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Topics

• processes vs. threads

• cons/pros of threads
• thread pool
• POSIX threads



3

Threads
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Threads TL;DR

• threads are similar to processes

• but there are some important differences

• TL;DR
• threads are more efficient than processes
• threads are more difficult to use correctly
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Threads

• just like processes, threads can also be used to express parallelism

• if we need multiple tasks to run concurrently, we can:
• run each task in separate process; or
• run each task in separate thread

• if we have enough CPUs, each task can run on separate CPU

• the most common use of threads is to speed up execution
by allowing programs to utilize multiple CPUs/cores

• programs that use multiple threads are called multi-threaded
• programs that don't use multiple threads are called single-threaded
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Threads

• every process starts with one thread, but can add more threads
• the original thread is usually called the main thread
• main thread is the one executing main()

• a thread cannot exist without a process
• a process acts like a container for all its threads

• all threads within one process share the resources of the process
• threads are scheduled and execute independently

• analogies:
• multiple VMs share resources of the host computer
• multiple processes share the resources of the OS

Process

thread 
3

thread 
2

main
thread
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Process with 1 thread (single-threaded process)

• think of a process as a way to group related resources 
together

• e.g. address space (heap, global variables, etc), open files, sockets, 
child processes, signal handlers, accounting info

• a process also has aa "thread of execution"
• consisting of registers, stack and state

• every process starts with a single thread of execution

Process
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Process with many threads

• any process can create additional thread(s)

• threads allow multiple executions to take place within one process 
environment

• think of threads as multitasking within one process
• all threads execute simultaneously, and are scheduled 

independently

• threads can make system calls simultaneously
• a thread can share many/most resources with other threads in the 

same process
• threads belonging to different processes do not share anything

Process
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Single-threaded v.s. multi-threaded processes

code data open 
files code data open 

files

single-threaded process multi-threaded process

registers

stack

thread

registers

stack

thread

registers

stack

thread

registers

stack

thread
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Process and thread items

For example...

• if one thread opens a file, all* threads can read and write to it (but very carefully)

• if one thread changes a global variable, the change will be visible in all* other threads

• if one thread calls exit(), all* threads will be killed             (*all thread in the same process)

Per-process items
shared by threads

address space
global variables

heap
open files

child processes
accounting information

signals
...

Per-thread items
not shared by threads

PC
registers
stack
state

local variables
...
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Why Threads
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Why threads?

• multithreaded applications could run faster on computers with multiple CPUs/cores
• by dividing work into tasks and then running tasks in separate threads
• with N cpus/cores, the optimum speedup is N

• threads can be used to parallelize I/O
• e.g. 2 threads, each reading a different file

• threads can be used to write responsive GUI applications
□ one UI thread + many worker threads executing lengthy operations, such as I/O requests
• example: browser running Discord in one tab and YouTube video in another

• using multiple threads can sometimes lead to simpler design
• e.g. threads can be used to avoid using non-blocking, asynchronous I/O with callbacks 

and/or complicated state machines
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Why threads?

• compared to processes, threads …
• are "lighter weight"
• use less memory
• usually faster to create and destroy
• have more* options for communication via shared memory
• can be context-switched more efficiently
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Why not threads?

• if a thread misbehaves or crashes, the whole process could misbehave or crash

• programming with threads is more difficult than with processes,
because we have to worry about things like:

• race conditions
• deadlocks
• starvation

• to deal with the above, we need to learn:
• synchronization mechanisms (e.g. mutexes, spinlocks, barriers)
• atomic operations
• deadlock avoidance techniques
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Thread Example



16

Thread example: static web server

• web server accepts page requests from browsers and sends replies (pages) back

• handling of each request could be broken down into 3 tasks:
• receiving request
• locating and reading the corresponding file on disk
• sending the page back to browser

• how can we write a server that can handle as many requests per second as possible?
• buy faster hardware
• use non-blocking system calls
• use threads
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Thread example: static web server

• using threads to speed up the web server

• option 1 – small improvement
• we treat the tasks as a parallel pipeline with 3 stages
• we create 3 threads: one for receiving requests, one for fetching results, one for sending 

pages
• up to 3x speedup, providing all 3 stages take same amount of time
• not enough speedup  for modern hardware, e.g. 16 core CPU, few SSD disks

• option 2 – much better improvement
• create separate thread for each request
• each thread completes 1 request from start to finish (receive, fetch, send)
• can you guess what the issues might be with this approach?
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Thread Communication
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Common thread communication scenarios

• manager/worker (aka master/slave)
• one manager thread assigns work to worker threads
• typically manager thread handles all I/O
• number of worker threads can be static or dynamic

• pipeline
• a task is broken into a series of stages, 

where output of stage (i) is input to to stage (i+1)
□ each stage handled by a different thread

• other
• there a many other more sophisticated ways of organizing 

threads
• eg. thread pool, producer/consumer

T1 T2 T3 T4

M
W1

W2 W3

W4

T1

T2

T3 T4
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Thread Pools
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Thread pool

• recall the web-server example
• when server receives a request, it creates a separate thread to handle the request
• once request is handled, thread is destroyed

• issues:
• frequent thread creation and termination → performance problem
• potentially large number of concurrent threads → resource problem
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Thread pool

• thread pool ― a software design pattern allowing thread recycling/re-use

• main thread creates and maintains a pool of worker threads
• pool size can be tuned, e.g. to the available computing resources, number of cores, ...
• when program needs a thread, it is borrows one of the worker threads from the pool

• when worker thread is done, program returns it back to the pool
• benefits:

• thread creation/destruction costs are minimized
• maximum number of concurrent threads is limited

• problems:
• what if the program needs more threads than the size of the pool?
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Thread pool + task queue

• thread pools are usually combined with task queues

• when a program needs to execute task in parallel, instead of asking for a thread, it inserts the task into a 
task queue

• thread pool monitors the task queue, and next available thread takes task from the task queue, and 
finishes it

• task queues could implement advanced features, such as priorities and dependencies

task queue

thread 
pool

finished 
tasks

add 
task 

thread 1

thread 2

thread 3

thread 4

thread 5

completed 
task

retrieve 
results



24

Thread Libraries
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Thread libraries

• a thread library provides the programmer with an API for creating and managing threads

• a thread library typically contains higher level wrappers around low level system calls

• examples
• POSIX threads, a.k.a. pthreads (mostly for UNIX)
• C++ threads (portable)
• Win32
• Java
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POSIX threads (pthreads)

• to use POSIX threads
□ #include <pthread.h>

• compile with -pthread (on older g++ compilers use -lpthread)

• pthread_create(*threadid, attr, start_routine, arg);

• starts a thread and calls start_routine(arg) in new thread; similar to fork()

• each thread gets unique threadid, which we need to keep

• pthread_exit(status);

• terminates the current thread, similar to exit(), or you can return from start_routine

• pthread_join(threadid, *status);

• blocks the calling thread until the specified thread terminates, similar to wait()

• pthread_attr_init(attr) and pthread_attr_destroy(attr);
• initializes / destroys thread attributes
• these can be fine-tuned with pthread_attr_set_?() functions
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Example: multithreaded "Hello world"

#include <pthread.h>
#include <stdio.h>
#include "slow_printf.h"

void * task(void *) {
/* this runs in new thread */
slow_printf("Hello\n");
pthread_exit(0); // or return 0;

}

int main() {
pthread_t tid;
pthread_create(&tid, NULL, task, NULL);
/* this runs in original (main) thread */
slow_printf("world\n");
pthread_join(tid, NULL);
printf("Done\n");

}

Hello
world
Done

wHoerllldo

Done

world
Hello
Done

https://replit.com/@jonathanwhudson/hello-world-1 

Compile with:

Possible outputs:

$ gcc -pthread main.c

https://replit.com/@jonathanwhudson/hello-world-1
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Shared Variables
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Multithreading & shared (global) variables

• since address space is shared between threads, all global variables are shared by default

• if one thread changes a global variable, it changes for all threads

• this is very different behavior from multi-process programs (where we used fork)
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Processes & global variables

int x; /* global variable */

void do_something() {
x = 11;
exit(0);

}

int main() {
x = 10;
int pid = fork();
if( pid == 0) {

do_something();
}
else {

while( wait(NULL) != -1);
}
printf("x=%d\n", x);

}

Output:

$ ./a.out
???
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Processes & global variables

int x; /* global variable */

void do_something() {
x = 11;
exit(0);

}

int main() {
x = 10;
int pid = fork();
if( pid == 0) {

do_something();
}
else {

while( wait(NULL) != -1);
}
printf("x=%d\n", x);

}

Output:

$ ./a.out
x = 10

https://repl.it/Lulm/1 

https://repl.it/Lulm/1
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Threads & global variables

int x; /* global variables are shared between threads 
!!! */

void * do_something(void *) {
x = 11;
pthread_exit(0); // or return 0;

}

int main() {
x = 10;
pthread_t tid;
pthread_create( & tid, NULL, do_something, NULL);
pthread_join( tid, NULL);
printf("x=%d\n", x);

}

Output:

$ gcc -pthread 
thread.c
$ ./a.out
???
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Threads & global variables

int x; /* global variables are shared between threads 
!!! */

void * do_something(void *) {
x = 11;
pthread_exit(0); // or return 0;

}

int main() {
x = 10;
pthread_t tid;
pthread_create( & tid, NULL, do_something, NULL);
pthread_join( tid, NULL);
printf("x=%d\n", x);

}

Output:

$ gcc -pthread 
thread.c
$ ./a.out
x = 11

https://repl.it/LuoF/0 

https://repl.it/LuoF/0
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Creating Multiple Threads
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Creating variable number of threads

• how do we create multiple threads?

• we need to keep track of all thread IDs that we create,
so that we can join the threads later

• we'll need an array to store these
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#include <pthread.h> #include <stdio.h> #include <stdlib.h>

#define NUMBER_OF_THREADS 5

void * thread_print(void * tid) {
  printf("thread %ld running\n", (long int) tid);
  pthread_exit(0);
}

int main() {
  pthread_t threads[NUMBER_OF_THREADS];
  for ( long i = 0; i < NUMBER_OF_THREADS; i++) {
    printf("creating thread %ld\n", (long int) i);
    long status = pthread_create(&threads[i], NULL, thread_print, (void *) i);
    if (status != 0) {
      printf("Oops, pthread_create returned error code %ld\n", status);
      exit(-1);
    }
  }
  for (i = 0; i < NUMBER_OF_THREADS; i++)
    pthread_join(threads[i], NULL);
  return 0;
}

Compile with:

$ gcc -pthread thread.c 

Can you guess the output?

Example 
with 

multiple 
threads
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#include <pthread.h> #include <stdio.h> #include <stdlib.h>

#define NUMBER_OF_THREADS 5

void * thread_print(void * tid) {
  printf("thread %ld running\n", (long int) tid);
  pthread_exit(0);
}

int main() {
  pthread_t threads[NUMBER_OF_THREADS];
  for ( long i = 0; i < NUMBER_OF_THREADS; i++) {
    printf("creating thread %ld\n", (long int) i);
    long status = pthread_create(&threads[i], NULL, thread_print, (void *) i);
    if (status != 0) {
      printf("Oops, pthread_create returned error code %ld\n", status);
      exit(-1);
    }
  }
  for (i = 0; i < NUMBER_OF_THREADS; i++)
    pthread_join(threads[i], NULL);
  return 0;
}

Possible output:

$ ./a.out
creating thread 0
creating thread 1
thread 0 running
creating thread 2
creating thread 3
thread 2 running
thread 1 running
creating thread 4
thread 3 running
thread 4 running

Other possible outputs:

https://repl.it/Luid/0 

https://repl.it/Luid/0
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Passing multiple parameters to threads & retrieving 
results

• pthread interface only allows a single parameter to be passed to the thread function

• lucky for us, the parameter is a void pointer (void*), a generic pointer
• we can use it to pass any number of parameters, and even use it to return results
• a common design pattern is to create an array of struct, one for each thread

• let's say we want N threads to compute result = a + b * c for different values of a, b and c

• then we can pass a pointer to different elements of this array to each thread
• basically, each thread will get its own dedicated area of memory

#define N 5
struct TMem {
  int a, b, c;   // inputs
  int result;    // outputs
  pthread_t tid;
} tarr[N];
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#define NUMBER_OF_THREADS 5
struct TMem {
  pthread_t tid;
  int a, b, c, result;
} tarr[NUMBER_OF_THREADS];

void * calc(void * targ) {
  struct TMem * tm = (struct TMem *) targ;
  tm-> result = tm->a + tm->b * tm->c;
  return 0;
}

int main() {
  for (int i = 0; i < NUMBER_OF_THREADS; i++) {
    tarr[i].a = i; tarr[i].b = i + 1; tarr[i].c = i + 2;
    if( 0 != pthread_create(& tarr[i].tid, 0, calc, & tarr[i])) {
      printf("Error: pthread_create failed\n"); exit(-1);
    }
  }
  for (int i = 0; i < NUMBER_OF_THREADS; i++) {
    pthread_join(tarr[i].tid, 0);
    printf("%d + %d * %d = %d\n", 
      tarr[i].a, tarr[i].b, tarr[i].c, tarr[i].result);
  }
}

$ gcc -l pthread thread.c
$ ./a.out
0 + 1 * 2 = 2
1 + 2 * 3 = 7
2 + 3 * 4 = 14
3 + 4 * 5 = 23
4 + 5 * 6 = 34

https://repl.it/@jonathanwhudson/simple-threads-1 

https://repl.it/@pfederl/simple-threads-1
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C++ Threads
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C++ threads

#include <iostream> 
#include <thread>

int x = 10;

void do_something() {
x = 11;

}

int main() {
auto t1 = std::thread( do_something );
t1.join();
std::cout << "x = " << x << "\n";

}

$ g++ -pthread thread.cpp
$ ./a.out
x = 11

https://repl.it/@jonathanwhudson/global-variable 

https://repl.it/@jonathanwhudson/global-variable
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C++ threads – passing parameters by value

#include <cstdio> 
#include <thread> 
#include <chrono>
#include <string>

void task(std::string task_name, int start, int end) {
for( int i = start ; i < end ; i ++ ) {

printf("Thread '%s': i=%d\n", task_name.c_str(), i);
std::this_thread::sleep_for(

std::chrono::milliseconds(1));
}

}

int main() {
auto t1 = std::thread( task, "t1", 0, 3);
auto t2 = std::thread( task, "thread 2", 100, 105);
t1.join();
t2.join();

} https://repl.it/@jonathanwhudson/c-threads-with-parameters

$ g++ -pthread thread.cpp
$ ./a.out
Thread 't1': i=0
Thread 'thread 2': i=100
Thread 't1': i=1
Thread 'thread 2': i=101
Thread 't1': i=2
Thread 'thread 2': i=102
Thread 'thread 2': i=103
Thread 'thread 2': i=104

https://repl.it/@pfederl/c-threads-with-parameters
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C++ threads – parameters (by reference) & retrieving 
results

void sum( int start, int end, int step, int & result) 
{

for( auto i = start ; i < end ; i += step)
result += i;

}

int main() 
{

constexpr int N = 1024;
int sum_even = 0, sum_odd = 0;
std::thread t1(sum, 0, N, 2, std::ref(sum_even));
std::thread t2(sum, 1, N, 2, std::ref(sum_odd));
t1.join(); t2.join();
std::cout << "Sums = " << sum_even << " " << sum_odd << "\n"

<< "Sum = " << sum_even + sum_odd << "\n"
<< "Formula = " << N * (N-1) / 2 << "\n";

}

https://repl.it/@jonathanwhudson/thread-sum 

Sums = 261632 262144
Sum = 523776
Formula = 523776

https://repl.it/@jonathanwhudson/thread-sum
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C++ threads – parameters by pointer & retrieving 
results

void sum( int start, int end, int step, int * result) 
{

for( auto i = start ; i < end ; i += step)
* result += i;

}

int main() 
{

const int N = 1024;
int sum_even = 0, sum_odd = 0;
std::thread t1(sum, 0, N, 2, & sum_even);
std::thread t2(sum, 1, N, 2, & sum_odd);
t1.join(); t2.join();
std::cout << "Sums = " << sum_even << " " << sum_odd << "\n"

<< "Sum = " << sum_even + sum_odd << "\n"
<< "Formula = " << N * (N-1) / 2 << "\n";

}

Sums = 261632 262144
Sum = 523776
Formula = 523776

https://repl.it/@jonathanwhudson/thread-sum-2

https://repl.it/@jonathanwhudson/thread-sum
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C++ threads – lambdas [advanced]

int main() 
{

const int N = 1024;
int sum_even = 0, sum_odd = 0;
std::thread t1( [&] () {

for( auto i=0 ; i<N ; i+=2)
sum_even += i;

});
std::thread t2( [& sum_odd] () {

for( auto i=1 ; i<N ; i+=2)
sum_odd += i;

});
t1.join(); t2.join();
std::cout << "Sums = " << sum_even << " " << sum_odd << "\n"

<< "Sum = " << sum_even + sum_odd << "\n"
<< "Formula = " << N * (N-1) / 2 << "\n";

}

https://repl.it/@jonathanwhudson/thread-sum-with-lambdas 

Sums = 261632 262144
Sum = 523776
Formula = 523776

https://repl.it/@jonathanwhudson/thread-sum-with-lambdas
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C++ threads – array of threads

const int NTHREADS = 5;

void task(int tid) 
{

printf("thread %d running\n", tid);
}

int main() 
{

std::vector<std::thread> threads;
for( auto i = 0 ; i < NTHREADS ; i ++) {

printf("creating thread %d\n", i);
threads.push_back( std::thread(task, i));

}
for( auto & t : threads)

t.join();
}

https://repl.it/@jonathanwhudson/array-of-threads 

creating thread 0
creating thread 1
thread 0 running
creating thread 2
creating thread 3
creating thread 4
thread 4 running
thread 3 running
thread 2 running
thread 1 running

https://repl.it/@jonathanwhudson/array-of-threads
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Thread Implementations
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Thread implementations

• kernel-level threads
• managed by the kernel/OS
• most common

• user-level threads
• entirely implemented in user space
• kernel knows nothing about threads (i.e. OS does not need to support threads at all)
• not very common, used in some HPC environments for efficiency

• hybrids
• very uncommon (HPC?)
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Signal Handling
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Signal handling

• signal handling is more complicated with threads
• which thread should handle the signal?

i.e. in which thread's context should the signal handler be executed?
• what about user-level threads?

• in POSIX systems, signal delivery depends on the type of the signal:
• some signals are thread specific:

• eg. SIGSEGV is delivered to the thread that caused the exception
• pthread_kill(thread_id, signal) is only delivered to the target thread

• most signals are delivered to the process
• only one thread will handle the signal (usually the main thread, but can be arbitrary)
• can change which thread handles which signal using pthread_sigmask()

• example:
• default behavior of <ctrl-c> → SIGINT, kills all threads
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Thread Example
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Thread example:  word processor

• you are editing a document with 1000 pages
• on page 1 you delete a paragraph, then you decide to jump to page 900
• the application will be busy re-formatting the entire document from the first page so that the 

content on page 900 can be displayed correctly  

How can threads help?

• one thread for interacting with the user

• one or more threads used for reformatting (to make it run faster on multi-core CPUs)

• one thread for spell checking

• one thread for auto-saving

• ...
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User/Kernel Level Threads
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User-level threads

• threads are implemented entirely in user space

• requires no support from OS → can be used on OSes that 
don't support threads

• each process has its own thread table and scheduler
• threads usually switch only on I/O requests

• no need to trap into kernel when switching threads,
so they are very efficient

• allows custom management and scheduling
• requires OS to support non-blocking I/O

• each additional thread makes other threads run slower
• some issues with paging
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Kernel-level threads

• one master thread table at the kernel level
• thread creation/deletion/scheduling done in the kernel 

space
• works well when lot of blocking I/O ops needed
• processes with multiple threads run faster

• each thread can get same CPU time
• less efficient, since thread operations need to trap into the 

kernel
• increased kernel complexity
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User-level vs kernel-level threads

Pros Cons

User
level

● no need for OS support
● fast context switch
● no traps are needed
● customized scheduling

● needs non-blocking system calls
● a thread may run forever
● page faults
● inefficient for threads with many blocking 

procedure/system calls
● all threads get one time slice

Kernel level
● blocking calls are no problem
● OS aware of all threads → more 

efficient global scheduling

● some issues around fork()
● sending signals to threads
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Hybrid

• goal: combining the advantages of user-level threads with kernel-level threads.
• idea: multiplex user-level threads into some or all of the kernel-level threads

• the kernel is aware of only the kernel-level threads and schedules those
• the user-level threads are managed in the user space

• it is up to the application to decide how many kernel-level and user-level threads to create
• result: more flexibility
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Scheduler Activations
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Scheduler activations

• a mechanism to allow closer integration between user-level threads and the kernel

• allows for hybrid kernel-level and user-level threads

• supported by some kernels

• kernel notifies the application when 'interesting' events occur
• eg. when a thread has been blocked, could deal with page faults
• the notification is called an upcall
• application can then react by rescheduling its threads
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Thread Models
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Thread models

• N:1 (many-to-one) or user-level threads
• many user-level threads per single kernel thread
• thread management is done by the thread library in the user space
• E.g., Solaris Green Threads, GNU Portable Threads

• 1:1 (one-to-one) or kernel-level threads
• maps each user thread to a kernel thread
• E.g., Windows NT/XP/2000, Linux, Solaris 9 and later

• M:N (many-to-many) or hybrid user/kernel level threads
• multiplexes many user-level threads to a smaller or equal number of kernel threads
• eg. Marcel, a multithreading library for HPC
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Review
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Review

• When the parent process terminates, what happens to its children (UNIX)?
• https://repl.it/@pavolfederl/GraveExpensiveField
• but try the same program on your Linux machine

• What could cause a process to change from running state to ready state? 
• Why is thread creation faster than process creation?

• What are some of the items that are shared among threads?
• When running multiple threads on a multi-core machine, will all cores be utilized?

• What is the difference between using pthread_exit() and exit() in a thread? 
• Name some pros and cons of implementing threads in user space.

https://repl.it/@pavolfederl/GraveExpensiveField
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Simple exercise

• write a program that calculates the sum of numbers 1..N
• N will be given on command line
• create 2 threads

• thread 1:
• calculates sum of numbers [1 .. N/2)
• stores result in one global variable

• thread 2:
• calculates sum of even numbers [N/2 .. N]
• stores result in another global variable

• main thread
• parses command line argument "N"
• sets 2 global variables to "0" and starts 2 threads
• waits for both threads to finish
• sums the two global variables & prints out the result
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Summary

• processes vs. threads

• cons/pros of threads
• thread pool
• POSIX threads

65



Onward to …
thread cancellation and 
race conditions

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/
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