

LGN UNIVERSITY OF

™/

CALGARY

106



Review
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Review

Name two registers used in a simple MMU implementation.

* Explain logical address / physical address.

* What is the purpose of an MMU?

* Best fit memory allocation is faster than first fit. True or False

* Virtual address space is the same as physical address space. True or False

* Page size is the same as frame size. True or False

* Define: page, frame, demand paging, page table, page fault
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Review

Which one of the following page replacement algorithms requires future knowledge about
memory referencing?

A. FIFO
B. Optimal
C. LRU

What is Belady’s Anomaly?

Which one of the above page replacement algorithms suffers from Belady’s Anomaly?

What is thrashing?

Describe copy-on-write.
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Review - Basic page replacement

1.find the location of the desired page on disk

2.find a free frame:

if there is a free frame, go to step 3

if there is no free frame, use a page replacement algorithm to select a victim frame

if victim frame is dirty, write it to backing store

set the invalid bit in page table corresponding to victim frame
1.load desired page into the free frame and update the page and frame tables
- frame table is a (simple) data structure that keeps track of free frames

1.restart the instruction that caused the trap

Note: now potentially 2 page transfers for page fault, further increasing EAT
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Onward to...
Disk Scheduling and RAID
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jwhudson@ucal

https://pagei(.::pii.rt\:ccaagarv.ca/'”iwhudson/ W CALGARY



mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Virtual Memory and Paging
	Overview
	Physical Address Challenges
	More memory management issues
	Working with physical addresses
	Working with physical addresses
	Address Binding
	Address binding
	Binding of instructions and data to memory
	Binding of instructions and data to memory
	Binding of instructions and data to memory
	Address Spaces
	Logical addresses
	Physical addresses
	MMU
	Memory-Management Unit (MMU)
	Slide Number 17
	Basic MMU with a Relocation Register
	Basic MMU ― with Relocation and Limit Registers
	Relocation and Limit Registers Example
	Virtual Memory
	Virtual memory
	Paging
	Paging with MMU
	Paged virtual memory
	Paging example 
	Paging example
	Paging example
	Address translation (logical → physical)
	Paged virtual memory - MMU
	Paging Model of Logical and Physical Memory
	Address translation (logical → physical)
	Paging hardware
	Paging Model of Logical and Physical Memory
	Free frames
	Page Faults
	Page fault
	Paging performance
	Expected value
	Expected value example
	Paging performance examples
	Paging performance examples
	Page Fault Handling
	Page fault handling
	Page table with some pages not in main memory
	Page fault handling
	What happens if there are no free frames?
	Basic page replacement
	Global vs. Local Replacement
	Page Replacement Algorithms
	Page replacement algorithms
	Slide Number 52
	First-In-First-Out (FIFO) Algorithm
	FIFO example 2
	Graph of Page Faults Versus The Number of Frames
	Slide Number 56
	Bélády's anomaly
	Slide Number 58
	Optimal algorithm (OPT)
	Slide Number 60
	Least Recently Used Algorithm (LRU)
	LRU implementation
	Slide Number 63
	CLOCK replacement algorithm
	CLOCK replacement simulation
	Slide Number 66
	Slide Number 67
	Trashing
	Thrashing
	Dealing with thrashing
	Slide Number 71
	Page Table Implementation
	TLB as associative memory
	Paging hardware with TLB
	Typical structure of page table entry
	Memory protection
	Slide Number 77
	Shared Pages
	Shared Pages Example
	Slide Number 80
	Copy-on-Write
	Slide Number 82
	Page table size
	Page Table Size
	Page Table Implementations
	Slide Number 86
	Hierarchical Page Tables
	Two-Level Page-Table Example
	Two-Level Page-Table Example
	Address-Translation Scheme
	Slide Number 91
	Multi-level page table example
	Slide Number 93
	Inverted Page Table
	Inverted Page Table Architecture
	Slide Number 96
	Hashed Inverted Page Table
	Slide Number 98
	Frame Allocation
	Frame allocation
	Fixed allocation
	Priority allocation
	Swapping
	Swapping
	Swapping and memory
	Swapping
	Review
	Review
	Review
	Review - Basic page replacement
	Onward to…�Disk Scheduling and RAID

