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Topics

• dining philosophers

• locks
• mutexes
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Dining Philosophers 
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Dining philosophers problem

• 5 philosophers sitting around a table

• 5 bowls of food, one for each philosopher

• 5 forks placed between bowls

• philosophers alternate between eating and thinking

• philosophers don't mind sharing forks

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=56559
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Dining philosophers problem

• before eating, a philosopher must first grab both forks,
immediately to the left & right

• philosopher then eats for a short time

• when done eating, the philosopher puts down the forks
in their original positions

• philosopher then thinks for a short time

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=56559
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Dining philosophers problem

• software scenario:
5 processes/threads, each needs frequent exclusive 
access to two resources (e.g. each needs to update 2 
files)

• how to allocate resources so that all process/threads 
get to execute?

• what is the "best" algorithm for threads/processes to 
follow?

• how do we define 'best'?
• depends on the the objective… 
• what are we trying to optimize?

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=56559
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Dining philosophers problem

• assuming each philosopher eats & thinks for the same amount of time
• optimal schedule:

repeat:
philosophers 1 & 3 eat
philosophers 2 & 4 eat
philosophers 3 & 5 eat
philosophers 4 & 1 eat
philosophers 5 & 2 eat

• is there a simple way to code this?
remember that each philosopher represents an 
independent thread or process

• not optimal if some philosophers think/eat more than others

By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=56559
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Dining Philosophers Attempt to do 
Something 
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Attempt 1

• each philosopher follows these steps (algorithm):

repeat forever:
grab left fork
grab right fork
eat
put forks back
think

• would this work?
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Attempt 1

• each philosopher follows these steps (algorithm):

repeat forever:
grab left fork
grab right fork
eat
put forks back
think

• would this work?
• no, this could lead to a deadlock:

• assuming all philosophers are reasonably synchronized
• each philosopher could end up grabbing the left fork
• then each philosopher will be 'stuck' trying grab the right fork
• nobody gets to eat at all

F
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Attempt 2

• each philosopher follows these steps (algorithm):

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break
else put any grabbed forks back and take a short nap

eat
put forks back
think

• would this work?



12

Attempt 2

• each philosopher follows these steps (algorithm):

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break
else put any grabbed forks back and take a short nap

eat
put forks back
think

• would this work?
• philosophers could reach a livelock

• every philosopher grabs left fork, but fails to grab right fork
• all philosophers would indefinitely switch between napping and attempting to eat
• nobody will eat ― form of starvation

F+
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Attempt 3

• same as before, but there is one pink hat

repeat forever:
wait for a hat
grab forks, eat, put forks back
give hat to "someone" else
think

• would this work?
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Attempt 3

• same as before, but there is one pink hat

repeat forever:
wait for a hat
grab forks, eat, put forks back
give hat to "someone" else
think

• would this work? yes it would, but…

• only one philosopher is eating at any given time, but with 5 forks, 2 philosophers could be eating at 
the same time

• non-optimal use of resources, resulting in reduced parallelism

C+
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Attempt 4

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break out of loop
else put any grabbed forks back and take a short RANDOM nap

eat
put forks back
think

• would this work?
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Attempt 4

repeat forever:
repeat:

try to grab left fork
try to grab right fork
if both forks grabbed then break out of loop
else put any grabbed forks back and take a short RANDOM nap

eat
put forks back
think

• the random nap will desynchronize the philosophers and is likely to work over long time
• sometimes used in real world, e.g. in networking (Exponential backoff)
• but… 

• if nap time is the same for neighbors, they do not get to eat (temporary starvation)
• some philosophers might sleep longer than others, and eat less often (fairness problem)

A-

https://en.wikipedia.org/wiki/Exponential_backoff
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Attempt 5

• label the forks with numbers: 1, 2, 3, 4, 5
• each philosopher:

• picks up the fork with the smallest number first, then the larger number second

• called a resource hierarchy solution – by establishing a partial order on resources

• starvation is still possible, although very unlikely
• reduced parallelism in general cases

• e.g. already have lock on 2, 3, but now need 1, must first release 2, 3, then re-acquire 1, 2, 3

• it is not always practical for large and/or dynamic number of resources

B+
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Algorithms
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Naive algorithm implementation

• let's try a naive implementation of a philospher
• consider algorithm #1 for philosopher 'i':

// global variable representing fork state
// false = unavailable, true = available
bool forks[5];

while (true) {
    sleep (s);                           // think for s seconds
    while (!forks[i] || !forks[i+1]) {;} // i+1 modulo 5 arithmetic
    forks[i] = false;
    forks[i+1] = false;
    sleep (m);                           // eat for m seconds
    forks[i] = true;
    forks[i+1] = true;
}
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Critical Sections



21

Naive algorithm implementation

while (true)
{
  sleep (s); // think
  while 
(!forks[i]||!forks[i+1]){;}

  forks[i] = false;
  forks[i+1] = false;
  sleep (m); // eat
  forks[i] = true;
  forks[i+1] = true;
}

while (true)
{
  sleep (s); // think
  while 
(!forks[i]||!forks[i+1]){;}

  forks[i] = false;
  forks[i+1] = false;
  sleep (m); // eat
  forks[i] = true;
  forks[i+1] = true;
}

■ depending on the execution order (eg. multi-core machines, or timing of context switches)

○ two neighboring philosophers could start eating at the same time

○ i.e. both threads could enter the critical region

1
2

3
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Algorithm with critical sections

• the shared resource is the global variable forks[]
• let's identify critical sections (parts of code that use the shared resource):

• now we need a mechanism to protect these sections via mutual exclusion

critical section 1

while (true)
{
  sleep (s);

  while (!forks[i] || !forks[i+1]);
  forks[i] = false;
  forks[i+1] = false;

  sleep (m);

  forks[i] = true;
  forks[i+1] = true;

}

critical section 2
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Mutexes
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Mutex (aka Lock)

• mutex is a synchronization primitive, usually used for 
ensuring exclusive access to a resource in concurrent programs

• mutex has two possible states: locked and unlocked,
and two atomic operations: lock() and unlock()

• if multiple threads call lock() simultaneously, only one will proceed, the rest will block
• only the thread that locks the mutex can unlock it
• a waiting queue is used to keep track of all threads waiting on the mutex to be unlocked

• once the mutex is unlocked, one of the waiting threads will be unlocked
note: which one thread gets unlocked is usually not predictable

• can be implemented in software via busy waiting, but usually supported by hardware + OS
• portable libraries will try to use H/W mutex, but are able to fall back to software
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Using mutexes to protect critical sections

Thread A locks 
mutex and enters 
critical section

Thread A exists 
critical section and 
unlocks mutex

Thread B tries to 
lock mutex, but 
fails, and is 
blocked

Thread B locks 
mutex and 
enters CS

Thread B 
leaves CS and 
unlocks mutex
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Mutex (aka Lock)

pseudocode for using mutex to guard access to critical section:

// initialize mutex and share across all threads,
// e.g. via global variable
mutex m;

// in each thread
void run() 
{

non-critical_section_code 
// before entering critical section, lock the mutex
lock(m);
// now it's safe to access a shared resource
critical_section_code 
// to exit CS, we unlock the mutex
unlock(m);
non-critical_section_code

}
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Pthreads mutex

API Description

pthread_mutex_init() initialize a new mutex (unlocked state)

pthread_mutex_destroy() destroy a mutex

pthread_mutex_lock() try to lock a mutex, block if already locked

pthread_mutex_unlock() unlock a mutex

pthread_mutex_trylock() try to lock a mutex, or fail (non-blocking 
version of lock)
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Counter with Mutex



29

Counter with mutex (pthreads)
#include <pthread.h>

pthread_mutex_t count_mutex; // must be initialized with pthread_mutex_init(), 
e.g. in main() 
int counter;                 // initialized with counter = 0, e.g. in main() 

void incr() {
  pthread_mutex_lock(&count_mutex); // acquire the lock
    int x = counter;
    x = x + 1;
    counter = x;
  pthread_mutex_unlock(&count_mutex); // release the lock
}
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Counter with mutex (C++ mutex)

#include <mutex>

std::mutex m;                // no need to further initialize
int counter = 0;

void incr() {
  m.lock();                  // acquire the lock
    counter ++;
  m.unlock();                // release the lock
}
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Dining Philosopher with Mutexes
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Dining philosopher with mutex
pthread_mutex_t mutex;

while (true) {
    sleep (s);  // think
    pthread_mutex_lock(&mutex);
     while (!forks[i] || !forks[i+1]) 
{;}
     forks[i] = false;
     forks[i+1] = false;
    pthread_mutex_unlock(&mutex);
    sleep (m);   // eat

    pthread_mutex_lock(&mutex);
     forks[i] = true;
     forks[i+1] = true;
    pthread_mutex_unlock(&mutex);
}
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pthread_mutex_t mutex;

while (true) {
    sleep (s);  // think
    pthread_mutex_lock(&mutex);
     while (!forks[i] || !forks[i+1]) 
{;}
     forks[i] = false;
     forks[i+1] = false;
    pthread_mutex_unlock(&mutex);
    sleep (m);   // eat

    pthread_mutex_lock(&mutex);
     forks[i] = true;
     forks[i+1] = true;
    pthread_mutex_unlock(&mutex);
}

Dining philosopher with mutex

2

1

3

thread 1 claims forks 
and starts to eat

thread 2 attempts 
to claim forks, 
but gets stuck in 
while loop

thread 1 finishes eating 
and attempts to return 
forks, but gets stuck 
unable to lock mutex
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Review
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Summary

• critical section - part of the program where a shared resource is accessed & may cause trouble
• mutual exclusion - ensuring only one process accesses a resource at a time, eg. only one 

process can enter critical section at any given time
• mutex/lock - mechanism to achieve mutual exclusion, two states + queue
• deadlock - a state wheare each process/thread is waiting on another to release a lock → no 

progress is made
• livelock - states of the processes change, but none are progressing
• starvation - one process does not get to run at all
• unfairness - not all processes get equal opportunity to progress

• concurrent programming is hard
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Review

• Name/explain two general approaches for cancelling a thread.
• Are signals handled per thread or per process?
• Define:  

• race condition, critical region, mutual exclusion
• deadlock, livelock, starvation

• Race condition is not a problem among processes, only among threads.
True or False?

• A mutex has only two states: locked and unlocked.
True or False?

• more tutorials on dining philosophers:
http://cs.mtu.edu/~shene/NSF-3/e-Book/MUTEX/TM-example-philos-1.html
http://web.eecs.utk.edu/~mbeck/classes/cs560/560/notes/Dphil/lecture.html

http://cs.mtu.edu/%7Eshene/NSF-3/e-Book/MUTEX/TM-example-philos-1.html
http://web.eecs.utk.edu/%7Embeck/classes/cs560/560/notes/Dphil/lecture.html


Onward to …
condition variables and 
semaphores

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/
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