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Topics

• producer-consumer problem

• mutexes and condition variables
• semaphores
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Producer/Consumer Problem
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Producer-consumer problem

producer 1

producer 2

producer 3

...

consumer 1

producer N

consumer 2

consumer 3

consumer M

...

fixed-size
FIFO buffer
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The producer-consumer problem

• simplest case: one consumer and one producer processes/threads
• the two processes or threads share a fixed-size buffer, used as a queue
• producer puts data into buffer, must wait if buffer full
• consumer takes data out of the buffer, must wait if buffer empty
• both could be producing and consuming at different rates

buffer
(FIFO)producer consumer
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Unix Pipes
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UNIX pipes

$ find . -type f -printf "%-20s%p\n" | sort -nr | head -n 10

find sort headOS
buffer

OS
buffer

producer consumer & 
producer

consumer
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Circular Buffer
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Circular buffer

• common way to implement fixed-size queue 
typedef struct { ... } item;

item buffer[BUFF_SIZE];

int in = 0; // next free position

int out = 0; // next filled position

int count = 0; // number of items in buffer

• buffer is empty when:
in == out or when count == 0

• buffer is full when: 
(in + 1) % BUFF_SIZE == out
or when
count == BUFF_SIZE

out

in

data

free 
space

Concept:

Implementation:

in out
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Implementations
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Possible implementation - with race condition

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

}

while(1) {
// wait while buffer is empty
while( in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Can you spot the race condition?
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Possible implementation - with race condition

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

}

while(1) {
// wait while buffer is empty
while( in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Possible execution sequence
(starting eg. with count=5):

T1: reg1  = count        // count=5
T2: reg2  = count        // count=5
T2: reg2  = reg2 - 1     // count=5
T2: count = reg2         // count=4
T1: reg1  = reg1 + 1     // count=4
T1: count = reg1         // count=6



13

Possible implementation - with a mutex

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count ++; // critical section

pthread_mutex_unlock(& mut);
}

while(1) {
// wait while buffer is empty
while( in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count --; // critical section

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Did we fix all problems?
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Possible implementation - with a mutex

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count ++; // critical section

pthread_mutex_unlock(& mut);
}

while(1) {
// wait while buffer is empty
while( in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count --; // critical section

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

■ this solution would work, but only for one producer thread and one consumer thread
■ with multiple producers and/or multiple consumers we would have race condition[s]
■ another important problem: busy wait!
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Possible implementation – with a mutex and 
deadlock

while(1) {
item = produceItem();
pthread_mutex_lock(& mut);
while((in+1) % BUFF_SIZE == out) {;}
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

pthread_mutex_unlock(& mut);
}

while(1) {
pthread_mutex_lock(& mut);
while( in == out) {;}
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Not a good solution – there is now a deadlock possibility… can you find it?
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Possible implementation – with a mutex and 
deadlock

while(1) {
item = produceItem();
pthread_mutex_lock(& mut);
while((in+1) % BUFF_SIZE == out) {;}
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

pthread_mutex_unlock(& mut);
}

while(1) {
pthread_mutex_lock(& mut);
while( in == out) {;}
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

■ one possible deadlock: buffer is empty, and consumer enters its critical section …

■ consumer spins in a while loop inside CS, while producer is blocked on trying to acquire mutex

■ another deadlock: can you find it?
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Possible implementation – with a mutex and 
deadlock

while(1) {
item = produceItem();
pthread_mutex_lock(& mut);
while((in+1) % BUFF_SIZE == out) {;}
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

pthread_mutex_unlock(& mut);
}

while(1) {
pthread_mutex_lock(& mut);
while( in == out) {;}
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer
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Condition Variables
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Condition variables (CVs)

• condition variables are another type of synchronization primitive, used with mutexes

• perfect for implementing critical sections with loops that wait for some 'condition' to happen

• in many cases, while inside the "do nothing" loop, it would be safe to let another thread run its 
critical section

// critical section protected with mutex m
lock(m)
…
while( ! some_condition() ) { /* do nothing ???  */ }
…

unlock(m)
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Condition variables (CVs)

• would this work?

• it would "kind of" work, but what is the right amount of sleep x ?
• it would work much better if we could sleep until the other thread wakes us up…

// critical section protected with mutex m:
m.lock();
  // some code requiring mutex to be locked
  while( ! some_condition() ) {
    // assume that while we are inside the loop, it would be safe
    // to let some other thread run…
    m.unlock();
    std::this_thread::sleep_for(std::chrono::milliseconds(x));
    m.lock();
  }
  // more code requiring mutex to be locked
unlock(m)
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Common pattern for using CVs

• a thread locks a mutex and enters its critical section
• while still inside CS, the thread needs to wait for some condition to become true
• but the condition can only become true by allowing some other thread to lock the mutex
• to facilitate this, the thread calls wait(cv) , which releases the mutex and puts thread to sleep

• now some other thread can lock the mutex and execute code that will satisfy the condition
• yes, two threads are now in CS, but one of them is sleeping and cannot cause damage…
• when the other thread releases mutex, the mutex in the first thread is automatically re-locked

// thread1:
// CS protected with mutex m
lock(m);

…
while( ! some_condition ) { wait(cv); }
…

unlock(m);
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Condition variables

• eventually some other thread
• locks the mutex (optional)
• changes some state that will satisfy the condition
• notifies the waiting thread via the condition variable, via signal(cv)
• releases mutex (optional)

• the waiting thread then wakes up, and acquires the mutex back automatically
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Condition Variables in pthreads
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Condition variables with pthreads

pthread_mutex_t mutex; // mutex
pthread_cond_t cond;   // condition variable

pthread_cond_wait(&cond, &mutex);

• unlocks mutex and puts the calling thread to sleep,
until some other thread wakes it up via pthread_cond_signal(&cond)

• after waking up, the mutex is automatically re-acquired

• after returning, the condition must be rechecked !!! (spurious wakeups)

pthread_cond_signal(&cond);

• wakes up one thread waiting on cond

• if no threads waiting on cond, the signal is lost

• must be paired with pthread_mutex_unlock() if the blocked thread uses the same mutex
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Condition variables

pthread_cond_init(& cond, & attr)
• initializes condition variable

pthread_cond_destroy(& cond)
• destroys a condition variable

pthread_cond_broadcast(& cond)
• wakes up all threads waiting on the condition



26

Condition Variables Examples
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Condition variable example (C)

• thread 1 - decrementing counter, but never below 0
• thread 2 - incrementing counter

• this code has busy wait, and nearly guaranteed deadlock
• it is trivial to fix the above with a condition variable
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Condition variable example (pthreads)

• thread 1 - decrementing counter, but never below 0
• thread 2 - incrementing counter

• no deadlocks
• no busy waiting



29

Condition variable example (C++)
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Condition variable example (with C++ unique lock)
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Let's fix the producer/consumer deadlock

• recall the deadlock due to one thread stuck in a loop inside CS (after locking mutex), while 
other thread has no chance to run its CS to allow the other thread to exit the loop
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Fixed consumer/producer with condition variables
pthread_mutex_t mut;
pthread_cond_t full, empty;
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Semaphores
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Semaphore

• another synchronization primitive

• some similarity to mutex

• you can think of mutex as a special boolean variable shared by all threads

• with 3 special operations: initialize, lock and unlock

• you can think of semaphore as a special integer variable shared by all threads

• with 3 special operations: initialize, increment and decrement
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Semaphore

• semaphore has thread safe operations:
1. initialization

• can be initialized with any value (0 … max)
2. decrement 

• reduce semaphore by 1

• blocks the calling thread if value goes below 0

down(s), wait(s) or  sem_wait(s)
3. increment 

• increase value by 1

• and possibly unblock another blocked process

up(s), signal(s) or  sem_post(s)
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Semaphore

• can be used to protect critical sections, similar to how a mutex would be used

• similar to mutex, each semaphore maintains a set of processes blocked on the semaphore

• but a semaphore can be unlocked by any thread
• as opposed to mutex, where a locking/unlocking must be done by the same thread

initialize semaphore 
s(1);

…
sem_wait(s);
  // critical section
sem_post(s);
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Semaphore

• pseudocode implementation, using busy-waiting:

but the bodies must execute atomically

sem_post(s) {
    s ++;
}

sem_wait(s) { 
   while (s == 0) {;}
   s --;
}
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POSIX Semaphores
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POSIX semaphores

■ int sem_init (sem_t *sem, int pshared, unsigned int value)

initializes semaphore to value

■ int sem_destroy (sem_t * sem)

destroys the semaphore, fails if some threads are waiting on it

■ int sem_wait (sem_t * sem)

suspends the calling thread until the semaphore is non-zero, then atomically decreases the semaphore count

■ int sem_post (sem_t * sem)

atomically increases the semaphore, never blocks, may unblock blocked threads

■ int sem_getvalue (sem_t * sem, int * sval)

returns the value of semaphore via sval

■ int sem_trywait (sem_t * sem)

non blocking version of sem_wait()
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Example Semaphores
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Example with semaphore = 2

sem_t s;
sem_init( & s, 0, 2); // initialize semaphore to 2

• suppose 3 threads try to enter their CSs protected by a semaphore
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Example with semaphore = 2

sem_t s;
sem_init( & s, 0, 2); // initialize semaphore to 2

■ two threads will enter their CS simultaneously
■ the other thread will be blocked
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Example with semaphore = 2

sem_t s;
sem_init( & s, 0, 2); // initialize semaphore to 2

■ as soon as one thread leaves CS, the last thread will be allowed to enter its CS
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Book!
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The Little Book of Semaphores

• free book !!!

• http://greenteapress.com/wp/semaphores/

http://greenteapress.com/wp/semaphores/
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Binary Semaphore
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Binary semaphore

• special type of semaphore with value either 0 or 1
• possible implementations in pseudocode:

•

where the bodies are executed atomically
• atomic operation is an operation that appears to execute instantaneously

with respect to the rest of the system, e.g. cannot be interrupted by signals,
threads, interrupts, ...

sem_post(s) {
    s = 1;
}

sem_wait(s) { 
   while (s == 0) {;}
   s = 0;
}
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Dining Philosophers with Semaphores
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Dining philosophers with semaphores

#define N 5        /* number of philosophers */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1   /* philosopher is trying to get forks */
#define EATING 2   /* philosopher is eating */

int state[N]; /* each philosophers is either THINKING, HUNGRY or EATING, 
initialized to THINKING */
sem_t cs_m;   /* semaphore for the critical section, shared by all 
philosophers, initialized to 1 */
sem_t p_m[N]; /* one semaphore per philosopher, initialized to 0 */

int left(int i) { return (i+N-1) % N; }
int right(int i) { return (i+1) % N; }

void philosopher(int i) /* to be executed by different threads */
{

while (1) {
think( );      /* philosopher is thinking */
take_forks(i); /* acquire two forks or block */
eat( );        /* yum-yum, spaghetti */
put_forks(i);  /* put both forks back on table */

}
}
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Dining philosophers with semaphores

void take_forks(int i) {
down(& cs_m);          /* enter critical region */

state[i] = HUNGRY;   /* record fact that philosopher i is hungry */
test _fork(i);             /* try to acquire 2 forks */

up(& cs_m);            /* exit critical region */
down(& p_m[i]);        /* block if forks were not acquired */

}

void put_forks(int i) {      /* i: philosopher number, from 0 to N−1 */
down(& cs_m);          /* enter critical region */

state[i] = THINKING; /* philosopher has finished eating */
test_fork(left(i));       /* see if left neighbour can now eat */
test _fork(right(i));      /* see if right neighbour can now eat */

up(& cs_m);            /* exit critical region */
}

void test_fork(int i) {           /* i: philosopher number, from 0 to N−1 */
if (state[i] == HUNGRY && state[left(i)] != EATING && state[right(i)] != 

EATING) {
state[i] = EATING;   /* only start eating if hungry, and neighbours not 

eating */
up(& p_m[i]);

}
}
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Common Mistake
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Thread 1:

  for(i=0; i<7; i++)
    sem_wait(S);
  
  // critical section
  
  for(i=0; i<7; i++)
    sem_post(S);
  ...

Thread 2:

  for(i=0; i<6; i++)
    sem_wait(S);
  
  // critical section
  
  for(i=0; i<6; i++)
    sem_post(S);
  ...

Common mistake with semaphores

• order of operations:
• thread 1 requests 6 resources, then scheduler switches to thread 2
• thread 2 requests 4 resources, exhausting all available resources
• both threads are stuck → deadlock
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Common mistake with semaphores

• Scenario: managing a pool of N resources
• a counting semaphore S is used to keep track of the # of available resources
• initialization: sem_init(S,0,N)
• each process may need Ki ≤ N resources at a time
• you might be tempted to accomplish this by Ki consecutive invocations of sem_wait(S)
• Can you see the problem?

• Example: 
• 10 resources, thread 1 needs 7 resources and thread 2 needs 6 resources
• depending on scheduling, we may get a deadlock
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Semaphores vs. Condition Variables
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Semaphores vs. condition variables

• sem_post() compared to cv_signal():
• cv_signal() is lost (has no effect) if no thread is waiting
• sem_post() increments the semaphore always, and possibly wakes up a thread

• sem_wait() compared to pthread_cond_wait():
• pthread_cond_wait() always blocks
• sem_wait() checks the value of the semaphore, and may or may not block
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Semaphore Psuedocode
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Semaphore pseudocode, with a queue & blocking

• S->list is a list of processes/threads
• a process can block() itself 
• a process can be unblocked by wakeup()
• getpid() returns process or thread ID

typedef struct {
    int value;
    struct process *list;
} semaphore;

void sem_wait(semaphore *S) {
    S->value --;
    if (S->value < 0) {
        S->list->push(getpid());
        block();

}
}

void sem_post(semaphore *S) {
    S->value ++;
    if (S->value <= 0) {
        pid = S->list->pop();
        wakeup(pid);

}
}
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Semaphore implemented with mutexes and cond. vars.

struct sem {
pthread_mutex_t mutex;
pthread_cond_t cond;
int count = 0;

};

void sem_wait(sem * s) {
lock(s->mutex);
while(s->count == 0)
wait(s->mutex,s->cond);

s->count --;
unlock(s->mutex);

}

void sem_post(sem * s) {
lock(s->mutex);
s->count ++;
signal(s->cond);

unlock(s->mutex);
}
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It’s Hard!
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It is tricky

• concurrent programming can be more difficult than coding in assembly
• any error with semaphores or mutexes will potentially result in race conditions, deadlocks, and 

other forms of unpredictable and irreproducible behaviour
• one subtle error and everything comes to a grinding halt
• for example:

Violate mutual 
exclusivity:

 sem_post(sem);
 // critical section
 sem_wait(sem);

Deadlock:

 lock(mutex);
 // critical section
 lock(mutex);
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Review
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Review

• Race conditions are not a problem among processes, only among threads.  
True or False?

• What is the main difference between pthread_cond_signal() for mutex and sem_post() for 
semaphore? 

• A mutex is identical to binary semaphore.  
True or False?

• What does the value of the semaphore tell you? 

• Define atomic operation.



Onward to …
synchronizations 
mechanisms
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