
File Systems
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024

2

Topics

• files – types, formats, attributes, operations, access methods

• directories – paths, operations
• file block allocation, contiguous, linked / FAT, inodes, free space management

3

Long-term Storage

4

Long term storage

What properties do we want in a long-term information storage?

1. persistent storage of large amount of information

2. information must survive termination of a process using it

3. access to information from multiple processes/threads

4. easy search & management

5

Disks without filesystems

Most storage devices, e.g. disks, are essentially arrays
of fixed-size blocks (e.g. 512 bytes), and support two
operations:

- data = read_block(block_number);

- write_block(block_number,data);

Similar to memory, but

- block-addressable,

- persistent,

- much slower, and

- much larger.

6

Disks without filesystems

Most storage devices, e.g. disks, are essentially arrays
of fixed-size blocks (e.g. 512 bytes), and support two
operations:

- data = read_block(block_number);

- write_block(block_number,data);

Similar to memory, but

- block-addressable,

- persistent,

- much slower, and

- much larger.

… but:

■ How do we find information? Which blocks
contain what data?

■ How do we know which blocks are free?

■ How do we keep one user from reading
another user’s data?

■ How do programs/users share data?

■ How do we (re)organize data?

Filesystems addresses all of the above via much
more convenient and higher level APIs.

7

Filesystems

8

Filesystem

• filesystem is a higher level abstraction of storage, implemented using clever data structures,
stored in storage but also in memory (when in use)

• filesystem acts as a library with nice APIs built on top of read_block() and write_block()

• it is common for OSes to support multiple filesystem implementations,
and multiple filesystems can be usually mounted simultaneously

• basic unit of a filesystem is a file
• files can be usually grouped in directories and subdirectories

fd =
open("test.txt")
write(fd,"hello",6)
close(fd)

open() { … }
write() { … }
close() { … }
read() { … }
…

read_block()
write_block()

read_block()
write_block()

your code
filesystem low level storage APIs

9

Files

• a file is presented to a process as a virtual sequence of bytes, which can be addressed
individually

• OS maps individual addresses to physical blocks (which are often not contiguous)
i.e. OS translates all read/write operations on files into appropriate read_block/write_block
operations

• for example, consider appending a single byte to an existing file…

• OS (generally) does not care about the contents of files

10

File formats

11

Files

• what can be stored in a file?
• anything, as long as it can be organized into a sequence of bytes

• file's creator decides:
• on the contents of the file and their meaning
• this determines the file format

• developers can then create even higher level abstractions
•

e.g. treat file as a sequence of bits, numbers, text, …
source code, executables, images, movies, spreadsheets, …

12

Example file formats

text file

i n c l u d e

< s t d i o .

h > \n \n m a i n

() \n { \n

p r i n t f (

" H e l l o W

o r l d ") ; \n

} \n

#include <stdio.h>

main(){
 printf("Hello World");
}

executable
file

archive

Header 1

File 1 contents

Header 2

File 2 contents

Header 3

File 3 contents

Header n

File n contents

file name
file size

permissions
owner ID
group ID

≈ ≈

13

File format (file type)

• if OS recognizes the file format, it can operate on the file in reasonable ways
e.g. automatically selecting an appropriate program to open a file

• Windows uses file extension to determine file format, e.g. .jpg, .xls
• UNIX uses magic number technique to guess file format, and extensions are only a convention

• format inferred by inspecting the contents of the file, often just the first few bytes
• e.g. if "#!/bin/bash" is the first line, then file is a bash script

or if "%PDF" are the first 4 bytes, then it is a PDF file

$ file file.c file /dev/hda .
 file.c: C program text
 file: ELF 32-bit LSB executable
 /dev/hda: block special (3/0)
 .: directory
 $ man file
 $ man magic

14

File Information

15

File attributes

• files have contents but also attributes (metadata)

• file attributes vary from one OS to another but typically consist of these:
• filename: the symbolic file name is the only information kept in human readable form
• size: size of the file in bytes
• location: a pointer to the location of the file contents on the device
• special type: needed for systems that support different file types, e.g. directory, link
• time/date: time of creation/last modification/last access
• ownership: identifies owner(s) of the file, e.g. user ID, group ID
• protection information: access control information, e.g. read/write/execute

• attributes are often kept separate from file contents, e.g. in directory structure or inodes

• many variations, e.g. file checksum

16

File naming

• filenames are given to files at creation time, but usually can be changed later

• different file-naming rules on different systems, e.g.
• maximum filename length
• allowed/restricted characters
• capitalization
• filename extensions, enforced vs conventions

17

Special file types

• on top of regular files, most OSs also support special files
regular files are the ones that users can create, such as .txt, .cpp, .jpg etc.

• directories – special files for maintaining FS structure

• character and block special files – that represent devices, e.g. /dev/sdb0

• pseudo files – for accessing kernel routines and datastructures
e.g. /dev/random and /proc/cpuinfo

• links – pointers to other files

• sockets, pipes, …
$ ls -l /dev

 crw-rw-rw- 1 root root 1, 8 Apr 17 2017 random
 brw-rw---- 1 root disk 8, 0 Apr 17 2017 sda
 brw-rw---- 1 root disk 8, 1 Apr 17 2017 sda1
 lrwxrwxrwx 1 root root 15 Apr 17 2017 stderr -> /proc/self/fd/2
 drwxr-xr-x 2 root root 60 Apr 17 2017 raw

18

File Operations

19

File operations

Most systems allow the following operations on regular files:
• create ― empty file is created, with no data
• delete* ― files can be deleted to free up disk space
• open ― before using a file, a process must open it. OS can fetch and cache file attributes, such

as list of disk addresses into main memory, for rapid access on subsequent calls
• close ― free up space in memory associated with open file, flush unwritten data
• read ― read contents of an opened file from current position
• write ― overwrite data of an opened file at current position
• append ― write new data at the end of file, results in file growing, usually implemented via

write
• seek ― change current position, affecting subsequent reads/writes

• get attributes* ― eg. size
• set attributes* ― eg. permissions
• rename* ― change filename

20

More on in-memory structures

• to improve performance, OS keeps various bits of information related to filesystems in various
data structures in memory

• examples:
• system-wide open-file table: entry for each open file, e.g. first block address, permissions
• per-process open-file table: e.g. pointers into system-wide open-file table + file pointer
• mount table: information about each mounted file-system
• buffer cache: caches FS blocks, to reduce the number of raw reads/writes to files, to

speed up access to frequently accessed directories, etc.

21

Open files

• OS needs to manage open files, and allow fast access to data in these files

• open-file table: tracks open files, per-process tables, and a system-wide table
• file pointer: pointer to last read/write location, per process
• file-open count: number of times a file is open – to allow removal of data from open-file

table when last processes closes it, system wide
• permissions, pointer to file contents, system wide

22

Sequential and random file access

• two general types of accessing files: sequential & random
• apply to both reading and writing

• sequential access
• bytes in the file are accessed sequentially, from beginning to end
• no out-of-order access, although files usually can be rewound
• e.g. open, read, read, read, rewind, read … close
• most common, most optimized

• random access
• can access any byte in any order
• usually achieved by calling seek() or mmap() syscalls
• e.g. open, read, read, read, seek, read, read, seek,
read, … close

• usually much (magnitudes) slower than sequential access!

sequential random

se
e
k

23

Directories

24

Directories

• filesystems use directories to help us with
organizing files

■ used to organize files hierarchically using tree

structure (directory structure)

• root node of the tree is the root directory
• internal nodes are directories
• leaf nodes are either files or empty directories
• path in a tree = filepath

25

Directory

• a directory is usually implemented as a special file, containing a list of directory entries
(dentry)

• contents of dentry depend on the type of filesystem,
e.g. filename, size, first block of file contents

• each dentry can represent a file or a directory (subdirectory)

• if subdirectories allowed → hierarchical directory system (widespread use)

• if subdirectories not allowed → single-level directory system (not common anymore)

26

Directories (Unix)

27

Pathnames in a UNIX directory tree

• path separator: / (forward slash)
• pathname:
dir1/dir2/.../dirn/filename

• root directory path: /

• an absolute path name begins at root, eg:
/usr/jim

• a relative path name defines a path from
the current directory, e.g.
./banker or bin/cat or 1.txt

• every process has a working (current)
directory

• can be changed using chdir() sys. call:
int chdir(const char *path);

28

Pathnames in a UNIX directory tree

• every directory has at least 2 entries:

• pointer to current directory: . (dot)
• pointer to parent directory: ..

(dotdot)
• dot and dotdot entries:

• cannot be deleted
• they are just pointers
• directory containing only . and ..

entries is considered empty
• weird but true example:

□ /usr/jim
□ /./etc/../lib/./../usr/lib/../j
im

□ ../../../../../../../usr/jim
all refer to the same directory

29

Directory operations in UNIX

• create ― an empty directory is created (with "." and ".." entries)
• delete ― only empty directories can be deleted ("." and "." entries do not count)
• opendir ― analogous to open for files
• closedir ― analogous to close for files
• readdir ― returns the next entry in an open directory
• rename ― just like file rename for files
• link ― technique that allows a file to appear in more than one directory
• unlink ― a directory entry is removed. If the file being unlinked is only present in one directory

(the normal case), it is removed from the file system. If it is present in multiple directories,
only the path name specified is removed. In UNIX, the system call for deleting files (discussed
earlier) is, in fact, unlink.

30

Directory implementation

31

Directory implementation

• linear list of dentries
• simple to program
• but O(n) search time
• could be maintained in sorted order eg. using B+ tree, then O(log n) search

• hash table – linear list with hash data structure
• potentially O(1) search time
• needs good hash function to limit collisions, and the 'right' size table
• big table → lot of wasted space, small table → too many collisions
• dynamically resizable hash table could be used to solve this

• Linux (ext3/4) - uses special data structure called HTree

32

Filesystem blocks

• filesystems store files in fixed-size blocks
• similar to fixed partitioning scheme for memory management (will be covered later)
• number of blocks per file = ceil(file_size / block_size)
• filesystems often suffer from internal fragmentation (wasted space within blocks)

• filesystem block size is usually a multiple (2n) of the underlying disk block size

• blocks belonging to the same file not necessarily adjacent
• fragmented file = file stored in non-consecutive blocks
• fragmented files suffer from performance issues on mechanical hard-drives
• as filesystem becomes full, files become fragmented, the entire filesystem slows down
• TLDR; don't fill up your filesystem

33

File allocation methods

34

File allocation methods

• file's contents and attributes may need to be stored in multiple blocks

• FS needs to keep track of all used and free blocks
• which blocks belong to file xxx?
• where are unused blocks located?

• a file allocation method refers to how disk blocks are allocated and tracked

• we will discuss:
• contiguous allocation
• linked allocation + FAT
• indexed allocation

35

Contiguous allocation

36

Contiguous allocation

• contiguous allocation – each file occupies a set of contiguous blocks

• results in best performance in most cases

• simple housekeeping – only starting location (block #) and length (number of blocks) are
required

• problems include
• finding space for new file,
• complications with growing an existing file,
• external fragmentation after file deletion,
• need for compaction off-line (downtime) or on-line (reduced performance)

• aka defragmentation

• not very common

• useful for archives, tapes & read-only devices such as CD-ROMs

37

● mapping from logical to physical address:
assuming block size is a power of 2

logical byte address:

q = upper bits
r = lower bits

physical address computation:

block number = q + "address of first block"
displacement within block = r

Contiguous allocation

q r

filename start length
count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

directory:

38

Linked allocation

39

Linked allocation

• in linked allocation each file is stored in a linked list of blocks
• each block contains file content, plus a pointer to the next block
• file ends at a block which has NULL pointer as next block

• no external fragmentation → compaction needed only for performance
• separate free space management needed - eg. linked list of free blocks

• reliability can be a problem – imagine losing a block due to disk failure
• major problem: locating a block can take many I/Os and disk seeks

• logical address to physical address mapping requires traversing the list
• we could cache the 'next' pointers, but would still need to read entire file first

• we could improve efficiency by clustering blocks into larger groups but that increases internal
fragmentation

block:

data

pointereg
. 5

12
 b

yt
es

40

block:

data

Example directory entry:

contents of test.txt spread over 5
blocks:

10, 11, 14, 5, 17

Why do we need 'size' in dentry?

because 5 * 512 != 2100
files can have arbitrary sizes

Linked allocation example

pointer 0: 1: 2: 3:

4: 5: 17 6: 7:

8: 9: 10: 11 11: 14

12: 13: 14: 5 15:

16: 17: -1 18: 19:

filename start block size

test.txt 10 2100

eg
. 5

12
 b

yt
es

41

File Allocation Table
(FAT)

42

File Allocation Table (FAT)
• FAT (File Allocation Table) is a variation of linked allocation

• all 'next' pointers are stored in a separate table (FAT)

• FAT can be located eg. at the beginning or end of the FS volume

• FAT is essentially an array containing block numbers,
indexed by block numbers:
− fat[i] = next pointer for block i
− value -1 could represent NULL pointer

i.e. if fat[i]==-1 then block i is the last block of file

• can store multiple copies of FAT to add redundancy

• dentry contains first block # of the file,
which is also an index into FAT to find next block, etc.

FAT

43

File Allocation Table (FAT)

• compared to linked allocation:
• easier random access since all pointers

stored together, and therefore cache-able *

• issues with FAT:
• the entire table must be in memory

at all times to achieve efficient random access
• table can be quite big for large disks

FAT

44

global FAT root
directory

data blocks

partition

first block

2nd block

3rd block

File Allocation Table (FAT)

45

4 5 6 7

10 2 3
0: 1: 2: 3: 4: 5: 6: 7: 8: 9:

1 2 3 -1 5 6 7 -1 9 -1

10: 11: 12: 13: 14: 15: 16: 17: 18: 19:

11 13 -1 14 15 16 -1 8 17 18

File Allocation Table (FAT)

-1

the above FAT contains 5 files, starting
on blocks 4, 0, 19, 10 and 12

18
19

17 8

9

12

11

10

13 14

15

16

Example FAT:

46

5 15 1 12

73 2

4

16

17

6
8 9

10

11 13 14
0

18 19

0: 1: 2: 3: 4: 5: 6: 7: 8: 9:

6 12 7 7 -1 15 9 15 6 10

10: 11: 12: 13: 14: 15: 16: 17: 18: 19:

14 0 -1 11 13 1 12 -1 11 18

Example of a corrupted FAT:
contains at most 3 files

File Allocation Table (FAT)

-1

Largest possible file starts either on
block 3 or block 2.

Two more files of length 1 start on
nodes 4 and 17.

47

Indexed Allocation
(inodes)

48

Indexed Allocation (inodes)

• basic idea behind indexed allocation is to maintain per-file FAT-like structure

• this way we don't need to cache pointers for all files, only for the open files

• we call this structure inode, and it contains:
• direct pointers to blocks with file contents
• indirect pointers to blocks that contain even more pointers
• various file attributes:

• file size in bytes, device ID, owner, permissions, timestamps, link count, …
• inode does not contain a filename

• dentry is used to associate filename with the inode
• dentry = filename + pointer to disk block where the inode is stored
• it is possible to have different filenames associated with the same inode

• called hard links

49

Example of Indexed Allocation

inode inode

50

attributes (size,
permissions,...)

direct ptr 1
direct ptr 2
...
direct ptr 12
indirect ptr
doubly indirect ptr
triply indirect ptr

inode block

data
blocks

data
blocks

block of
direct ptrs

block of indirect ptrs

block of doubly
indirect ptrs

■ direct pointer points to a
block of data

■ indirect pointer points to a
block of direct pointers

■ doubly indirect pointer
points to a block of indirect
pointers

■ triply indirect pointer points
to a block of doubly indirect
pointers 50

51

inodes root
directory

data blocks

partition

52

inodes root directory data blocks

attributes (size,
permissions,...)

direct ptr 1
direct ptr 2
...
direct ptr 12
indirect ptr
doubly indirect ptr
triply indirect ptr

inode block

53

inodes in Linux (ext2)

• example: block size 1KB, block address 4 bytes
• if inode can only store 12 direct pointers

→ max file size 12KB

• if inode can also store 1 indirect pointer:
1KB block can store1KB/4B=256 additional pointers
→ max file size 12+256 blocks = 268KB

• if inode can also store 1 double-indirect pointer:
or 256 blocks each with 256 addresses
→ max file size 12 + 256 + 2562 blocks ~= 64MB

• adding triple-indirect pointer:
→ max file size 12 + 256 + 2562 + 2563 blocks ~= 16GB

• ext3 max file size = 2TB
• ext4 max file size = 16TB (using 48bit addresses and extents)

54

inodes

• advantages:
• random access reasonable ― only need to keep the inodes for opened files in memory
• file size is not limited (for most people)
• files can have holes

• disadvantages:
• at least one additional block is required for each file

55

Hard link vs soft link

56

Hard link vs soft link

1. create file.txt
$ echo "Hello" > file.txt
this actually creates hard link

2. create hard link fileA.txt that points to file.txt
$ ln file.txt fileA.txt
a hard link points to the same inode
if we delete file.txt, fileA.txt will still work
file.txt and fileA.txt are indistinguishable

3. create soft link fileB.txt that points file.txt
$ ln -s file.txt fileB.txt
soft link points to a filename
if we delete file.txt, fileB.txt will be broken

file.txt
hard link

fileA.txt
hard link

file.txt
hard link

1 2 3

inode

"Hello"

inode

"Hello"

file.txt
hard link

fileA.txt
hard link

inode

"Hello"

file2.txt
soft link

57

Hard link vs soft link

• hard links can be created only to regular files
• cannot hard-link directories,

because it could lead to cycles in FS

• symbolic links can link anything, including directories, special
files and even other symbolic links
$ ln -s file2.txt file3.txt

• symlinks can lead to cycles and broken links
$ ln -s file4.txt file4.txt

inode

file.txt

file1.txt
hard link

file2.txt
soft link

file3.txt
soft link

file4.txt
soft link

58

Performance

• newer CPUs (2016) can do ~300,000 MIPS

• typical disk drive (7200RPM) can do about 100 IOPS
• CPU can do ~3 billion instructions during one disk I/O

• fast SSD drives can deliver ~100,000 IOPS
• still ~3 million instructions during one disk I/O

• expensive SSD arrays can deliver ~10,000,000 IOPS
• still about 30,000 instructions during one disk I/O

• important to try to minimize the number of I/O operations
• try to group and combine reads/writes
• minimize random access

59

Disk partitions

60

Disk partitions

• a physical disk can be subdivided into separate regions, called partitions
• partition is an abstraction, creating the illusion there are more disks
• OS can manage partitions independently, as if they were separate disks
• information about partitions is stored in a partition table

master boot record,
replaced with GPT
on most systems

start/end of each
partition

61

Typical filesystem layout

bootstrap
program

FS parameters e.g.
type

free blocks per file/dir
info re. which
blocks belong
to which files

entries in / contents of files
and
subdirectories

MBR / GPT

62

Partitions and mounting

• partition can be:
• formatted to contain a filesystem, it must be mounted to access
• or it can be a raw partition (unformatted)

• root partition with a filesystem contains the OS
• mounted at boot time as root directory '/’

• other partitions can hold other OSes, other file systems, or be raw
• can mount automatically during boot, or manually after booting

• at mount time, file system consistency is checked
• Is all metadata correct?
• If not, fix it, try mounting again
• If yes, add to mount table, allow access

63

Free space management

64

Free space management - bitmaps

• file systems maintain free-space list to track available blocks

• can be implemented as a bit vector or bitmap

• OS can reserve some blocks for the bitmap

■ example
• block size = 4 KiB = 212 bytes
• disk size = 1 TiB = 240 bytes
• total number of blocks = 240/212 = 228 blocks
• we need 228 bits in bitmap = 225 bytes = 32 MiB bitmap, or 213 reserved blocks
• if using clusters of 4 blocks instead → only 211 reserved blocks

• cons: requires searching the bitmap to find free space, wastes some blocks

• pros: fairly straightforward to obtain contiguous blocks

65

Free space management - linked list

• linked free space list (free list)
• all free blocks are linked together
• pointers stored inside the blocks

• pros: no waste of space

• cons: cannot get contiguous space easily

66

Free space management - linked list

• grouping
• instead of storing just one pointer, utilize the space of the entire free block
• store addresses of next n-1 free blocks in first free block, plus a pointer to next block that

contains more free-block-pointers (like this one)

• counting
• takes advantage of the fact that space is frequently contiguously used and freed
• so keep address of first free block plus the count of following free blocks
• free space list then has entries containing addresses and counts

• space maps
• divides device space into metaslab units, each representing a chunk of manageable size
• within each metaslab a counting algorithm is used to keep track of free space

67

File locking

68

File locking

• provided by some operating systems and/or file systems
• similar to reader-writer locks
• shared lock similar to reader lock – several processes can acquire concurrently
• exclusive lock similar to writer lock

• mediates access to a file to multiple processes during open()

• types:
• mandatory – access is denied depending on locks held and requested
• advisory – processes can find status of locks and decide what to do

69

Virtual File Systems

70

Virtual File Systems

• Virtual File System (VFS) provides an 'object-oriented' way of implementing file systems (Linux)

• VFS allows the same system call interface (the API) to be used for different file systems

• VFS separates generic file-system operations from implementation details

• VFS implementation can be disk filesystem, RAM FS, archive FS, or even network based FS ...

• VFS dispatches operation to appropriate filesystem implementation routines

71

Virtual File Systems
• OS accesses all filesystems through the same VFS interface

OS talks to all filesystems
through VFS APIs

eg. FAT32

eg. ext4

eg. SAMBA

eg. spinning
harddrive

eg. USB stick

72

Virtual File System Implementation

• for example, Linux has four object types:
• inode, file, superblock, dentry

• VFS defines set of operations on the objects that must be implemented
• every object has a pointer to a function table
• function table contains addresses of routines that implement that function on that object
• example:

• int open(...) — open a file
• int close(...) — close an already-open file
• ssize_t read(...) — read from a file
• ssize t write(...) — write to a file
• int mmap(. . .) — memory-map a file

• a developer of a new FS only needs to implement VFS API

• then the FS can be mounted by Linux

73

File System Mounting

• a filesystem must be mounted before it can be accessed
• OS boots with (essentially) empty root filesystem
• other filesystems are later mounted into it, during or after boot
• all mounted filesystems appear as part of one big filesystem

root filesystem before
mounting filesystem 2

filesystem 2 on /dev/sdc1 root filesystem after
mounting filesystem 2

$ mount /dev/sdc1 /users

74

Unix File System & Permissions

75

Unix File System & Permissions

• every file is owned by a user and a group
• permissions usually displayed in compact 10-character notation

76

Unix File System

• 9 permission bits per file: specify Read, Write, and eXecute permission for the owner of the
file, members of the group and all other users (aka world)

• The owner ID, group ID, and protection bits are part of the file’s inode

77

Examples - permissions for files

-rw-r--r-- read/write for owner, read-only for everyone else

-rw-r----- read/write for owner, read-only for group, forbidden for everyone else

-rwx--x--x read/write/execute for owner, execute-only for everyone else

-r--r--r-- ready-only for everyone

-rwxrwxrwx read/write/execute for everyone (bad idea)

----rwxrwx yes it’s possible, owner has no rights, everyone else does...

78

Examples - permissions for directories

• permission bits are interpreted slightly differently for directories

• read bit allows listing of file/directory names

• write bit allows creating and deleting files in directory

• execute bit allows entering the directory and getting attributes of files in the directory

• not all combinations make sense: eg. read without execute

drwxr-xr-x all can enter and list the directory, only owner can add/delete files

drwxrwx--- full access to owner and group, off limits to world

drwx--x--x full access to owner, while group & others can access only known files

drwxrwxrwx anyone can do anything

79

Linux File System

permission check algorithm for given user, filepath

step 1:
make sure all parent directories in path have appropriate execute permissions

step 2:
if file.owner == user then
use file.userPermissions
else if file.group in user.groups then
use file.groupPermissions
else
use file.worldPermissions

80

Linux File System

• Set user ID (SetUID) bit, only on executable files
• system temporarily uses rights of the file owner in addition to the real user’s rights when

making access control decisions
• enables privileged programs to access files/resources not generally accessible
• eg. Passwd

• Set group ID (SetGID) bit
• on executable files → similar effect to SetUID but for groups
• on directories → new files/subdirectories will inherit the group owner

• Sticky bit (12th bit)
• When applied to a directory it specifies that only the owner of a file in the directory can

rename, move, or delete that file.
• Usually set on /tmp and /scratch or similar directories.

81

Root (superuser, UID = 0)

• is exempt from usual access control restrictions
• has system-wide access
• dangerous, but necessary, and actually OK with good practices

• how to become root:
• su (requires root password)

• changes home dir, PATH and shell to root, leaves environment variables intact
• su -

• logs in as root
• su - <user>

• become someone else <user>
• sudo <command> (requires user password)

• run one command as root ― recommended way, leaves an audit trail
• what does “sudo su -” do?

82

Changing permissions

• permissions are changed with chmod or via a GUI

• only the file owner or root can change permissions.

• if a user owns a file, the user can use chgrp to set file's group to any group of which the user
is a member

• root can change file ownership with chown (and can optionally change group in the same
command)

• chown, chmod, and chgrp can take the -R option to recursively apply changes through
subdirectories.

83

Changing Permissions Examples

chown -R root dir1 changes owner of dir1 to root, and recursively everything
inside dir1

chmod g+w,o-rwx f1 f2 adds group write access to files f1 and f2, and removes
all access to f1 and f2 for the world

chmod -R o-rwx . removes access for the world to current directory and
everything inside it (recursively)

chmod u+rw,g+rw,u-x,g-x,o-rwx f1 f1 will allow read/write to owner & group, everyone else
will have no access

chmod 660 f1 same as above but makes you look “pro”

chmod +x f1 f1 will be executable to everyone

chmod og-rwx f1 disable all group/world access from f1

84

Limitations of Unix/Linux Permissions

• Unix standard/basic permissions are great, but not perfect
• not expressive enough
• eg. user 'bob' cannot easily give user ‘john’ read access to his files

• most Linux based OSes support POSIX ACLs
• builds on top of traditional Unix permissions
• several users and groups can be named in ACLs, each with different permissions
• allows for much finer-grained access control

• each ACL is of the form type:name:rwx
• type is user or group
• name is user name or group name
• rwx refers to the bits set
• setuid, setgid and sticky bits are not possible

85

Linux Access Control Lists (ACLs)

86

Linux Access Control Lists (ACLs)

• getfacl lists the ACL for a file
• setfacl command assigns ACLs to a file/directory
• any number of users and groups can be associated with a file

• read, write, execute bits
• a file does not need to have an ACL

$ ls -l proxy.py
-rw-rw-r-- 1 pfederl pfederl proxy.py
$ getfacl proxy.py
file: proxy.py
owner: pfederl
group: pfederl
user::rw-
group::rw-
other::r--

$ setfacl -m u:bob:rw proxy.py
$ getfacl proxy.py
file: proxy.py
owner: pfederl
group: pfederl
user::rw-
user:bob:rw
group::rw-
mask::rwx
other::r--
$ ls -l proxy.py
-rw-rw-r--+ 1 pfederl pfederl proxy.py

87

Default ACLs

• a directory can have an additional set of ACLs, called default ACLs

• default ACLs will be inherited by files & directories created inside directory
• subdirectories inherit the parent directory's default ACLs as both their default and their

regular ACLs
• files inherit the parent directory's default ACLs only as their regular ACLs, since files have

no default ACLs

• the inherited permissions for the user, group, and other classes are logically ANDed with the
traditional Unix permissions specified to the file creation procedure

88

NTFS

89

NTFS

• each file/directory has

• an owner

• zero or more ACEs (access control entries)

• ACE format: <principal> <operation> (allow|deny)

• principal = user or group

• operation = read, write, execute, full control, list, modify

• ACEs support inheritance

• directory's ACEs can propagate to children

• similar to UNIX with ACLs, but

• NTFS also supports 'deny' ACE entries, UNIX has only 'allow' ACL entries

• NTFS file permission algorithm only checks the file's ACEs, UNIX checks entire path

• NTFS is more expressive, but also more complicated

• Prof: can Bob access this file in my directory?

90

Review

91

Review

• Which file block allocation scheme suffers from external fragmentation?
• Contiguous or Linked

• Describe the main difference between FAT and inode.

• After deleting a file, all hard links to the file will report an error when accessed.

True or False
• After deleting a file, all soft links to the file will report an error when accessed.

True or False

Onward to …
memory

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	File Systems
	Topics
	Long-term Storage
	Long term storage
	Disks without filesystems
	Disks without filesystems
	Filesystems
	Filesystem
	Files
	File formats
	Files
	Example file formats
	File format (file type)
	File Information
	File attributes
	File naming
	Special file types
	File Operations
	File operations
	More on in-memory structures
	Open files
	Sequential and random file access
	Directories
	Directories
	Directory
	Directories (Unix)
	Pathnames in a UNIX directory tree
	Pathnames in a UNIX directory tree
	Directory operations in UNIX
	Directory implementation
	Directory implementation
	Filesystem blocks
	File allocation methods
	File allocation methods
	Slide Number 35
	Contiguous allocation
	Contiguous allocation
	Slide Number 38
	Linked allocation
	Linked allocation example
	Slide Number 41
	File Allocation Table (FAT)
	File Allocation Table (FAT)
	File Allocation Table (FAT)
	File Allocation Table (FAT)
	File Allocation Table (FAT)
	Slide Number 47
	Indexed Allocation (inodes)
	Example of Indexed Allocation
	Slide Number 50
	Slide Number 51
	Slide Number 52
	inodes in Linux (ext2)
	inodes
	Hard link vs soft link
	Hard link vs soft link
	Hard link vs soft link
	Performance
	Disk partitions
	Disk partitions
	Typical filesystem layout
	Partitions and mounting
	Free space management
	Free space management - bitmaps
	Free space management - linked list
	Free space management - linked list
	File locking
	File locking
	Virtual File Systems
	Virtual File Systems
	Virtual File Systems
	Virtual File System Implementation
	File System Mounting
	Unix File System & Permissions
	Unix File System & Permissions
	Unix File System
	Examples - permissions for files
	Examples - permissions for directories
	Linux File System
	Linux File System
	Root (superuser, UID = 0)
	Changing permissions
	Changing Permissions Examples
	Limitations of Unix/Linux Permissions
	Linux Access Control Lists (ACLs)
	Linux Access Control Lists (ACLs)
	Default ACLs
	NTFS
	NTFS
	Review
	Review
	Onward to …�memory

