
More Synchronization
Mechanisms
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024

2

Topics

• thread safe classes and monitors

• message passing
• disabling interrupts
• lock variables

• strict alternation, Peterson’s algorithm
• atomic operations, synchronization hardware,

spinlocks
• fork-join model & barriers

• priority inversion
• race conditions in processes (filesystems)
• reader-writer lock

3

Containers and Threads

4

C++ containers & threads

• C++ containers are not thread-safe
• modifying the same container instance from multiple threads could result in

race conditions and UB (undefined behavior)
• e.g. you cannot have a shared std::vector and have multiple threads use

it simultaneously in arbitrary ways, such as calling push_back()

• does it mean we cannot use C++ container in multi-threaded code?
• we can, but only if we take proper precautions …

5

C++ containers & threads

• C++ containers are OK to use in multiple threads in some circumstances:

• access to shared containers is done in protected critical sections
e.g. access to shared global std::vector guarded by a mutex

• or, each thread modifies a different instance
e.g. local std::vector variables in each thread

• or, each thread use shared instances in read-only manner (only use const methods)
e.g. shared global std::vector variable, used in read-only mode in multiple threads

6

C++ containers & threads

• thread safety of other types of access depend on the container (BE CAREFUL)
read https://en.cppreference.com/w/cpp/container (see section on Thread safety)

• e.g. it's OK to allocate a shared std::vector in main thread, and then modify different
elements of it in different threads, as long as we don't resize it (shrink or grow)

• but the same does not apply to std::unordered_map, since change in
values could result in re-balancing the tree, which is not thread-safe

https://en.cppreference.com/w/cpp/container

7

Monitors

8

Monitors

• a monitor is a higher-level construct compared to mutexes and semaphores

• a monitor is a programming language construct that controls access to data shared between
threads

• synchronization code automatically added by a compiler and enforced at runtime

• implemented (to some extent) in C#, D, Modula-3, Java, Ruby, Python, …

• can be emulated in C++, by manually implementing thread-safe classes

• can be even emulated in C, but requires careful use

9

Monitors

• a monitor is a module that encapsulates
• private data members that can be shared among threads
• public methods that operate on these shared data structures
• monitors can only be accessed via the published methods
• execution of all public methods is automatically mutually exclusive per instance,

using a hidden mutex, which is auto-locked in each method
• can include condition variables for signalling conditions

• a properly implemented monitor is virtually impossible to use in a wrong way,
because they are thread-safe

10

Monitors

←calling incr() or decr() from multiple threads
would allow one thread in, the rest would block

←think of all bodies of all methods as being critical
sections, protected by one mutex

←in C++ you can emulate this by making a private
mutex, and locking it at the beginning of every
method

• concurrent invocations of any method of the same instance will result in only one thread
executing a method, while the other threads will block

• Example (made-up syntax):

Monitor counter {
 int c = 0;
 void incr() {
 c = c + 1;
 }
 void decr() {
 c = c - 1;
 }
 int get() { return c; }
 }

11

Monitors with condition variables

• monitors can have their own condition variables

• CVs declared as part of the module

• only accessible from within the module (private)

• similar to pthread_cond_t

Monitor counter {

 ...

 condition c1, c2;

 proc() {

 c1.wait();

 c2.signal();

 }

 }

12

Thread-Safe Class

13

class Counter {
long counter = 0;
std::mutex m;

public:

void increment() {
m.lock();
counter ++;
m.unlock();

}

void decrement() {
std::lock_guard<std::mutex> guard(m);
counter --;

}

long get() {
std::lock_guard<std::mutex> guard(m);
return counter;

}
};

Thread-safe C++ class - with mutex & scope guard

int main() {
Counter c;

auto t1 = std::thread([&](){
for(int i = 0 ; i < 10000000 ; i ++)

c.increment();
});

auto t2 = std::thread([&](){
for(int i = 0 ; i < 10000000 ; i ++)

c.decrement();
});

t1.join();
t2.join();

printf("Counter=%ld\n", c.get());
}

14

Thread-safe classes vs. semaphores and mutexes

• once a thread-safe class is correctly programmed, access to the protected resource
is correct for accessing from all threads

• with semaphores or mutexes, resource access is correct only if all
threads that access the resource are programmed correctly

• programming with thread-safe classes → you test/debug the class

• programming with mutexes/semaphores → you test/debug all code using them

15

Thread-safe classes vs. semaphores and mutexes

• most C++ containers are not thread-safe, e.g.
calling std::vector::push_back() from multiple
threads on the same vector would create a race
condition

■ Option 1: use mutex to append to vector
std::vector<int> v; // shared
std::mutex m; // shared

// inside every thread
m.lock();
v.push_back(7);

m.unlock();

it is up to the user of the std::vector to protect
against race conditions

• Option 2: implement thread-safe vector wrapper
class

class vector_int_ts {
std::mutex m;
std::vector<int> v;

public:
void push_back(int val) {
m.lock();
v.push_back(val);
m.unlock();

}
}

now you can use it like this:

vector_int_ts v; // shared

// inside any thread
v.push_back(7);

16

Message Passing

17

Message Passing

• processes or threads send each other messages
• could work across different computers too, over network

• messages can contain arbitrary data

• delivered messages can be queued up in mailboxes

• processes can check contents of mailboxes, take messages out, or wait for messages

• common implementation is MPI (message passing interface)
• popular in HPC (high-performance-computing)
• many good tutorials available (google "MPI tutorial")

• you could create your own, e.g. using thread-safe queues

18

Reminder

19

Requirements for good race-free solution

Recall:

1. Mutual exclusion: No two processes/threads may be
simultaneously inside their critical sections (CS).

2. Progress: No process/threads running outside its CS may
block other processes/threads.

3. Bounded waiting: No process/thread should have to wait
forever to enter its CS.

4. Speed: No assumptions may be made about the speed or the
number of CPUs.

General structure

non-critical section
entry code
 critical section
exit code
non-critical section

20

Disabling Interrupts

21

Disabling interrupts (bad idea)

Old idea, from back when we had single CPU per computer…

• Each process disables all interrupts just before entering its CS and re-
enable them just before leaving the CS.

• Once a process has disabled interrupts, it can examine and update the
shared memory without interventions from other processes.

Problems:

• What if a process never re-enables the interrupts?

• On a multi-CPU systems, disabling interrupts affects only one CPU.

• Sometimes used inside kernels, but even that is becoming problematic.

non-critical section
disable interrupts
 critical section
enable interrupts
non-critical section

22

Lock Variables

23

Software solution 1 – Lock variables (bad idea)

• A shared (lock) variable, initialized to 0.
• lock == 0 : no process is in CS
• lock == 1 : a process is in CS

• A process can only enter its CS if lock==0.
Otherwise, it must wait.

• Any problems?

non-critical section
while (lock == 1) {;}
lock = 1;
 critical section
lock = 0;
non-critical section

24

non-critical section
while (lock == 1) {;}
lock = 1;
 critical section
lock = 0;
non-critical section

Software solution 1 – Lock variables (bad idea)

• A shared (lock) variable, initialized to 0.
• lock == 0 : no process is in CS
• lock == 1 : a process is in CS

• A process can only enter its CS if lock==0.
• Otherwise, it must wait.

• Problem: no mutual exclusion
• 1st thread gets past while...
• context switch to 2nd thread
• 2nd thread enters CS
• context switch to 1st thread
• 1st thread enters CS
• both threads are in their CS

25

Strict Alternation

26

Software solution 2 – Strict alternation (decent idea)

• two processes alternate entering their critical sections
• shared global variable turn, initialized to 0

• mutual exclusion is OK
• other problems?

Thread 0:

 while(1) {
 while (turn != 0) {;}
 critical section
 turn = 1;
 non-critical section
 }

Thread 1:

 while(1) {
 while (turn != 1) {;}
 critical section
 turn = 0;
 non-critical section
 }

27

Software solution 2 – Strict alternation (decent idea)

• two processes alternate entering their critical sections
• shared global variable turn, initialized to 0

• problem 1: busy waiting – might be OK in some applications
• problem 2: only works for 2 processes
• problem 3: violates progress requirement – faster process blocked by
slower process not in CS

Thread 0:

 while(1) {
 while (turn != 0) {;}
 critical section
 turn = 1;
 non-critical section
 }

Thread 1:

 while(1) {
 while (turn != 1) {;}
 critical section
 turn = 0;
 non-critical section
 }

spinlock

28

Peterson's algorithm

29

Software solution 3 – Peterson's algorithm (good
idea, but…)

• software solution for 2 processes (can be extended to N processes)

• two shared variables:

• integer turn – indicates whose turn it is

• array flag[2] – indicates who is interested in entering CS, initialized to 0

Thread 0:

 while(1) {
 flag[0] = TRUE;
 turn = 1;
 while (flag[1] && turn == 1) {;}
 critical_section
 flag[0] = FALSE;

 non-critical-section
 }

Thread 1:

 while(1) {
 flag[1] = TRUE;
 turn = 0;
 while (flag[0] && turn == 0) {;}
 critical_section
 flag[1] = FALSE;

 non-critical-section
 }

30

Thread 0:

 while(1) {
 flag[0] = TRUE;
 turn = 1;
 while (flag[1] && turn == 1) {}
 critical_section
 flag[0] = FALSE;

 non-critical-section
 }

Thread 1:

 while(1) {
 flag[1] = TRUE;
 turn = 0;
 while (flag[0] && turn == 0) {}
 critical_section
 flag[1] = FALSE;

 non-critical-section
 }

mutual exclusion

progress

bounded waiting

■ WARNING: will not work on modern CPUs

□ assumes atomicity, visibility & ordering

□ modern CPUs: out-of-order execution and/or memory reordering make this a no-go solution

□ modern CPUs provide special instructions that could be used to fix this

Software solution 3 – Peterson's algorithm (good
idea, but…)

31

Atomic Operations

32

Synchronization hardware

• most modern computer systems provide special hardware instructions
that implement useful atomic operations

• atomic operation is an operation that appears to execute instantaneously with respect to
the rest of the system

• no other threads/processes will be able to change the state, or observe intermediate state,
while the atomic operation is happening

• these can be used to create higher level locking mechanisms, such as mutexes

• they can be also used to make lock-free solutions or even wait-free solutions
https://en.wikipedia.org/wiki/Non-blocking_algorithm

• examples: compare-and-swap, test-and-set, swap

https://en.wikipedia.org/wiki/Non-blocking_algorithm

33

Compare-and-swap (CAS)

• Compare-And-Swap is an atomic operation supported by most CPUs today,
e.g. CMPXCHG on Intel

• general algorithm:
• compare contents of memory to val1
• if they are the same, change the memory to val2
• return the original content of memory

Pseudocode:

int cas(int * mem, int val1, int val2)
{

int old = *mem;
if (old == val1) *mem = val2;
return old;

}

must be
atomic !

int p = 0; // shared

 // each thread:
 while(1) {
 while(cas(&p,0,1) == 1) {;}
 critical section
 p = 0;
 non-critical section
 }

must be
atomic !

Using CAS to protect CS.

34

Compare-and-swap in GCC 4.4+

• gcc provides access to a number of atomic operations, including CAS
• type __sync_val_compare_and_swap (type *ptr, type oldval, type newval)

• atomic compare and swap
• type can be any 8, 16, 32 and 64 bit integers or pointers

• saves the original value of *ptr

• if the current value of *ptr==oldval, then overwrite *ptr with newval

• returns the original value of *ptr

• bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval)

□ same as above, but a bit more convenient

□ returns true if newval was written, otherwise returns false

35

Atomic counter with compare-and-swap (lock free)

• we can implement thread-safe counter with just compare-and-swap

• notice the while loop loops only if other threads are trying to modify the same counter at the
same time, and will usually terminate very quickly

• the program is considered lock-free – at least one thread is guaranteed to progress

void atomic_add(int * counter, int val) {
 int done = 0;
 while(! done) {
 int curr = * counter;
 done = __sync_bool_compare_and_swap(
 counter, curr, curr + val);
 }
}

void inc(int * counter) {
 atomic_add(counter, 1);
}

void dec(int * counter) {
 atomic_add(counter, -1);
}

36

Atomic counter with atomic integer (lock/wait free)

• if you use a type that supports atomic operations, you can create lock-free programs, or even wait-
free programs

• atomic operations easy to use C++11 and above:

• the above code is "wait-free" on most architectures, as each operation will finish in
bounded amount of time

• wait-free implies lock-free, but not the other way around
• think of wait-free as programming with atomic operations that can be used without loops

#include <atomic>

std::atomic<int> counter;

void inc(std::atomic<int> & counter) {
 counter ++; // atomic
 counter += 1; // atomic
 counter = counter + 1; // NOT ATOMIC!!!
}

void dec(std::atomic<int> & counter) {
 counter --;
}

37

C++, thread-safe class that is lock-free (and likely
wait-free)

int main() {
Counter c;
auto t1 = std::thread([&] () {

for(int i = 0 ; i < 10000000 ; i ++)
c.increment();

});
auto t2 = std::thread([&] {

for(int i = 0 ; i < 10000000 ; i ++)
c.decrement();

});
t1.join();
t2.join();
printf("Counter=%ld\n", c.get());

}

#include <cstdio>
#include <thread>
#include <atomic>

class Counter {
std::atomic<long> p_counter = {0};

public:
void increment() { p_counter ++; }
void decrement() { p_counter --; }
long get() { return p_counter; }

};

note: Counter is a silly class, since we could just use
std::atomic<long> c; but it could prevent us from accidentally
typing c = c + 1; and it would also allow us to change the
implementation later without changing APIs

38

Test-and-set

• a weaker version of compare-and-swap, only using booleans
• general algorithm

• remember contents of memory
• set memory to true
• return the remembered contents of memory

Pseudocode:

int tas(int* mem)
{
int old = * mem;
* mem = TRUE;
return old;

}

Using test-and-set to protect CS.

// shared with all threads:
int p = 0;

// in each thread:
while(1) {
 while(tas(&p)) {;}
 critical section
 p = 0;
 non-critical section
}

39

Swap

• another atomic operation that can be used for synchronization

• general algorithm
• atomically swap contents of two memory locations

Pseudocode:
void swap(int* a, int* b)
{

int tmp = * a;
* a = * b;
* b = tmp;

}

atomic !

Using swap to protect CS.

// shared with all threads:
int lock = 0;

// in each thread:
while(1) {
 int key = 1; // local var.
 while(key) swap(&lock,&key);
 critical section
 lock = 0;
 non-critical section
}

40

Spinlocks

41

Spinlocks

• another synchronization mechanism

• lightweight alternative to mutex, but read this before using:
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
TLDR; in general, prefer mutex over spinlock

• implemented using busy waiting loops,
but only* makes sense on multi-core/multi-cpu systems

• usually implemented in assembly, using atomic instructions

• potentially efficient if you know the wait time will be very short
as re-scheduling is not required

atomic operation - an operation that
appears to execute instantaneously
w.r.t. to the rest of the system

nothing else will be able to change the
state, or observe intermediate state,
while the operations is happening

https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

42

Spinlocks

■ you could use spinlocks instead of mutexes to protect critical sections

■ code using spinlocks might actually run a bit faster, especially if CS is shorter than time slice
and/or number of threads <= number of cores

■ but spinlocks are less efficient – they tie up the CPU

mutex m;

 ...

 mutex_lock(& m);

 /* critical section */

 mutex_unlock(& m);

spinlock s;

 ...

 spin_lock(& s);

 /* (very short) critical section */

 spin_unlock(& s);

43

Spinlock in x86 -
https://en.wikipedia.org/wiki/Spinlock
locked: ; The lock variable. 1 = locked, 0 = unlocked.

dd 0 ; initialized to 'unlocked'

spin_lock: ; procedure to lock the mutex
mov eax, 1 ; set the EAX register to 1
xchg eax, [locked] ; atomically swap EAX with the lock variable

; eax = old locked, new locked = 1
test eax, eax ; test whether old locked == 0
jnz spin_lock ; keep spinning until old locked == 0
ret ; the lock was acquired, we are done (locked = 1!!!)

spin_unlock: ; procedure to unlock the mutex
mov eax, 0 ; set EAX register to 0.
xchg eax, [locked] ; atomically set locked = 0
ret ; lock has been released

https://en.wikipedia.org/wiki/Spinlock

44

Spinlock using compare-and-swap

void spin_lock(volatile int *p)
{

while(! __sync_bool_compare_and_swap(p, 0, 1)) { /* ??? */ }
}

void spin_unlock(volatile int *p)
{

*p = 0;
}

45

Spinlock using compare-and-swap

void spin_lock(volatile int *p) {
while(!__sync_bool_compare_and_swap(p, 0, 1)) {

; // option 1 - CPU/bus very busy
sched_yield(); // option 2 - reschedule thread, lot of CPU overhead
while(*p) {;} // option 3 - lot of CPU overhead, less bus overhead
while(*p) _mm_pause(); // option 4 - less bus overhead with multiple CPUs

// mm_pause is an intrinsic, delaying
// execution of the next instruction
// by a small amount

}
}

void spin_unlock(volatile int *p) {
*p = 0;

}

46

Spinlocks in pthreads

#include <pthread.h>
int pthread_spin_init(pthread_spinlock_t * lock, int pshared);

int pthread_spin_destroy(pthread_spinlock_t * lock);

int pthread_spin_lock(pthread_spinlock_t * lock);

int pthread_spin_trylock(pthread_spinlock_t * lock);

int pthread_spin_unlock(pthread_spinlock_t * lock);

Notice the similarity to mutex APIs - making it trivial to switch between mutexes and spinlocks.

47

Synchronization hardware

48

Synchronization hardware

• can be used to protect critical sections with mutual exclusion, progress, speed and even
bounded waiting

• advantage:
• avoids system calls
• can be more efficient if expected wait time is short
• only makes sense on multi-CPU/core systems

• drawbacks:
• busy-waiting (spinlocks)
• no bounded wait (can be added, but requires extra coding)

49

Bounded waiting with synchronization hardware

• when used correctly, the low level atomic
operations such as compare-and-swap, test-
and-set, swap can be used to achieve mutual
exclusion, progress and speed

• but they are too low level to achieve bounded
waiting, especially for more than 2 processes

• bounded waiting can be 'added', for example,
by using few more shared variables

// we'll use integer for locking
// using test-and-set
int lock;

// array of booleans indicating which
// process wants to enter critical
// section
int waiting[n];

// process/thread ID, starting at 0
int id;

// general structure
while (1) {
 /* ??? entry code ??? */
 /* critical section */
 /* ??? exit code ??? */
 /* remainder section */
}

50

while (1) {
 waiting[id] = true;
 while (waiting[id]
 && testAndSet(&lock)) {;}
 waiting[id] = false;

 /* critical section */

 j = (id + 1) % n;
 while ((j != id) && !waiting[j])
 j = (j + 1) % n;
 if (j == id)
 lock = false;
 else
 waiting[j] = false;

 /* remainder section */
}

Bounded waiting with synchronization hardware
indicate interest to

enter CS

if CS is locked, we
wait until someone
else gives us a turn

clear indicator
find next process
trying to enter CS

if nobody else
waiting, release lock

if we found someone
else waiting, let

them enter CS, but
without releasing

lock

51

Fork-join Model

52

Fork-join model

• imagine you have program
• parts of it can run in parallel
• other parts can only run serially

• for example:

• Q: how do we program this?
A: we can try pthread_create() / pthread_join()

int main() {

serial_task_1();

parallel_task_1();

serial_task_2();

parallel_task_2();

serial_task_3();

}

should be executed
by only 1 thread

should be executed
by all threads

53

Fork-join model (using thread creation and
destruction)
• we can create threads whenever we want to run

something in parallel

• then destroy threads when we need to run
something in a single thread

int main() {

st1 serial_task_1();

pt1 parallel_task_1();

st2 serial_task_2();

pt2 parallel_task_2();

st3 serial_task_3();

}

st 1

pt 1 pt 1 pt 1 pt 1

pthread_create

pthread_join

st 2

pt 2 pt 2 pt 2 pt 2

pthread_create

pthread_join

st 3

54

Fork-join using pthread_create and pthread_join

const int N_THREADS = 5;
const int N_WORK = 5;

int main() {
pthread_t thread_id[N_THREADS];

serial_work();

for(int i = 0 ; i < N_THREADS ; i ++)
pthread_create(& thread_id[i], NULL,

parallel_work, NULL);
for(int i = 0 ; i < N_THREADS ; i ++)

pthread_join(thread_id[i], NULL);

serial_work();

for(int i = 0 ; i < N_THREADS ; i ++)
pthread_create(& thread_id[i], NULL,

parallel_work, NULL);
for(int i = 0 ; i < N_THREADS ; i ++)

pthread_join(thread_id[i], NULL);

serial_work();
}

barrier-fork-join-with-pthreadjoin.cpp
works, but not very efficient due to creating/destroying threads

void serial_work() {
 for(int i = 0 ; i < N_WORK ; i ++) {
 printf("serial work %d\n", i);
 rand_sleep();
 }
}

void * parallel_work(void *) {
 for(int i = 0 ; i < N_WORK ; i ++) {
 printf("parallel work %d\n", i);
 rand_sleep();
 }
}

55

Barriers

56

Barriers

• imagine you have a program with multiple threads, and occasionally
you need all threads to reach the same point before continuing

i.e. you want all threads to block until all threads reach this point,
and then all threads would continue again

• this is easy to program using barriers

• when a thread executes barrier, the thread waits until the last
thread reaches the same barrier, after which all threads are
unblocked

• example pseudocode:

thread_run() {
parallel_task_1(); // all threads run this together
barrier(); // threads wait until all threads reach the barrier
parallel_task_2(); // all threads run this together

}

thread 1

thread 2

thread 3

thread 4

thread 1

thread 2

thread 3

thread 4

barrier

task 1

task 2

57

Fork-join example using barriers

• barriers can also distinguish one of the threads from the rest (the thread is picked arbitrarily)

• this can be used to pick one thread to execute the serial task

• note that we need to surround the serial task with two barriers

• example with 4 threads, where thread 3 is (randomly) picked to execute serial task:

parallel_taskthread 1:

thread 2:

thread 3:

thread 4:

parallel_task barrier

parallel_task

parallel_task

block

block

block

barrier

parallel_task

parallel_task

parallel_task

parallel_task

block

block

block

serial_task

time

58

pthread_barrier

• pthread_barrier_t barrier;

• declare a barrier object, shared by all threads, e.g. global variable [yuck]

• pthread_barrier_init(pthread_barrier_t *barrier,

const pthread_barrierattr_t *attr,

unsigned int count)

• initialize a barrier object
• count specifies how many threads we are synchronizing (usually total number of threads)

• int pthread_barrier_wait(pthread_barrier_t *barrier)

• first count-1 threads will block, until count threads have called this
• returns 0 for count-1 threads, and PTHREAD_BARRIER_SERIAL_THREAD for one arbitrary thread

• pthread_barrier_destroy(pthread_barrier_t *barrier)

• cleanup

59

Fork-join example using pthread_barrier (C)

barrier-fork-join-with-pthreadbarrier.cpp

much more efficient since we are re-using threads

void * run(void *) {
parallel_work();
if(pthread_barrier_wait(& barr_id) != 0)

serial_work();
pthread_barrier_wait(& barr_id);
parallel_work();
if(pthread_barrier_wait(& barr_id) != 0)

serial_work();
pthread_barrier_wait(& barr_id);
parallel_work();

}

int main() {
pthread_t thread_id[N_THREADS];
pthread_barrier_init(& barr_id,NULL,N_THREADS);
for(int i = 0 ; i < N_THREADS ; i ++)

pthread_create(& thread_id[i], NULL, run, NULL);
for(int i = 0 ; i < N_THREADS ; i ++)

pthread_join(thread_id[i], NULL);
}

const int N_THREADS = 5;
const int N_WORK = 5;

void serial_work() {
 for(int i=0 ; i<N_WORK ; i++) {
 printf("serial work %d\n", i);
 rand_sleep();
 }
}

void parallel_work() {
 for(int i=0 ; i<N_WORK ; i++) {
 printf("parallel work %d\n", i);
 rand_sleep();
 }
}

60

C++ custom barrier (no built-in barrier until C++20)

class simple_barrier {

std::mutex m_;
std::condition_variable cv_;
int n_remaining_, count_;
bool coin_;

public:

simple_barrier(int count) {
count_ = count;
n_remaining_ = count_;
coin_ = false;

}

bool wait() {
std::unique_lock<std::mutex> lk(m_);
if(n_remaining_ == 1) {

coin_ = ! coin_;
n_remaining_ = count_;
cv_.notify_all();
return true;

}
auto old_coin = coin_;
n_remaining_ --;
cv_.wait(lk, [&](){ return old_coin != coin_; });
return false;

}

};

barrier-implementation.cpp

61

Readers/writer lock

62

Readers/writer lock

• scenario:
• a single resource is shared among several threads and resource supports

multiple concurrent readers, but only a single writer, e.g. a shared global variable
• some threads only read the resource, others read and write it

• we can use a shared-exclusive lock, or reader-writer lock
• such lock would have two different locking APIs - one for reading, one for writing

• pthread has pthread_rwlock_*() , C++17 has std::shared_mutex;

• we could use semaphores to implement this ourselves

63

Readers/writers implementation with semaphores

// number of readers currently reading
int readcount = 0;
// used as mutex to protect CS in reader
sem_t cs = 1;
// semaphore to block/unblock writers
sem_t w_only = 1;

writer_lock() {
sem_wait(w_only); // lock out readers

}

writer_unlock() {
sem_post(w_only); // allow readers

}

reader_lock() {
sem_wait(cs); // enter critical section

readCount ++; // add reader
if (readCount == 1) // first reader will

sem_wait(w_only); // wait for writers
sem_post(cs); // exit critical section

}

reader_unlock() {
sem_wait(cs); // enter critical section

readCount --; // remove reader
if (readCount == 0) // last reader will

sem_post(w_only); // let writers write
sem_post(cs); // exit critical section

}

64

Priority Inversion

65

Priority inversion

• Scenario: Assume we have three processes, L, M, and H, whose priorities follow the
order L < M < H. Assume that process H requires resource R, which is currently being accessed
by process L. While H is waiting for L to finish using resource R, M becomes runnable, thereby
preempting process L. Now, H has to wait for both M and L to finish. Effectively, H has the
lowest priority in this execution.

• This problem is known as priority inversion.

• Possible solution: priority-inheritance

• As soon as H requests resource R, the process P holding resource R automatically inherits
the priority of H if the P has lower priority. Once P releases the resource, its original priority
is restored.

• As a result, we would have the following execution order in the above scenario: L, H, M.

66

Race conditions between processes

67

Race conditions between processes

Imagine a simple design of a print server

○ assume clients and server have access to a shared
/printJobs directory (e.g. NFS)

○ to print, a client saves a PDF file to /printJobs

○ a print server monitors /printJobs,
e.g. by scanning the /printJobs directory for *.pdf every
5 seconds

○ when the server detects a PDF file, it prints it and removes
the file

Can you spot a problem with this setup?

/printJob
s

PDF

clien
t

clien
t

serve
r

PDF

PDF

68

Race conditions between processes

Problems with this design:

• print server might print an incomplete PDF file

• two (or more) clients might decide to write to the same PDF file

How to fix?

• we need to prevent incomplete PDF files from
appearing in the directory

• each client needs to pick a unique filename for PDF

/printJob
s

PDF

clien
t

clien
t

serve
r

PDF

PDF

69

Race conditions between processes

• what assumptions can we make?

• some filesystems support file/directory locking mechanisms,
but not all, so we should not rely on those

• however, nearly all filesystems support at least 2 atomic operations:

• file creation via open(fname, O_CREAT|O_EXCL, 0644);
• file rename via rename(old_fname,new_fname);

• many systems also support mkstemp() for creating
temporary files

• more info: https://tldp.org/HOWTO/Secure-Programs-HOWTO/avoid-race.html

https://tldp.org/HOWTO/Secure-Programs-HOWTO/avoid-race.html

70

Race conditions between processes

Solution:

• server needs no modification, we only modify
how clients print

• to print, client creates a temporary file inside /printJobs,
e.g. file job-xxxxxx.tmp, where xxxxxx is random characters

• we can use mkstemp(3) for this, or open(2) in a loop

• client then writes PDF output to the temporary file

• finally, client renames job-xxxxxx.tmp to job-yyyyyy.pdf
where yyyyyy is another string of random characters

// renaming temp. file to PDF
loop:
 yyyyyy = random string
 rename(job-xxxxxx.tmp,
 job-yyyyyy.pdf)
 break if successful

// creating temp. file
loop:
 xxxxxx = random string
 open(job-xxxxxx.tmp,
 O_CREAT|O_EXCL,0644)
 break if successful

71

Event Flags

72

Event Flags

• event flags:
• a memory word with N bits

• different events may be associated with different bits in a flag
• operations:

• set flag
• clear flag
• wait for 1 flag
• wait for any flag
• wait for all flags

73

Review

74

Review

• Which one of the following achieves mutual exclusion but violates the “progress” requirement?
• Disabling Interrupts
• Lock Variables
• Strict Alternation
• Peterson’s Solution

Onward to …
deadlocks

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	More Synchronization Mechanisms
	Topics
	Containers and Threads
	C++ containers & threads
	C++ containers & threads
	C++ containers & threads
	Monitors
	Monitors
	Monitors
	Monitors
	Monitors with condition variables
	Thread-Safe Class
	Thread-safe C++ class - with mutex & scope guard
	Thread-safe classes vs. semaphores and mutexes
	Thread-safe classes vs. semaphores and mutexes
	Message Passing
	Message Passing
	Reminder
	Requirements for good race-free solution
	Disabling Interrupts
	Disabling interrupts (bad idea)
	Lock Variables
	Software solution 1 – Lock variables (bad idea)
	Software solution 1 – Lock variables (bad idea)
	Strict Alternation
	Software solution 2 – Strict alternation (decent idea)
	Software solution 2 – Strict alternation (decent idea)
	Peterson's algorithm
	Software solution 3 – Peterson's algorithm (good idea, but…)
	Software solution 3 – Peterson's algorithm (good idea, but…)
	Atomic Operations
	Synchronization hardware
	Compare-and-swap (CAS)
	Compare-and-swap in GCC 4.4+
	Atomic counter with compare-and-swap (lock free)
	Atomic counter with atomic integer (lock/wait free)
	C++, thread-safe class that is lock-free (and likely wait-free)
	Test-and-set
	Swap
	Spinlocks
	Spinlocks
	Spinlocks
	Spinlock in x86 - https://en.wikipedia.org/wiki/Spinlock
	Spinlock using compare-and-swap
	Spinlock using compare-and-swap
	Spinlocks in pthreads
	Synchronization hardware
	Synchronization hardware
	Bounded waiting with synchronization hardware
	Bounded waiting with synchronization hardware
	Fork-join Model
	Fork-join model
	Fork-join model (using thread creation and destruction)
	Fork-join using pthread_create and pthread_join
	Barriers
	Barriers
	Fork-join example using barriers
	pthread_barrier
	Fork-join example using pthread_barrier (C)
	C++ custom barrier (no built-in barrier until C++20)
	Readers/writer lock
	Readers/writer lock
	Readers/writers implementation with semaphores
	Priority Inversion
	Priority inversion
	Race conditions between processes
	Race conditions between processes
	Race conditions between processes
	Race conditions between processes
	Race conditions between processes
	Event Flags
	Event Flags
	Review
	Review
	Onward to …�deadlocks

