
Memory
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024



2

Topics

• "Programs expand to fill the memory available to them.”

■ memory management
□ fixed partitioning
□ dynamic partitioning
□ placement algorithms



3

Memory



4

pr
ic

e 
, s

pe
ed

ca
pa

ci
ty

Memory

• programs need memory to run

• we expect computers to run 
multiple programs simultaneously

• we expect OS to manage memory 
for processes

4



5

Common memory management issues

• OS must give each process some portion of available memory (address space)

• if a program requests more memory later, e.g. by calling malloc() or new, how does that 
work?

• how does OS manage memory?

• how does malloc() and new work?

5



6

Memory allocation



7

Memory allocation

• at some point OS/malloc needs to
• locate an unused area of memory
• assign it to a process and mark it as used
• eventually, when process quits or frees the memory, OS needs to mark it as unused again

• simple approaches can lead to memory fragmentation
• lots of tiny unused chunks of memory, 

but none of them big enough to satisfy any requests

• OS needs to manage the memory in an efficient way
• fast (searching, allocating, freeing, …)
• minimize fragmentation

7



8

Memory allocation

• two general approaches: fixed partitioning and dynamic partitioning

• OS uses fixed partitioning to manage memory and to give it to processes
• processes can request more memory from kernel using brk() or mmap() system calls

• each process then manages its own memory using dynamic partitioning, e.g. malloc & new

• malloc & new are not system calls, they are convenience functions that work in user mode
• only if they run out of space, they ask kernel to allocate more space

to the process using brk() or mmap()

8



9

Fixed partitioning



10

Fixed partitioning

• memory is divided into partitions of equal size
• example:

• total memory = 64MB, partition size = 8MB → 8 partitions
• OS usually reserves some memory for itself, e.g. 1st partition
• let's load 3 processes: P1 (4MB), P2 (8MB), P3 (10MB)

10



11

Fixed partitioning

• memory is divided into equal-sized partitions
• example:

• total memory = 64MB, partition size = 8MB → 8 partitions
• OS usually reserves some memory for itself (e.g. 1 partition, or 8MB)
• let's load 3 processes: P1 (4MB), P2 (8MB), P3 (10MB)

• Problems?

11



12

Fixed partitioning

• memory is divided into equal-sized partitions
• example:

• total memory = 64MB, partition size = 8MB → 8 partitions
• OS usually reserves some memory for itself (e.g. 1 partition, or 8MB)
• let's load 3 processes: P1 (4MB), P2 (8MB), P3 (10MB)

• internal fragmentation – memory internal to a

partition becomes fragmented

• leads to low memory utilization if partitions are big

12



13

Dynamic partitioning



14

Dynamic partitioning

• create partitions that can fit requests perfectly
• example:

• total memory = 64MB, minus 8MB taken by OS
• load 3 processes: P1 (4MB), P2 (8MB), P3 (10MB)

14



15

Dynamic partitioning

• create partitions that can fit a request perfectly
• example:

• total memory = 64MB, minus 8MB taken by OS
• load 3 processes: P1 (4MB), P2 (8MB), P3 (10MB)

• no more internal fragmentation
• but what if P2 finishes, and P4 (18MB) gets added?

15



16

Dynamic partitioning

• P2 finishes and P4 (18MB) gets added:

• external fragmentation: the memory that is external
to all partitions becomes increasingly fragmented,
leading to low memory utilization

• e.g. P5 (17MB) could not start, despite having enough free RAM

16



17

Memory compaction



18

Memory compaction

• memory compaction is a mechanism that reduces external fragmentation
• from time to time, the OS re-arranges the used blocks of memory so that they are contiguous
• goal: free blocks are merged into a single large free block
• CPU intensive operation, not used*

18



19

Implementing memory allocation 
algorithms



20

Implementing memory allocation algorithms

• how do we keep track of free memory and allocated memory?

• we need a data structure
• that is efficient at searching free space
• that is efficient at reclaiming free space
• "deals" with fragmentation

• for fixed partitions we can use bitmaps

• for dynamic partitions we can use linked lists + trees

20



21

Bitmaps for fixed partitions

• memory is divided into equal partitions as small as few words and as large as several KB
• OS maintains a bitmap, 1 bit per partition, where 0=free, 1=occupied

21

Problems:

■ searching is O(N), N = size of bitmap (number of partitions)

■ smaller partitions ⇒ less fragmentation, but larger bitmap

■ larger partitions ⇒ smaller bitmap, but more fragmentation

■ compromise between efficiency and fragmentation

■ note: larger bitmap also implies more wasted memory



22

Linked lists for dynamic partitioning

• memory is divided into partitions of dynamic size
• OS maintains a list of allocated and free memory partitions (holes), sorted by address

• searching for empty partitions in plain linked list is O(N), where N = number of partitions
• we can use balanced trees to improve search for empty partitions ⟶ O(log n)

• reclaiming free space can be O(1)
• using doubly-linked lists and keeping linked-list pointers within partitions

22



23

Memory management with linked lists - reclaiming 
space

23

two way merge

two way merge
three way 
merge



24

Finding Free Space



25

Memory allocation

• basic algorithms for finding a free space (hole) in a linked list:
• first fit - find the first hole that is big enough, leftover space becomes new hole
• next fit - same as first fit, but start searching at the location of last placement
• best fit - find the smallest hole that is big enough, leftover (tiny) space becomes new hole
• worst fit - find the largest hole, leftover (big) space is likely to be usable

• many other more sophisticated techniques
e.g. quick fit - maintain separate lists for common request sizes, leads to faster 
search, but more complicated management

• example: request is to allocate memory for 2 units

25



26

Memory allocation simulation



27

Memory allocation simulation (dynamic 
partitioning)



28

Memory allocation simulation (dynamic 
partitioning)

28



29

Memory allocation simulation (dynamic 
partitioning)



30

Memory allocation simulation (dynamic 
partitioning)



31

Memory allocation simulation (dynamic 
partitioning)
• in order for memory allocation to be useful, we need to keep track of addresses of the 

memory that each partition represents, e.g. so that we know what to return by malloc()

• we can start with address=0 for first partition

• each subsequent partition's address is previous partition's address + its size

31



32

Memory usage



33

Memory usage

• how much memory should OS allocate to each process?
• most programs increase their memory usage during execution
• possible solution is to find sufficiently large free memory chunk, and move process into it
• another improvement: OS can proactively allocates extra memory for each process

33



34

Address Protection



35

Base and Limit Registers ― address protection in 
hardware
• we can add an extra pair of registers to CPU

• these can define the allowed range of addresses
• base register = starting memory
• limit register = size of memory

• the base and limit registers can be
modified only in kernel mode

• CPU checks every memory access
generated by a process

• when process tries to access invalid address
CPU generates SW interrupt ⟶ trapped by kernel

• base & limit registers stored in PCB



36

Base and Limit Registers ― address protection in 
hardware



Onward to …
virtual memory

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Memory
	Topics
	Memory
	Memory
	Common memory management issues
	Memory allocation
	Memory allocation
	Memory allocation
	Fixed partitioning
	Fixed partitioning
	Fixed partitioning
	Fixed partitioning
	Dynamic partitioning
	Dynamic partitioning
	Dynamic partitioning
	Dynamic partitioning
	Memory compaction
	Memory compaction
	Implementing memory allocation algorithms
	Implementing memory allocation algorithms
	Bitmaps for fixed partitions
	Linked lists for dynamic partitioning
	Memory management with linked lists - reclaiming space
	Finding Free Space
	Memory allocation
	Memory allocation simulation
	Memory allocation simulation (dynamic partitioning)
	Memory allocation simulation (dynamic partitioning)
	Memory allocation simulation (dynamic partitioning)
	Memory allocation simulation (dynamic partitioning)
	Memory allocation simulation (dynamic partitioning)
	Memory usage
	Memory usage
	Address Protection
	Base and Limit Registers ― address protection in hardware
	Base and Limit Registers ― address protection in hardware
	Onward to …�virtual memory

