
System Calls
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024

2

Topics

• thread cancellation

• race conditions
• critical sections

3

Thread Cancellation

4

Thread/work cancellation

• imagine writing a program that detects whether a given word occurs anywhere in a set of files
• i.e. as soon as the program detects the word in any file, it can stop the search

• we want to make the search faster, by using threads
• we create multiple threads, each searching for the word in different files
• as soon as one thread finds a file that contains the word,

that thread should notify the other threads, so that they can stop searching

• two general approaches:
• asynchronous cancellation
• deferred cancellation (aka. synchronous cancellation)

5

Asynchronous thread/work cancellation

• one thread manually terminates the target thread, by calling
pthread_kill(tid, SIGUSR1)

• target thread (tid) is killed nearly instantly

• what happens to data currently being updated by the target thread?
• target thread has no chance to "clean up"
• this can (likely) lead to leaving data in undefined state
• for example, if the target thread is in the middle of allocating memory, the memory

allocator could become corrupted and crash the entire program

• in many/most cases asynchronous cancellation is an unacceptable solution

• much better solution is to use synchronous thread cancellation

6

Deferred (Synchronous) thread/work cancellation

• the controlling thread somehow indicates it wishes to cancel a target thread (or the work in the
thread)

• e.g. by setting some shared global flag variable
• or using pthread_cancel() and related mechanisms (man pthread_cancel for details)

• target thread periodically checks whether it should terminate
• checking done only at cancellation points, where the thread can cancel itself safely
• these are carefully chosen points, selected by the programmer

• some issues:
• less performance – checking for cancellation flag requires at least 1 instruction…
• target thread might not react immediately

• it could run for a while before noticing the cancellation requested
• e.g. continue to report results

• more flexible than asynchronous cancellation, but requires more effort to use (correctly)

7

void * thread_print(void * tid) {
 while(1) {
 printf("thread %ld running\n", tid);
 sleep(1);
 /* here we need to check if cancellation was requested */
 }
}
int main() {
 pthread_t threads[N_THREADS];
 for (long i = 0; i < N_THREADS; i++) {
 if(0 != pthread_create(& threads[i], NULL, thread_print, (void *) i)) {
 printf("Oops, pthread_create failed.\n"); exit(-1);
 }
 }
 sleep(5); // pretend to do something
 /* here we request cancellation */
 for (long i = 0; i < N_THREADS; i++)
 pthread_join(threads[i], NULL);
 printf("All threads done.\n");
}

Deferred cancellation example

8

Deferred cancellation example (non-portable)
volatile int cancel_flag = 0;
void * thread_print(void * tid) {
 while(1) {
 printf("thread %ld running\n", tid);
 sleep(1);
 if(cancel_flag) return NULL;
 }
}
int main() {
 pthread_t threads[N_THREADS];
 for (long i = 0; i < N_THREADS; i++) {
 if(0 != pthread_create(& threads[i], NULL, thread_print, (void *) i)) {
 printf("Oops, pthread_create failed.\n"); exit(-1);
 }
 }
 sleep(5); // pretend to do something
 cancel_flag = 1;
 for (long i = 0; i < N_THREADS; i++)
 pthread_join(threads[i], NULL);
 printf("All threads done.\n");
}

!!! non-portable code !!!

works on x86, but
for portability we should use atomic

operation
e.g. std::atomic<bool>

9

Deferred cancellation example (C++, portable)
std::atomic_bool cancel_flag { false };

void thread_print(int tid) {
 while(1) {
 std::cout << "thread " << tid << " running\n";
 sleep(1);
 if(cancel_flag.load()) return;
 }
}

int main() {
 std::vector<std::thread> threads;
 for (long i = 0; i < N_THREADS; i++)
 threads.push_back(std::thread(thread_print,i));
 sleep(5); // pretend to do something
 cancel_flag.store(true);
 for(auto & t : threads)
 t.join();
 return 0;
}

std::atomic<bool> is
portable, and will work on all

architectures

https://repl.it/@pfederl/c-threads-with-cancellation

https://repl.it/@pfederl/c-threads-with-cancellation

10

Race Conditions

11

Race conditions

• race condition is a behavior where the output is dependent on the sequence or timing of
other uncontrollable events (eg. context switching, scheduling on multiple CPUs)

• race condition is a bug

• often a result of multiple processes/threads operating on a shared state/resource, eg.:

• modifying shared memory

• reading/writing to files

• reading/writing to databases

• but not specific to multi-threaded applications

• race conditions can exist among processes on the same computer; or even

• among different computers using shared filesystems, databases, etc.

12

Race conditions

// global variable counter
int counter;

void incr() {
// local variable x
int x = counter;
x = x + 1;
counter = x;

}

int main() {
counter = 0;
incr();
incr();

printf("%d\n", counter);
}

Output:

2

… every time

13

Race conditions

// global variable "counter" is shared
int counter;

void incr() {
// local variable "x" is not shared
int x = counter;
x = x + 1;
counter = x;

}

int main() {
counter = 0;
pthread_create(..., incr);
pthread_create(..., incr);
pthread_join ...
printf("counter = %d\n", counter);

}

What is the value in counter
after both threads finish

executing incr()?

Thread 1: Thread 2:

void incr() {
int x = counter;
x = x + 1;
counter = x;

}

void incr() {
int x = counter;
x = x + 1;
counter = x;

}

14

Race conditions

// global variable "counter" is shared
int counter;

void incr() {
// local variable "x" is not shared
int x = counter;
x = x + 1;
counter = x;

}

int main() {
counter = 0;
pthread_create(..., incr);
pthread_create(..., incr);
pthread_join ...
printf("counter = %d\n", counter);

}

Thread 1 Thread 2 counter

0

x = counter; 0

x = x + 1; 0

counter = x; 1

x = counter; 1

x = x + 1; 1

counter = x; 2

one possible execution sequence resulting in

counter = 2

15

Race conditions

// global variable "counter" is shared
int counter;

void incr() {
// local variable "x" is not shared
int x = counter;
x = x + 1;
counter = x;

}

int main() {
counter = 0;
pthread_create(..., incr);
pthread_create(..., incr);
pthread_join ...
printf("counter = %d\n", counter);

}

Thread 1 Thread 2 counter

0

x = counter; 0

x = counter; 0

x = x + 1; 0

counter = x; 1

x = x + 1; 1

counter = x; 1

another possible execution sequence resulting in

counter = 1 !!!

This program has a race condition.

16

Race conditions

// global variable counter
int counter;

int main() {
counter = 0;
pthread_create(..., incr);
pthread_create(..., incr);
pthread_join ...
printf("%d\n", counter);

}

void incr() {
 int x = counter;
 x = x + 1;
 counter = x;
}

void incr() {
 counter ++;
}

17

Race conditions

int counter;

int incr1() {
int x = counter;
x = x + 1;
counter = x;

}

int incr2() {
counter ++;

}

mov eax, DWORD PTR counter[rip]
mov DWORD PTR [rbp-4], eax
add DWORD PTR [rbp-4], 1
mov eax, DWORD PTR [rbp-4]
mov DWORD PTR counter[rip], eax

mov eax, DWORD PTR counter[rip]
add eax, 1
mov DWORD PTR counter[rip], eax

To see how GCC compiles your code into assembly, you can try:

$ gcc -S -fverbose-asm test.c

Or use an online tool, eg: https://godbolt.org/z/WTPzC2 (full)

https://godbolt.org/z/WTPzC2
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,lang:c%2B%2B,source:'//+Type+your+code+here,+or+load+an+example.%0Aint+counter%3B%0A%0Aint+incr1()+%7B%0A++++int+x+%3D+counter%3B%0A++++x+%3D+x+%2B+1%3B%0A++++counter+%3D+x%3B%0A%7D%0A%0Aint+incr2()+%7B%0A++++counter+%2B%2B%3B%0A%7D%0A%0A'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g82,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',libraryCode:'1',trim:'1'),lang:c%2B%2B,libs:!(),options:'',source:1),l:'5',n:'0',o:'x86-64+gcc+8.2+(Editor+%231,+Compiler+%231)+C%2B%2B',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

18

Race conditions

// global variable counter
int counter;

int main() {
counter = 0;
pthread_create(..., incr);
pthread_create(..., incr);
pthread_join ...
printf("%d\n", counter);

}

void incr() {
 int x = counter;
 x = x + 1;
 counter = x;
}

void incr() {
 counter ++;
}

19

Race conditions

• debugging race conditions is not fun
• many test runs may produce the same output, often correct
• then, in a rare situation the output might be different,

e.g. when system was less/more busy
• C example: https://repl.it/@pfederl/counter-race-condition
• C++ example: https://repl.it/@pfederl/c-threads-with-race-condition

• we want to avoid race conditions
• but how?

Concurrent
programming

https://repl.it/@pfederl/counter-race-condition
https://repl.it/@pfederl/c-threads-with-race-condition#main.cpp

20

Avoiding race conditions

• we need to prevent more than one process/thread from
accessing a shared resource at any given time

• approach:

• identify critical sections in code where this could happen

• enforce mutual exclusion to make sure it does not happen

21

Critical sections and mutual exclusion

• critical section / critical region: part of the program that accesses the shared resource in a
way that could lead to races or other undefined/unpredictable/unwanted behaviour

• if we can arrange tasks such that no two processes or threads will ever be in their critical
sections at the same time, we could avoid the race condition (achieving mutual exclusion)

int counter; ← shared resource
void incr() {
 int x = counter;
 x = x + 1; ← critical section
 counter = x;
}

22

Critical sections and mutual exclusion

Thread A

Thread B

23

Requirements for good race-free solution

1. Mutual exclusion: No two processes/threads may be
simultaneously inside their critical sections (CS).

2. Progress: No process/threads running outside its CS may
block other processes/threads.

3. Bounded waiting: No process/thread should have to wait
forever to enter its CS.

4. Speed: No assumptions may be made about the speed or the
number of CPUs.

General structure:

 while (1) {
 CS entry code
 critical section
 CS exit code
 non-critical section
 }

24

Review

25

Summary

• thread cancellation

• race conditions
• critical sections

25

26

Threads and fork()

• is it ok to call fork() in a program with multiple threads?
• what should happen?
• what does happen?

• what actually happens:
• only the calling thread survives, other threads are not duplicated
• this creates a problem if synchronization mechanisms were used
• it's possible to register a callback in case fork() is called

using pthread_atfork()

• general advice: avoid using fork() in programs with multiple threads

• some usages are safe, eg.:
• fork() is immediately followed by execve() to execute external program, or
• fork() is executed before creating any threads

Onward to …
locks, mutexes, dining
philosophers

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	System Calls
	Topics
	Thread Cancellation
	Thread/work cancellation
	Asynchronous thread/work cancellation
	Deferred (Synchronous) thread/work cancellation
	Deferred cancellation example
	Deferred cancellation example (non-portable)
	Deferred cancellation example (C++, portable)
	Race Conditions
	Race conditions
	Race conditions
	Race conditions
	Race conditions
	Race conditions
	Race conditions
	Race conditions
	Race conditions
	Race conditions
	Avoiding race conditions
	Critical sections and mutual exclusion
	Critical sections and mutual exclusion
	Requirements for good race-free solution
	Review
	Summary
	Threads and fork()
	Onward to …�locks, mutexes, dining philosophers

