
Deadlocks
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024

2

Topics

• system model (assumptions and
simplifications)

• deadlock characterization
• methods for handling deadlocks

• deadlock prevention
• deadlock avoidance
• deadlock detection
• recovery from deadlock

3

Definition

4

Deadlock definition

• a set of processes are in a deadlock if:
○ each process in the set is waiting for an

event; and
○ that event can be caused only by another

process in the set.

• event could be anything, e.g.
• resource becoming available
• mutex/semaphore/spinlock being unlocked
• message arriving

P8

P2

P3

P4

P5

P6

P7

P1

file

mutex spinlock

5

System Model

6

System model

• system consists of N processes and M resources

• resources could be files, global variables, etc. or mutexes protecting them

• in most systems each resource type has a single instance
• we'll mostly focus on this scenario, since usually we assign unique mutexes to each

resource instance
• e.g. multiple shared counters, each protected by individual mutexes

• in some systems we could have multiple instances per resource type
• a process could request "an instance" of a type
• e.g. 5 identical disks, 3 identical printers, and a process could request "one printer, does

not matter which one"

7

System model

• we assume processes/threads are well behaved (programs are well written)

• each process utilizes a resource in the same manner:

1. a process requests the resource, and OS may block such process

2. a process uses the resource for a finite amount of time

3. a process releases the resource, OS may unblock related process(es)

8

Conditions

9

Deadlock – sufficient and necessary conditions
• mutual exclusion condition

• resources are not shareable (max. one process per resource)

• hold and wait condition
• a process holding at least one resource is waiting to acquire additional resources

• no preemption condition
• resource cannot be stolen (can only be released voluntarily by the process holding it)

• circular wait condition
• there is an ordering of processes { P1 , P2 , … , Pn }, such that

• P1 waits for P2

• P2 waits for P3

…
• Pn waits for P1

• i.e. there is a cycle

These are also known as Coffman conditions.

10

Deadlock with mutex locks

• deadlocks can occur in many different ways, usually due to locking
• simple example – deadlock with 2 mutexes:

• all 4 necessary conditions present:
mutual exclusion, hold and wait, no pre-emption, circular wait

Thread 1:

 lock(mutex1);
 lock(mutex2);
 // critical section
 unlock(mutex2);
 unlock(mutex1);

Thread 2:

 lock(mutex2);
 lock(mutex1);
 // critical section
 unlock(mutex1);
 unlock(mutex2);

1 2

thread
1

thread
2

11

Resource-Allocation Graph

12

Resource-Allocation Graph with 1 instance per
resource type

• system state can be represented by a directed graph G(V,E)

• two types of vertices

• processes represented as ellipsoids

• resources represented as rectangles

• two types of edges

• request edge ― pointing from process → resource
representing a process requesting unique access to resource

• assignment edge ― pointing from resource → process
representing process having unique access to resource

mutex
1

mutex
2

thread
1

thread
2

13

Resource-Allocation Graph with multiple instances per
resource • Pi requests an instance of 𝑅𝑅𝑗𝑗 :

request edge points to resource type, not
resource instance

• Pi is holding an instance of 𝑅𝑅𝑗𝑗 :

• assignment edge originates from instance,
not type

• process 𝑃𝑃𝑖𝑖 :

• multiple instances of resource type are
represented as dots inside resources,
e.g. resource 𝑅𝑅𝑗𝑗 with 3 instances:

Pi

Pi

Pi

Rj

RjRj

14

Resource Allocation Graph Example

P1 holds R2

P1 is requesting R1

no cycle ⇒ no deadlock

P1 P2 P3

R1 R3

R2

R4

15

Resource Allocation Graph With A Deadlock

P1 P2 P3

R1 R3

R2

R4

deadlock ⇒ cycle

16

Graph With A Cycle But No Deadlock

P1

P2

P4

R1

P3

R2

but … cycle ⇏ deadlock

17

Deadlock vs Cycle

• if graph contains no cycles ⇒ no deadlock

• holds for both single-instance and for multiple-instances per resource type

• if graph contains a cycle ...

• if only one instance per resource type ⇒ guaranteed deadlock

• if multiple instances per resource type ⇒ possible deadlock

18

Example

19

Example

• consider 3 processes A, B and C which want to perform operations on resources R, S and T:

• depending on the order in which we process and grant the requests, we may end up:
• with a deadlock
• or no deadlock

Process A:

1. request R
2. request S
3. release R
4. release S

Process B:

1. request S
2. request T
3. release S
4. release T

Process C:

1. request T
2. request R
3. release T
4. release R

20

Example: sequence of operations leading to
deadlock

21

Example: sequence of operations not leading to
deadlock

22

Handling Deadlocks

23

Methods for dealing with deadlocks

• ignore the problem:
• pretend that deadlocks never occur in the system
• approach of many operating systems, including UNIX
• it's up to applications to address their deadlock issues

• ensure that the system will never enter a deadlock state:
• deadlock prevention
• deadlock avoidance

• allow the system to enter a deadlock state and then recover:
• deadlock detection
• recovery from deadlock

24

Prevention

25

Deadlock prevention

• deadlock prevention = any technique that prevents one of the 4 necessary conditions

• avoiding mutual exclusion condition:
• mutual exclusion not required for shareable resources

e.g. no shared resources, read-only global variables or files, lock-free operations
• spooling can help for some resource types (e.g. printers) to convert them to shareable
• not practical in many/most cases

• attacking hold and wait condition:
• whenever a process requests a resource, it cannot hold any other resources

• option 1: process must request all needed resources at the beginning
• option 2: process can request resources only when it has no resources

• often leads to low resource utilization & possibility of starvation,
especially with large number of resources

26

attacking hold and
wait condition

27

Deadlock prevention - example

• how do we fix the deadlock possibility below by avoiding hold and wait condition?

Thread 1:

lock(mutex1);
 /* use resource 1 */
lock(mutex2);
 /* use resources 1 and 2 */
unlock(mutex2);
unlock(mutex1);

Thread 2:

lock(mutex2);
 /* use resource 2 */
lock(mutex1);
 /* use resources 1 and 2 */
unlock(mutex1);
unlock(mutex2);

28

Deadlock prevention - example

• option 1: acquire all resources at the beginning
• if we had lockn() - that atomically locks multiple mutexes at once:

Thread 1:

lockn(mutex1, mutex2);
 /* use resources 1 and 2 */

unlock(mutex2);
unlock(mutex1);

Thread 2:

lockn(mutex2, mutex1);
 /* use resources 1 and 2 */

unlock(mutex1);
unlock(mutex2);

29

Deadlock prevention - example

• option 2: release resources before acquiring more
• if we had unlockAndLock() - unlock all locked mutexes, then lock them all atomically

• both options could lead to non-optimal resource utilization and even starvation

see std::lock and std::scoped_lock for a partial solution

Thread 1:

unlockAndLock(mutex1)
 /* use resource 1 */
unlockAndLock(mutex2, mutex1);
 /* use resources 1 and 2 */
unlock(mutex2);
unlock(mutex1);

Thread 2:

unlockAndLock(mutex2)
 /* use resource 2 */
unlockAndLock(mutex1, mutex2);
 /* use resources 1 and 2 */
unlock(mutex1);
unlock(mutex2);

30

avoiding no
preemption condition

31

Deadlock prevention

• avoiding no preemption condition:

• if a process that is holding some resources requests another resource that cannot be
immediately allocated to it, the process is suspended, and all resources currently held by
it are released

• these preempted resources are added to the list of resources for which the process is
waiting

• process will be resumed when it can regain its old & new resources

• only works with resources for which we can save/restore the state (e.g. CPU registers)

• complicated mechanism, possible starvation, non-optimal use of resources

32

avoiding circular wait
condition

33

Deadlock prevention

• avoiding circular wait condition
• most practical condition to avoid
• accomplished by establishing an ordering of resources, e.g. via resource hierarchy,
• each process must requests resources in an increasing order of enumeration
• e.g. lock mutexes in the same order by all threads,

quite practical for small number of mutexes / resources

Thread 1:

lock(mutex1);
lock(mutex2);
 /* critical section */
unlock(mutex2);
unlock(mutex1);

Thread 2:

lock(mutex1);
lock(mutex2);
 /* critical section */
unlock(mutex1);
unlock(mutex2);

34

Resource ordering in C/C++

• if all resources are protected using global
mutexes/semaphores/spinlocks, then resource
ordering can be implemented by comparing
their addresses

• similarly, if all resources have unique IDs that
can be compared to each other, we can use
these IDs to determine the order in which we
lock the resources

• e.g. for files we could use paths as IDs

if (& m1 < & m2) {
 lock(m1); lock(m2);
} else {
 lock(m2); lock(m1);
}

if (id(file1) < id(file2)) {
 lock(file1); lock(file2);
} else {
 lock(file2); lock(file1);
}

35

Deadlock Example

• imagine we are writing code that performs multiple transfers between different accounts
• we need to make it multithreaded
• class Account represents someone's account, e.g. an entry in a database
• it has 2 thread-safe methods: .get() and .set() for retrieving/setting the value, e.g.

class Account {
 ...
public:
 double get();
 void set(double amount);
 ...
};

36

Deadlock Example

• let's implement transaction() that transfers amount from account a1 into account a2

• where a helper function adjust(a,v) adjusts account's amount by some value

adjust() is not thread-safe, therefore transaction() is also not thread-safe

• how do we make transaction() thread-safe, so that we can transfer money in parallel?

i.e. we want to call transaction() from multiple threads

void transaction(Account a1, Account a2, double amount) {
 adjust(a1, -amount); // withdraw from a1
 adjust(a2, amount); // deposit into a2
}

void adjust(Account a, double value) {
 double tmp = a.get();
 tmp = tmp + value;
 a.set(tmp);
}

37

Deadlock Example

• let's write a thread-safe version of adjust()
• if we can get a unique mutex per account, e.g. using get_mutex(a), we could write:

• but transaction() might still not be thread safe…

void transaction(Account a1, Account a2, double amount) {
 adjust_r(a1, -amount); // withdraw
 /* trouble region - money missing */
 adjust_r(a2, amount); // deposit
}

void adjust_r(Account a, double value) {
 mutex m = get_mutex(a);
 lock(m);
 a.set(a.get() + value);
 unlock(m);
}

38

Deadlock Example

• instead of fixing adjust() to prevent race condition, let's fix transaction() by
locking both mutexes before modifying any accounts

no more race conditions for parallel invocations of transaction()

• summation thread could also work ― provided it locks the mutex
to read the account

• New problem: possible deadlock, can you spot it?

void transaction_r(Account a1, Account a2, double amount) {
 mutex m1 = get_mutex(a1); // get exclusive access to account a1
 mutex m2 = get_mutex(a2); // get exclusive access to account a2
 lock(m1); lock(m2);
 adjust(a1, -amount); // withdraw
 adjust(a2, amount); // deposit
 unlock(m2); unlock(m1); // order does not matter here
}

39

Deadlock Example with Lock Ordering

• imagine 2 transactions execute concurrently:
• thread 1 calls transaction("a", "b", 20);
• thread 2 calls transaction("b", "a", 10);

• depending on the order of execution, we could get a deadlock

Thread 1:

 mutex m1 = get_mutex("a");
 mutex m2 = get_mutex("b");
 lock(m1);
 lock(m2);

 adjust(a1, - amount);
 adjust(a2, amount);

Thread 2:

 mutex m1 = get_mutex("b");
 mutex m2 = get_mutex("a");
 lock(m1);
 lock(m2);

 adjust(b, - amount);
 adjust(a, amount);

40

Deadlock Example

• we can change the the locking order based on resource ordering
• imagine the Account class offers a unique ID using .id() method

• 2 extra lines of code ⟶ no more deadlocks

void transaction(Account a1, Account a2, double amount)
{
 mutex m1 = get_mutex(a1);
 mutex m2 = get_mutex(a2);
 if(a1.id() < a2.id())
 swap(m1, m2);
 lock(m1); lock(m2);
 adjust(a1, -amount);
 adjust(a2, amount);
 unlock(m2); unlock(m1);
}

41

Deadlock Example

• if Account exposes .lock() and .unlock() methods instead of raw mutexes, we could write:

void transaction(Account a1, Account a2, double amount)
{
 if(a1.id() < a2.id()) {
 a1.lock(); a2.lock();
 } else {
 a2.lock(); a1.lock();
 }

 adjust(a1, -amount);
 adjust(a2, amount);

 a1.unlock(); a2.unlock();
}

42

Avoidance

43

Deadlock Avoidance

• deadlock prevention schemes can lead to low resource utilization

• deadlock avoidance can increase resource utilization if some a priori information is available,
e.g. each process declares the maximum number of resources of each type that it may need

• a deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure
that there can never be a circular-wait condition

• the state is defined by:
1. the number of available resources
2. already allocated resources, and
3. the maximum demands of the processes (the a priori information)

44

Safe State

• a system is in a safe state if there exists a sequence <P1, P2, …, Pn> of all running processes in
the system where they can all finish, while allowing them to claim their maximum resources

• i.e. the processes can finish even under the worst case scenario ― where every process
requests its maximum declared resources as its next step

• a system is in an unsafe state if there does not exist such an execution sequence

• when a process requests an available resource, the system determines if granting such request
would lead to a safe state

• if new state is safe, request is granted
• if new state is not safe, request is denied and process waits

• i.e. a process may be blocked even if it requests a resource that is currently available

45

Safe, Unsafe, Deadlock State

• if a system is in a safe state → deadlocks are not
possible (because they will be avoided by the
system)

• if a system is in an unsafe state → deadlocks are
possible (but not guaranteed)

• avoidance algorithm ensures that a system never
enters an unsafe state, by rejecting/blocking some
requests even if resources are available

unsafe
state

safe
state

46

Deadlock Avoidance Algorithms

• for single instance per resource type
• we use a resource-allocation graph algorithm
• i.e. we'll assume worst case scenario, create a graph and look for cycles in this graph

• for multiple instances per resource type
• we use the banker’s algorithm
• not covered in this course

47

Resource-Allocation
Graph Algorithm

48

Resource-Allocation Graph Algorithm

• claim edge Pi → Rj indicates that process Pj may request resource Rj
• represented by a dashed line
• this is the a priori knowledge

• claim edge converts to request edge when a process actually requests a resource
• represented by a solid line

• request edge converts to an assignment edge when the resource is allocated to the process
• represented by a solid line, reversed direction

• when a resource is released by a process, assignment edge reconverts to a claim edge
• reverse direction & becomes dashed

• resources must be claimed a priori in the system

49

Resource-Allocation Graph
assignment edge
P1 holds R1

claim edge
P1 may request R2

request edge
P2 is requesting R1

claim edge
P2 may request R2

R1

R2

P1 P2

50

Resource-Allocation Graph

R1

R2

P1 P2

R1

R2

P1 P2

R1

R2

P1 P2

P2 may request R2
represented as claim edge

P2 actually requests R2
claim edge converts to request edge

P2 holds R2
claim edge converts to

assignment edge

P2 releases R2
assignment edge converts back to claim edge

51

Resource-Allocation Graph Algorithm

• suppose that process requests a resource
• we decide whether to grant it by assuming the worst-case scenario

• the request can be granted only if allowing such request will not violate safe state
• we make sure that converting the request edge to an assignment edge

does not result in formation of a cycle
• complexity: same as cycle-detection algorithm in a directed graph, i.e. O(|V| + |E|)

e.g. using topological sort algorithm

can be
granted

cannot be granted
and P2 would block

R1

R2

P1 P2

52

Unsafe state could lead to deadlock
R1

R2

P
1

P
2

safe
state

R1

R2

P
1

P
2

by granting the
request, unsafe

state

R1

R2

P
1

P
2

if P1 requests R1,
we have deadlock

R1

R2

P
1

P
2

P2
requests

R2

R1

R2

P
1

P
2

if P1 releases R1,
no deadlock

53

Banker’s Algorithm

54

Banker’s Algorithm

• another avoidance algorithm

• more general than resource-allocation graph algorithm

• works with multiple instances per resource type

• even slower than the graph algorithm
• banker's: O(|processes|2 * |resources|)
• graph: O(|V| + |E|)

55

Detection

56

Deadlock Detection

• we allow the system to enter a deadlock state
• but eventually we detect the deadlock and recover from it

• motivation:
• prevention leads to non-optimal resource utilization/starvation
• avoidance is expensive, and still non-optimal resource utilization
• deadlocks are not that common to begin with

• detection algorithm – tells us which processes are involved in a deadlock, if any
• with single instance per resource type
• multiple instances per resource type

• recovery scheme

57

Deadlock detection with single instance per resource
type

• if there is a cycle in resource allocation graph, then there is a deadlock
• the graph could be big...

• periodically invoke an algorithm that searches for a cycle in the graph

• if there is a cycle, there exists a deadlock

58

Deadlock detection with multiple instances per
resource type

• similar to banker's algorithm

• we try to determine if a sequence exists in which all running processes can finish executing

• we assume best case scenario - a process that is given its requested resources will finish
without asking for more resources, and then releases all its resources

• Algorithm requires an order of O(m * n2) operations to detect whether the system is in
deadlocked state.

59

Detection-Algorithms - when and how often?
• detection algorithms are quite expensive, O(n2) or even O(n3)

• we probably cannot invoke them on every resource request

• other ideas for invoking detection:
• check every few minutes in a background task
• check when CPU goes idle (or drops below certain utilization?)

• when, and how often depends on:
• how often a deadlock is likely to occur?
• how many processes will be affected?

• one for each disjoint cycle

• if we check too often - we spend too many CPU cycles on useless work

• if we don't check often enough - there may be many cycles in the resource graph and we
would not be able to tell which of the many deadlocked processes “caused” the deadlock

60

Recovery

61

Deadlock recovery

1. process termination
2. process rollback
3. resource preemption

62

Recovery from deadlock: Process Termination

• we could abort all deadlocked processes
• simple, but rarely necessary

• better solution is to abort one process at a time until the deadlock is eliminated

• some ideas for the order in which we abort processes:
• priority of the process
• age of the process
• how much longer to completion
• resources the process has used
• resources process needs to complete
• how many processes will need to be terminated
• is process interactive or batch

63

Recovery from deadlock: Process Rollback

• more gentle than process termination
• programs can be implemented to cooperate with termination
• a program can periodically or on demand save its current state (checkpoint)
• when restarted, the program detects a checkpoint and resumes computation from last

checkpoint (rollback)
• programs can then checkpoint themselves just before requesting resources,

or inside signal handlers

• when deadlock is detected, a program can be terminated and re-scheduled to run later
• e.g. after the other affected deadlocked processes are done

• does not work well with all resource types (e.g. printer)

• useful for long running computations / simulations

64

Recovery from deadlock: Resource Preemption

• similar idea to rollback, but instead of checkpointing the program, we checkpoint the
resources of the program

• when deadlock occurs:
• pick a victim process
• suspend victim process
• save state of victim's resources
• give victim's resources to other deadlocked processes
• when the other processes release the resources, restore resource states
• return resources to the victim
• unsuspend the victim process

• obviously, this only works with some resource types

• quite complicated to implement

65

Recovery from deadlock

• starvation can be a problem with rollback & checkpointing
• we might continually pick the same process to preempt/checkpoint
• possible solution: keep count of preemptions/checkpoints
• when picking the next process, take this count into consideration

66

Deadlock?

https://www.gatevidyalay.com/resource-allocation-graph-deadlock-detection/

https://www.gatevidyalay.com/resource-allocation-graph-deadlock-detection/

67

Dining Philosophers

68

2 dining philosophers without deadlock avoidance

69

2 dining philosophers with deadlock avoidance

70

2 dining philosophers with deadlock avoidance

71

Topological sort

72

Topological sort

• a topological sort (toposort), labels vertices of a directed acyclic graph (DAG) from 1 to |V|
such that if there is path from vertex i to vertex j, then label of vertex i < label of vertex j

• in other words, the result of a toposort is an ordering of all vertices in such a way, that if there
is an edge from A to B, then A will be listed before B in the final ordering

• common use of toposort is to sort tasks based on their dependencies,
e.g. taking university courses while satisfying their prerequisites

73

Topological sort

• interesting: if we vertically lay out the vertices in a DAG in
topological order, all edges will point downwards

• a topological order may not be unique

e.g. for the graph on the right, both

{a,b,d,g,i,f,h,e,j,c} and {a,b,c,d,g,i,e,j,f,h}

are valid topological orders

• if a graph contains a cycle, topological order does not exist, i.e.

toposort will fail to finish

a

b

d

g

i

c

f

h

e

j

74

Toposort in english

• repeat:
• find task that can be completed now (it does not depend on anything)
• if no such task exists, exit loop
• otherwise print & remove this task

• if we removed all tasks, we successfully finished toposort
• we printed tasks in topological order

• otherwise, there must be a cycle
• all remaining (unremoved) tasks are waiting for at least one task

75

Toposort algorithm

• repeat the following steps

• find a node n in the graph that has no arrows pointing out from (towards*) it

• if there is no such node, break loop

• add node n to the result (e.g. linked list)

• remove any edges from the graph that end (start*) at node n,

this is enough to simulate removal of n from graph

• if the result contains all vertices of the grap, the result represents the topological order

• otherwise return an error - indicating there must be a cycle in the graph

• any remaining nodes in graph are directly or indirectly part of the cycle

76

Toposort illustration
buy

ingredients
prapare
kitchen

prapare
batter

prapare
frosting

bake cake frost cake

eat cake clean up

buy
ingredients

prapare
kitchen

prapare
batter

prapare
frosting

bake cake frost cake

eat cake clean up

buy
ingredients

prapare
kitchen

prapare
batter

prapare
frosting

bake cake frost cake

eat cake clean up

buy
ingredients

prapare
kitchen

prapare
batter

prapare
frosting

bake cake frost cake

eat cake clean up

77

Toposort pseudocode

g = graph that we wish to topologically sort
result = []
s = stack of all all vertices m such that in-degree(m)=0
while len(s) > 0:

n = s.pop()
result.append(n)
for every edge e in adjacency-list(n):

remove edge e from the graph g
if in-degree(m)==0:

s.insert(m)
if len(res) != number_of_vertices(g):

print graph contains a cycle
else:

print res

with the right data structures, it is possible to implement so that
runtime complexity = O(|V|+|E|)

a

b

d

g

i

c

f

h

e

j

78

Graph representation
a

b

d

g

i

c

f

h

e

j

n in-degree(n) adj-list(n)

a 0 b

b 1 c,d,e

c 1

d 1 f,g

e 1 j

f 1 h

g 1 h,i

h 2

i 1 j

j 1

79

Review

80

Review

■ Define deadlock.
■ If there is a deadlock, that means there is a circular wait between processes. True or False
■ If there is a circular wait between processes, than means there is a deadlock. True or False
■ Which of the following methods is used to prevent circular waiting among processes and

resources?
□ Spooling
□ Request all resources at the beginning
□ Take resources away
□ Order resources & lock in order

■ How do we detect a deadlock?
■ Name three approaches for deadlock recovery.
■ What is a checkpoint?

Onward to …
CPU scheduling

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Deadlocks
	Topics
	Definition
	Deadlock definition
	System Model
	System model
	System model
	Conditions
	Deadlock – sufficient and necessary conditions
	Deadlock with mutex locks
	Resource-Allocation Graph
	Resource-Allocation Graph with 1 instance per resource type
	Resource-Allocation Graph with multiple instances per resource
	Resource Allocation Graph Example
	Resource Allocation Graph With A Deadlock
	Graph With A Cycle But No Deadlock
	Deadlock vs Cycle
	Example
	Example
	Example: sequence of operations leading to deadlock
	Example: sequence of operations not leading to deadlock
	Handling Deadlocks
	Methods for dealing with deadlocks
	Prevention
	Deadlock prevention
	Slide Number 26
	Deadlock prevention - example
	Deadlock prevention - example
	Deadlock prevention - example
	Slide Number 30
	Deadlock prevention
	Slide Number 32
	Deadlock prevention
	Resource ordering in C/C++
	Deadlock Example
	Deadlock Example
	Deadlock Example
	Deadlock Example
	Deadlock Example with Lock Ordering
	Deadlock Example
	Deadlock Example
	Avoidance
	Deadlock Avoidance
	Safe State
	Safe, Unsafe, Deadlock State
	Deadlock Avoidance Algorithms
	Slide Number 47
	Resource-Allocation Graph Algorithm
	Resource-Allocation Graph
	Resource-Allocation Graph
	Resource-Allocation Graph Algorithm
	Unsafe state could lead to deadlock
	Slide Number 53
	Banker’s Algorithm
	Detection
	Deadlock Detection
	Deadlock detection with single instance per resource type
	Deadlock detection with multiple instances per resource type
	Detection-Algorithms - when and how often?
	Recovery
	Deadlock recovery
	Recovery from deadlock: Process Termination
	Recovery from deadlock: Process Rollback
	Recovery from deadlock: Resource Preemption
	Recovery from deadlock
	Deadlock?
	Dining Philosophers
	2 dining philosophers without deadlock avoidance
	2 dining philosophers with deadlock avoidance
	2 dining philosophers with deadlock avoidance
	Topological sort
	Topological sort
	Topological sort
	Toposort in english
	Toposort algorithm
	Toposort illustration
	Toposort pseudocode
	Graph representation
	Review
	Review
	Onward to …�CPU scheduling

