
Locks, Mutexes, and Dining
Philosophers
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024

2

Topics

• dining philosophers

• locks
• mutexes

3

Dining Philosophers

4

Dining philosophers problem

• 5 philosophers sitting around a table

• 5 bowls of food, one for each philosopher

• 5 forks placed between bowls

• philosophers alternate between eating and thinking

• philosophers don't mind sharing forks

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=56559

5

Dining philosophers problem

• before eating, a philosopher must first grab both forks,
immediately to the left & right

• philosopher then eats for a short time

• when done eating, the philosopher puts down the forks
in their original positions

• philosopher then thinks for a short time

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=56559

6

Dining philosophers problem

• software scenario:
5 processes/threads, each needs frequent exclusive
access to two resources (e.g. each needs to update 2
files)

• how to allocate resources so that all process/threads
get to execute?

• what is the "best" algorithm for threads/processes to
follow?

• how do we define 'best'?
• depends on the the objective…
• what are we trying to optimize?

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=56559

7

Dining philosophers problem

• assuming each philosopher eats & thinks for the same amount of time
• optimal schedule:

repeat:
philosophers 1 & 3 eat
philosophers 2 & 4 eat
philosophers 3 & 5 eat
philosophers 4 & 1 eat
philosophers 5 & 2 eat

• is there a simple way to code this?
remember that each philosopher represents an
independent thread or process

• not optimal if some philosophers think/eat more than others

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=56559

1

2 3

4

5

8

Dining Philosophers Attempt to do
Something

9

Attempt 1

• each philosopher follows these steps (algorithm):

repeat forever:
grab left fork
grab right fork
eat
put forks back
think

• would this work?

10

Attempt 1

• each philosopher follows these steps (algorithm):

repeat forever:
grab left fork
grab right fork
eat
put forks back
think

• would this work?
• no, this could lead to a deadlock:

• assuming all philosophers are reasonably synchronized
• each philosopher could end up grabbing the left fork
• then each philosopher will be 'stuck' trying grab the right fork
• nobody gets to eat at all

F

11

Attempt 2

• each philosopher follows these steps (algorithm):

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break
else put any grabbed forks back and take a short nap

eat
put forks back
think

• would this work?

12

Attempt 2

• each philosopher follows these steps (algorithm):

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break
else put any grabbed forks back and take a short nap

eat
put forks back
think

• would this work?
• philosophers could reach a livelock

• every philosopher grabs left fork, but fails to grab right fork
• all philosophers would indefinitely switch between napping and attempting to eat
• nobody will eat ― form of starvation

F+

13

Attempt 3

• same as before, but there is one pink hat

repeat forever:
wait for a hat
grab forks, eat, put forks back
give hat to "someone" else
think

• would this work?

14

Attempt 3

• same as before, but there is one pink hat

repeat forever:
wait for a hat
grab forks, eat, put forks back
give hat to "someone" else
think

• would this work? yes it would, but…

• only one philosopher is eating at any given time, but with 5 forks, 2 philosophers could be eating at
the same time

• non-optimal use of resources, resulting in reduced parallelism

C+

15

Attempt 4

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break out of loop
else put any grabbed forks back and take a short RANDOM nap

eat
put forks back
think

• would this work?

16

Attempt 4

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break out of loop
else put any grabbed forks back and take a short RANDOM nap

eat
put forks back
think

• the random nap will desynchronize the philosophers and is likely to work over long time
• sometimes used in real world, e.g. in networking (Exponential backoff)
• but…

• if nap time is the same for neighbors, they do not get to eat (temporary starvation)
• some philosophers might sleep longer than others, and eat less often (fairness problem)

A-

https://en.wikipedia.org/wiki/Exponential_backoff

17

Attempt 5

• label the forks with numbers: 1, 2, 3, 4, 5
• each philosopher:

• picks up the fork with the smallest number first, then the larger number second

• called a resource hierarchy solution – by establishing a partial order on resources

• starvation is still possible, although very unlikely
• reduced parallelism in general cases

• e.g. already have lock on 2, 3, but now need 1, must first release 2, 3, then re-acquire 1, 2, 3

• it is not always practical for large and/or dynamic number of resources

B+

18

Algorithms

19

Naive algorithm implementation

• let's try a naive implementation of a philospher
• consider algorithm #1 for philosopher 'i':

// global variable representing fork state
// false = unavailable, true = available
bool forks[5];

while (true) {
 sleep (s); // think for s seconds
 while (!forks[i] || !forks[i+1]) {;} // i+1 modulo 5 arithmetic
 forks[i] = false;
 forks[i+1] = false;
 sleep (m); // eat for m seconds
 forks[i] = true;
 forks[i+1] = true;
}

20

Critical Sections

21

Naive algorithm implementation

while (true)
{
 sleep (s); // think
 while
(!forks[i]||!forks[i+1]){;}

 forks[i] = false;
 forks[i+1] = false;
 sleep (m); // eat
 forks[i] = true;
 forks[i+1] = true;
}

while (true)
{
 sleep (s); // think
 while
(!forks[i]||!forks[i+1]){;}

 forks[i] = false;
 forks[i+1] = false;
 sleep (m); // eat
 forks[i] = true;
 forks[i+1] = true;
}

■ depending on the execution order (eg. multi-core machines, or timing of context switches)

○ two neighboring philosophers could start eating at the same time

○ i.e. both threads could enter the critical region

1
2

3

22

Algorithm with critical sections

• the shared resource is the global variable forks[]
• let's identify critical sections (parts of code that use the shared resource):

• now we need a mechanism to protect these sections via mutual exclusion

critical section 1

while (true)
{
 sleep (s);

 while (!forks[i] || !forks[i+1]);
 forks[i] = false;
 forks[i+1] = false;

 sleep (m);

 forks[i] = true;
 forks[i+1] = true;

}

critical section 2

23

Mutexes

24

Mutex (aka Lock)

• mutex is a synchronization primitive, usually used for
ensuring exclusive access to a resource in concurrent programs

• mutex has two possible states: locked and unlocked,
and two atomic operations: lock() and unlock()

• if multiple threads call lock() simultaneously, only one will proceed, the rest will block
• only the thread that locks the mutex can unlock it
• a waiting queue is used to keep track of all threads waiting on the mutex to be unlocked

• once the mutex is unlocked, one of the waiting threads will be unlocked
note: which one thread gets unlocked is usually not predictable

• can be implemented in software via busy waiting, but usually supported by hardware + OS
• portable libraries will try to use H/W mutex, but are able to fall back to software

25

Using mutexes to protect critical sections

Thread A locks
mutex and enters
critical section

Thread A exists
critical section and
unlocks mutex

Thread B tries to
lock mutex, but
fails, and is
blocked

Thread B locks
mutex and
enters CS

Thread B
leaves CS and
unlocks mutex

26

Mutex (aka Lock)

pseudocode for using mutex to guard access to critical section:

// initialize mutex and share across all threads,
// e.g. via global variable
mutex m;

// in each thread
void run()
{

non-critical_section_code
// before entering critical section, lock the mutex
lock(m);
// now it's safe to access a shared resource
critical_section_code
// to exit CS, we unlock the mutex
unlock(m);
non-critical_section_code

}

27

Pthreads mutex

API Description

pthread_mutex_init() initialize a new mutex (unlocked state)

pthread_mutex_destroy() destroy a mutex

pthread_mutex_lock() try to lock a mutex, block if already locked

pthread_mutex_unlock() unlock a mutex

pthread_mutex_trylock() try to lock a mutex, or fail (non-blocking
version of lock)

28

Counter with Mutex

29

Counter with mutex (pthreads)
#include <pthread.h>

pthread_mutex_t count_mutex; // must be initialized with pthread_mutex_init(),
e.g. in main()
int counter; // initialized with counter = 0, e.g. in main()

void incr() {
 pthread_mutex_lock(&count_mutex); // acquire the lock
 int x = counter;
 x = x + 1;
 counter = x;
 pthread_mutex_unlock(&count_mutex); // release the lock
}

30

Counter with mutex (C++ mutex)

#include <mutex>

std::mutex m; // no need to further initialize
int counter = 0;

void incr() {
 m.lock(); // acquire the lock
 counter ++;
 m.unlock(); // release the lock
}

31

Dining Philosopher with Mutexes

32

Dining philosopher with mutex
pthread_mutex_t mutex;

while (true) {
 sleep (s); // think
 pthread_mutex_lock(&mutex);
 while (!forks[i] || !forks[i+1])
{;}
 forks[i] = false;
 forks[i+1] = false;
 pthread_mutex_unlock(&mutex);
 sleep (m); // eat

 pthread_mutex_lock(&mutex);
 forks[i] = true;
 forks[i+1] = true;
 pthread_mutex_unlock(&mutex);
}

33

pthread_mutex_t mutex;

while (true) {
 sleep (s); // think
 pthread_mutex_lock(&mutex);
 while (!forks[i] || !forks[i+1])
{;}
 forks[i] = false;
 forks[i+1] = false;
 pthread_mutex_unlock(&mutex);
 sleep (m); // eat

 pthread_mutex_lock(&mutex);
 forks[i] = true;
 forks[i+1] = true;
 pthread_mutex_unlock(&mutex);
}

Dining philosopher with mutex

2

1

3

thread 1 claims forks
and starts to eat

thread 2 attempts
to claim forks,
but gets stuck in
while loop

thread 1 finishes eating
and attempts to return
forks, but gets stuck
unable to lock mutex

34

Review

35

Summary

• critical section - part of the program where a shared resource is accessed & may cause trouble
• mutual exclusion - ensuring only one process accesses a resource at a time, eg. only one

process can enter critical section at any given time
• mutex/lock - mechanism to achieve mutual exclusion, two states + queue
• deadlock - a state wheare each process/thread is waiting on another to release a lock → no

progress is made
• livelock - states of the processes change, but none are progressing
• starvation - one process does not get to run at all
• unfairness - not all processes get equal opportunity to progress

• concurrent programming is hard

36

Review

• Name/explain two general approaches for cancelling a thread.
• Are signals handled per thread or per process?
• Define:

• race condition, critical region, mutual exclusion
• deadlock, livelock, starvation

• Race condition is not a problem among processes, only among threads.
True or False?

• A mutex has only two states: locked and unlocked.
True or False?

• more tutorials on dining philosophers:
http://cs.mtu.edu/~shene/NSF-3/e-Book/MUTEX/TM-example-philos-1.html
http://web.eecs.utk.edu/~mbeck/classes/cs560/560/notes/Dphil/lecture.html

http://cs.mtu.edu/%7Eshene/NSF-3/e-Book/MUTEX/TM-example-philos-1.html
http://web.eecs.utk.edu/%7Embeck/classes/cs560/560/notes/Dphil/lecture.html

Onward to …
condition variables and
semaphores

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Locks, Mutexes, and Dining Philosophers
	Topics
	Dining Philosophers
	Dining philosophers problem
	Dining philosophers problem
	Dining philosophers problem
	Dining philosophers problem
	Dining Philosophers Attempt to do Something
	Attempt 1
	Attempt 1
	Attempt 2
	Attempt 2
	Attempt 3
	Attempt 3
	Attempt 4
	Attempt 4
	Attempt 5
	Algorithms
	Naive algorithm implementation
	Critical Sections
	Naive algorithm implementation
	Algorithm with critical sections
	Mutexes
	Mutex (aka Lock)
	Using mutexes to protect critical sections
	Mutex (aka Lock)
	Pthreads mutex
	Counter with Mutex
	Counter with mutex (pthreads)
	Counter with mutex (C++ mutex)
	Dining Philosopher with Mutexes
	Dining philosopher with mutex
	Dining philosopher with mutex
	Review
	Summary
	Review
	Onward to …�condition variables and semaphores

