
Condition Variables and
Semaphore
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024

2

Topics

• producer-consumer problem

• mutexes and condition variables
• semaphores

3

Producer/Consumer Problem

4

Producer-consumer problem

producer 1

producer 2

producer 3

...

consumer 1

producer N

consumer 2

consumer 3

consumer M

...

fixed-size
FIFO buffer

5

The producer-consumer problem

• simplest case: one consumer and one producer processes/threads
• the two processes or threads share a fixed-size buffer, used as a queue
• producer puts data into buffer, must wait if buffer full
• consumer takes data out of the buffer, must wait if buffer empty
• both could be producing and consuming at different rates

buffer
(FIFO)producer consumer

6

Unix Pipes

7

UNIX pipes

$ find . -type f -printf "%-20s%p\n" | sort -nr | head -n 10

find sort headOS
buffer

OS
buffer

producer consumer &
producer

consumer

8

Circular Buffer

9

Circular buffer

• common way to implement fixed-size queue
typedef struct { ... } item;

item buffer[BUFF_SIZE];

int in = 0; // next free position

int out = 0; // next filled position

int count = 0; // number of items in buffer

• buffer is empty when:
in == out or when count == 0

• buffer is full when:
(in + 1) % BUFF_SIZE == out
or when
count == BUFF_SIZE

out

in

data

free
space

Concept:

Implementation:

in out

10

Implementations

11

Possible implementation - with race condition

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

}

while(1) {
// wait while buffer is empty
while(in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Can you spot the race condition?

12

Possible implementation - with race condition

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

}

while(1) {
// wait while buffer is empty
while(in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Possible execution sequence
(starting eg. with count=5):

T1: reg1 = count // count=5
T2: reg2 = count // count=5
T2: reg2 = reg2 - 1 // count=5
T2: count = reg2 // count=4
T1: reg1 = reg1 + 1 // count=4
T1: count = reg1 // count=6

13

Possible implementation - with a mutex

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count ++; // critical section

pthread_mutex_unlock(& mut);
}

while(1) {
// wait while buffer is empty
while(in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count --; // critical section

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Did we fix all problems?

14

Possible implementation - with a mutex

while(1) {
item = produceItem();
// wait while buffer is full
while((in+1) % BUFF_SIZE == out) {;}
// insert item into buffer
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count ++; // critical section

pthread_mutex_unlock(& mut);
}

while(1) {
// wait while buffer is empty
while(in == out) {;}
// remove item from buffer
item = buffer[out];
out = (out+1) % BUFF_SIZE;
pthread_mutex_lock(& mut);
count --; // critical section

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

■ this solution would work, but only for one producer thread and one consumer thread
■ with multiple producers and/or multiple consumers we would have race condition[s]
■ another important problem: busy wait!

15

Possible implementation – with a mutex and
deadlock

while(1) {
item = produceItem();
pthread_mutex_lock(& mut);
while((in+1) % BUFF_SIZE == out) {;}
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

pthread_mutex_unlock(& mut);
}

while(1) {
pthread_mutex_lock(& mut);
while(in == out) {;}
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

Not a good solution – there is now a deadlock possibility… can you find it?

16

Possible implementation – with a mutex and
deadlock

while(1) {
item = produceItem();
pthread_mutex_lock(& mut);
while((in+1) % BUFF_SIZE == out) {;}
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

pthread_mutex_unlock(& mut);
}

while(1) {
pthread_mutex_lock(& mut);
while(in == out) {;}
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

■ one possible deadlock: buffer is empty, and consumer enters its critical section …

■ consumer spins in a while loop inside CS, while producer is blocked on trying to acquire mutex

■ another deadlock: can you find it?

17

Possible implementation – with a mutex and
deadlock

while(1) {
item = produceItem();
pthread_mutex_lock(& mut);
while((in+1) % BUFF_SIZE == out) {;}
buffer[in] = item;
in = (in + 1) % BUFF_SIZE;
count ++;

pthread_mutex_unlock(& mut);
}

while(1) {
pthread_mutex_lock(& mut);
while(in == out) {;}
item = buffer[out];
out = (out+1) % BUFF_SIZE;
count --;

pthread_mutex_unlock(& mut);
consumeItem(item);

}

Thread 1 ― producer Thread 2 ― consumer

18

Condition Variables

19

Condition variables (CVs)

• condition variables are another type of synchronization primitive, used with mutexes

• perfect for implementing critical sections with loops that wait for some 'condition' to happen

• in many cases, while inside the "do nothing" loop, it would be safe to let another thread run its
critical section

// critical section protected with mutex m
lock(m)
…
while(! some_condition()) { /* do nothing ??? */ }
…

unlock(m)

20

Condition variables (CVs)

• would this work?

• it would "kind of" work, but what is the right amount of sleep x ?
• it would work much better if we could sleep until the other thread wakes us up…

// critical section protected with mutex m:
m.lock();
 // some code requiring mutex to be locked
 while(! some_condition()) {
 // assume that while we are inside the loop, it would be safe
 // to let some other thread run…
 m.unlock();
 std::this_thread::sleep_for(std::chrono::milliseconds(x));
 m.lock();
 }
 // more code requiring mutex to be locked
unlock(m)

21

Common pattern for using CVs

• a thread locks a mutex and enters its critical section
• while still inside CS, the thread needs to wait for some condition to become true
• but the condition can only become true by allowing some other thread to lock the mutex
• to facilitate this, the thread calls wait(cv) , which releases the mutex and puts thread to sleep

• now some other thread can lock the mutex and execute code that will satisfy the condition
• yes, two threads are now in CS, but one of them is sleeping and cannot cause damage…
• when the other thread releases mutex, the mutex in the first thread is automatically re-locked

// thread1:
// CS protected with mutex m
lock(m);

…
while(! some_condition) { wait(cv); }
…

unlock(m);

22

Condition variables

• eventually some other thread
• locks the mutex (optional)
• changes some state that will satisfy the condition
• notifies the waiting thread via the condition variable, via signal(cv)
• releases mutex (optional)

• the waiting thread then wakes up, and acquires the mutex back automatically

23

Condition Variables in pthreads

24

Condition variables with pthreads

pthread_mutex_t mutex; // mutex
pthread_cond_t cond; // condition variable

pthread_cond_wait(&cond, &mutex);

• unlocks mutex and puts the calling thread to sleep,
until some other thread wakes it up via pthread_cond_signal(&cond)

• after waking up, the mutex is automatically re-acquired

• after returning, the condition must be rechecked !!! (spurious wakeups)

pthread_cond_signal(&cond);

• wakes up one thread waiting on cond

• if no threads waiting on cond, the signal is lost

• must be paired with pthread_mutex_unlock() if the blocked thread uses the same mutex

25

Condition variables

pthread_cond_init(& cond, & attr)
• initializes condition variable

pthread_cond_destroy(& cond)
• destroys a condition variable

pthread_cond_broadcast(& cond)
• wakes up all threads waiting on the condition

26

Condition Variables Examples

27

Condition variable example (C)

• thread 1 - decrementing counter, but never below 0
• thread 2 - incrementing counter

• this code has busy wait, and nearly guaranteed deadlock
• it is trivial to fix the above with a condition variable

28

Condition variable example (pthreads)

• thread 1 - decrementing counter, but never below 0
• thread 2 - incrementing counter

• no deadlocks
• no busy waiting

29

Condition variable example (C++)

30

Condition variable example (with C++ unique lock)

31

Let's fix the producer/consumer deadlock

• recall the deadlock due to one thread stuck in a loop inside CS (after locking mutex), while
other thread has no chance to run its CS to allow the other thread to exit the loop

32

Fixed consumer/producer with condition variables
pthread_mutex_t mut;
pthread_cond_t full, empty;

33

Semaphores

34

Semaphore

• another synchronization primitive

• some similarity to mutex

• you can think of mutex as a special boolean variable shared by all threads

• with 3 special operations: initialize, lock and unlock

• you can think of semaphore as a special integer variable shared by all threads

• with 3 special operations: initialize, increment and decrement

35

Semaphore

• semaphore has thread safe operations:
1. initialization

• can be initialized with any value (0 … max)
2. decrement

• reduce semaphore by 1

• blocks the calling thread if value goes below 0

down(s), wait(s) or sem_wait(s)
3. increment

• increase value by 1

• and possibly unblock another blocked process

up(s), signal(s) or sem_post(s)

36

Semaphore

• can be used to protect critical sections, similar to how a mutex would be used

• similar to mutex, each semaphore maintains a set of processes blocked on the semaphore

• but a semaphore can be unlocked by any thread
• as opposed to mutex, where a locking/unlocking must be done by the same thread

initialize semaphore
s(1);

…
sem_wait(s);
 // critical section
sem_post(s);

37

Semaphore

• pseudocode implementation, using busy-waiting:

but the bodies must execute atomically

sem_post(s) {
 s ++;
}

sem_wait(s) {
 while (s == 0) {;}
 s --;
}

38

POSIX Semaphores

39

POSIX semaphores

■ int sem_init (sem_t *sem, int pshared, unsigned int value)

initializes semaphore to value

■ int sem_destroy (sem_t * sem)

destroys the semaphore, fails if some threads are waiting on it

■ int sem_wait (sem_t * sem)

suspends the calling thread until the semaphore is non-zero, then atomically decreases the semaphore count

■ int sem_post (sem_t * sem)

atomically increases the semaphore, never blocks, may unblock blocked threads

■ int sem_getvalue (sem_t * sem, int * sval)

returns the value of semaphore via sval

■ int sem_trywait (sem_t * sem)

non blocking version of sem_wait()

40

Example Semaphores

41

Example with semaphore = 2

sem_t s;
sem_init(& s, 0, 2); // initialize semaphore to 2

• suppose 3 threads try to enter their CSs protected by a semaphore

42

Example with semaphore = 2

sem_t s;
sem_init(& s, 0, 2); // initialize semaphore to 2

■ two threads will enter their CS simultaneously
■ the other thread will be blocked

43

Example with semaphore = 2

sem_t s;
sem_init(& s, 0, 2); // initialize semaphore to 2

■ as soon as one thread leaves CS, the last thread will be allowed to enter its CS

44

Book!

45

The Little Book of Semaphores

• free book !!!

• http://greenteapress.com/wp/semaphores/

http://greenteapress.com/wp/semaphores/

46

Binary Semaphore

47

Binary semaphore

• special type of semaphore with value either 0 or 1
• possible implementations in pseudocode:

•

where the bodies are executed atomically
• atomic operation is an operation that appears to execute instantaneously

with respect to the rest of the system, e.g. cannot be interrupted by signals,
threads, interrupts, ...

sem_post(s) {
 s = 1;
}

sem_wait(s) {
 while (s == 0) {;}
 s = 0;
}

48

Dining Philosophers with Semaphores

49

Dining philosophers with semaphores

#define N 5 /* number of philosophers */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */

int state[N]; /* each philosophers is either THINKING, HUNGRY or EATING,
initialized to THINKING */
sem_t cs_m; /* semaphore for the critical section, shared by all
philosophers, initialized to 1 */
sem_t p_m[N]; /* one semaphore per philosopher, initialized to 0 */

int left(int i) { return (i+N-1) % N; }
int right(int i) { return (i+1) % N; }

void philosopher(int i) /* to be executed by different threads */
{

while (1) {
think(); /* philosopher is thinking */
take_forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks back on table */

}
}

50

Dining philosophers with semaphores

void take_forks(int i) {
down(& cs_m); /* enter critical region */

state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test _fork(i); /* try to acquire 2 forks */

up(& cs_m); /* exit critical region */
down(& p_m[i]); /* block if forks were not acquired */

}

void put_forks(int i) { /* i: philosopher number, from 0 to N−1 */
down(& cs_m); /* enter critical region */

state[i] = THINKING; /* philosopher has finished eating */
test_fork(left(i)); /* see if left neighbour can now eat */
test _fork(right(i)); /* see if right neighbour can now eat */

up(& cs_m); /* exit critical region */
}

void test_fork(int i) { /* i: philosopher number, from 0 to N−1 */
if (state[i] == HUNGRY && state[left(i)] != EATING && state[right(i)] !=

EATING) {
state[i] = EATING; /* only start eating if hungry, and neighbours not

eating */
up(& p_m[i]);

}
}

51

Common Mistake

52

Thread 1:

 for(i=0; i<7; i++)
 sem_wait(S);

 // critical section

 for(i=0; i<7; i++)
 sem_post(S);
 ...

Thread 2:

 for(i=0; i<6; i++)
 sem_wait(S);

 // critical section

 for(i=0; i<6; i++)
 sem_post(S);
 ...

Common mistake with semaphores

• order of operations:
• thread 1 requests 6 resources, then scheduler switches to thread 2
• thread 2 requests 4 resources, exhausting all available resources
• both threads are stuck → deadlock

53

Common mistake with semaphores

• Scenario: managing a pool of N resources
• a counting semaphore S is used to keep track of the # of available resources
• initialization: sem_init(S,0,N)
• each process may need Ki ≤ N resources at a time
• you might be tempted to accomplish this by Ki consecutive invocations of sem_wait(S)
• Can you see the problem?

• Example:
• 10 resources, thread 1 needs 7 resources and thread 2 needs 6 resources
• depending on scheduling, we may get a deadlock

54

Semaphores vs. Condition Variables

55

Semaphores vs. condition variables

• sem_post() compared to cv_signal():
• cv_signal() is lost (has no effect) if no thread is waiting
• sem_post() increments the semaphore always, and possibly wakes up a thread

• sem_wait() compared to pthread_cond_wait():
• pthread_cond_wait() always blocks
• sem_wait() checks the value of the semaphore, and may or may not block

56

Semaphore Psuedocode

57

Semaphore pseudocode, with a queue & blocking

• S->list is a list of processes/threads
• a process can block() itself
• a process can be unblocked by wakeup()
• getpid() returns process or thread ID

typedef struct {
 int value;
 struct process *list;
} semaphore;

void sem_wait(semaphore *S) {
 S->value --;
 if (S->value < 0) {
 S->list->push(getpid());
 block();

}
}

void sem_post(semaphore *S) {
 S->value ++;
 if (S->value <= 0) {
 pid = S->list->pop();
 wakeup(pid);

}
}

58

Semaphore implemented with mutexes and cond. vars.

struct sem {
pthread_mutex_t mutex;
pthread_cond_t cond;
int count = 0;

};

void sem_wait(sem * s) {
lock(s->mutex);
while(s->count == 0)
wait(s->mutex,s->cond);

s->count --;
unlock(s->mutex);

}

void sem_post(sem * s) {
lock(s->mutex);
s->count ++;
signal(s->cond);

unlock(s->mutex);
}

59

It’s Hard!

60

It is tricky

• concurrent programming can be more difficult than coding in assembly
• any error with semaphores or mutexes will potentially result in race conditions, deadlocks, and

other forms of unpredictable and irreproducible behaviour
• one subtle error and everything comes to a grinding halt
• for example:

Violate mutual
exclusivity:

 sem_post(sem);
 // critical section
 sem_wait(sem);

Deadlock:

 lock(mutex);
 // critical section
 lock(mutex);

61

Review

62

Review

• Race conditions are not a problem among processes, only among threads.
True or False?

• What is the main difference between pthread_cond_signal() for mutex and sem_post() for
semaphore?

• A mutex is identical to binary semaphore.
True or False?

• What does the value of the semaphore tell you?

• Define atomic operation.

Onward to …
synchronizations
mechanisms

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Condition Variables and Semaphore
	Topics
	Producer/Consumer Problem
	Producer-consumer problem
	The producer-consumer problem
	Unix Pipes
	UNIX pipes
	Circular Buffer
	Circular buffer
	Implementations
	Possible implementation - with race condition
	Possible implementation - with race condition
	Possible implementation - with a mutex
	Possible implementation - with a mutex
	Possible implementation – with a mutex and deadlock
	Possible implementation – with a mutex and deadlock
	Possible implementation – with a mutex and deadlock
	Condition Variables
	Condition variables (CVs)
	Condition variables (CVs)
	Common pattern for using CVs
	Condition variables
	Condition Variables in pthreads
	Condition variables with pthreads
	Condition variables
	Condition Variables Examples
	Condition variable example (C)
	Condition variable example (pthreads)
	Condition variable example (C++)
	Condition variable example (with C++ unique lock)
	Let's fix the producer/consumer deadlock
	Fixed consumer/producer with condition variables
	Semaphores
	Semaphore
	Semaphore
	Semaphore
	Semaphore
	POSIX Semaphores
	POSIX semaphores
	Example Semaphores
	Example with semaphore = 2
	Example with semaphore = 2
	Example with semaphore = 2
	Book!
	The Little Book of Semaphores
	Binary Semaphore
	Binary semaphore
	Dining Philosophers with Semaphores
	Dining philosophers with semaphores
	Dining philosophers with semaphores
	Common Mistake
	Common mistake with semaphores
	Common mistake with semaphores
	Semaphores vs. Condition Variables
	Semaphores vs. condition variables
	Semaphore Psuedocode
	Semaphore pseudocode, with a queue & blocking
	Semaphore implemented with mutexes and cond. vars.
	It’s Hard!
	It is tricky
	Review
	Review
	Onward to …�synchronizations mechanisms

