
Processes
CPSC 457: Principles of Operating Systems
Winter 2024
Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024

2

Topics

• Multi-programming vs. Multi-tasking

• Program vs. Process
• Forking
• External Programs

• More PCB
• Process Management & Scheduling
• Context switching

• Unix Signals
• Re-entrant Functions
• Signal Handling

• CPU Utilization

• Process Creation

2

3

Multi-Programming and Multi-Tasking

4

Multiprogramming and multitasking

• early computers had limited memory

• only one program could run at a time

• lengthy I/O → idle CPU

• cheaper memory ⟶ multiple programs can be loaded
simultaneously

• multiprogramming – OS gives CPU to another
program if current program must wait on I/O

• cooperative multitasking - programs can voluntarily yield CPU to
another program

• early Windows and Mac OS supported this

• you can manually yield using sleep(0) or sched_yield()

• preemptive multitasking – a program gets a fraction of a second to
execute, then OS automatically switches to the next program, and so on

• nearly all modern OSes implement this

• multithreading – allows even more efficient multitasking, usually
preemptive

5

Multiprogramming on a single CPU

6

Multitasking

• Multi-tasking allows a computer with M CPUs to run N processes, even when M < N

• Multi-tasking = concurrent* execution of multiple programs
• just an illusion of parallelism – programs do not actually have to execute their

instructions simultaneously, as long as it appears that way
• just like multi-programming, multi-tasking also reduces CPU idling during I/O

7

Multitasking

• imagine a single CPU running multiple programs:

repeat forever:
for every process p:

give CPU to process p for a short time (fraction of a second)

• if process decide what "short time" is, we have cooperative multi-tasking
• if OS decided what "short time" is, we have pre-emptive multi-tasking

• short time is called time slice, or quantum

CPU: process
1

time

process
2

process
3

process
1

process
2

process
3

process
1

process
2

process
3

time slice

8

Program vs. Process

9

Program vs Process

• OS needs to keep track of all running programs

• a program is a passive entity – executable file containing a list of instructions, e.g. stored on disk
• a process is an active entity – e.g. with a unique program counter, saved registers, open files
• a program becomes a process when it starts to be loaded into memory for execution

• a single program can be used to start multiple processes
e.g. running multiple terminals or shells

program

process 1

process 2

process 3

run

10

A process in memory

• each process gets its own address space
• part(s) of memory available to a process, decided by OS
• on modern OSes it is a virtual address space (0 … max),

isolated from other processes

• examples of things in address space of a process:
• text section: the program code
• data section: global variables
• heap: dynamically allocated memory
• stack: parameters, return address, local variables stack

heap

data

text
0

max

11

Process control block (PCB)

• OSes track many types of information to run a process

• all this data is stored somewhere, in some data structure
• we will call such data structure a Process Control Block (PCB)

• on Linux, PCB is called task_struct
• typical parts of PCB:

• program counter + other CPU registers
• process state
• process priority
• memory management info: e.g. page table
• accounting info: e.g. CPU time, process number
• I/O status info: e.g. open files

• a process table is a collection of all PCBs (e.g. array, linked list, etc)

PC
B

4 PC
registers

process ID
CPU time used

open files
stack pointer

…

PC
B

3 PC
registers

process ID
CPU time used

open files
stack pointer

…

PC
B

2 PC
registers

process ID
CPU time used

open files
stack pointer

…

PC
B

1 PC
registers

process ID
CPU time used

open files
stack pointer

…

12

Operations on processes

• OS allows processes to be created/deleted dynamically

• process creation in UNIX is accomplished by calling the fork() system call
• process that calls fork() is called the parent process
• the newly created process is called the child process
• processes in the system form a process tree
• each process gets PID - a unique process identifier, usually an unsigned int

• process execution, e.g. calling fork() in Unix
• process termination, e.g. calling exit() or kill()

• ask OS to delete the process and free up resources
• termination can be only requested by the process itself, its parent, or an unrelated process

provided its owner has adequate permissions

13

Multi-process

14

A multiprocess program in C

$ man fork

pid_t fork(void);

fork() creates a new process by duplicating the calling process. The
new process is referred to as the child process. The calling process
is referred to as the parent process.

The child process and the parent process run in separate memory spaces.
At the time of fork() both memory spaces have the same content. Memory
writes, file mappings (mmap(2)), and unmappings (munmap(2)) performed
by one of the processes do not affect the other.

The child process is an exact duplicate of the parent process except
for the following points:
...

15

A multiprocess program in C

#include <stdio.h>
#include <unistd.h>

int main() {
 printf("Hello\n");
 /* create & run child process - a duplicate of parent */
 fork();
 /* both parent and child will execute the next line */
 printf("world.\n");
}

Possible output:
???

16

A multiprocess program in C

Possible output:
Hello
world.
world.

Are other outputs
possible?

#include <stdio.h>
#include <unistd.h>

int main() {
 printf("Hello\n");
 /* create & run child process - a duplicate of parent */
 fork();
 /* both parent and child will execute the next line */
 printf("world.\n");
}

17

A multiprocess program in C

17

Possible output:
Hello
world.
world.

Another possible output:
Hello
worwold.
rld.

Are other outputs
possible?

https://repl.it/@jonathanwhudson/fork-hello-world
https://repl.it/@jonathanwhudson/fork-hello-world-one-char-at-a-time #include <stdio.h>

#include <unistd.h>

int main() {
 printf("Hello\n");
 /* create & run child process - a duplicate of parent */
 fork();
 /* both parent and child will execute the next line */
 printf("world.\n");
}

https://repl.it/@pfederl/fork-hello-world
https://repl.it/@pfederl/fork-hello-world-one-char-at-a-time

18

A multiprocess program in C

Another possible output:
Hello
world.

Possible output:
Hello
world.
world.

Another possible output:
Hello
worwold.
rld.

#include <stdio.h>
#include <unistd.h>

int main() {
 printf("Hello\n");
 /* create & run child process - a duplicate of parent */
 fork();
 /* both parent and child will execute the next line */
 printf("world.\n");
}

19

2 different ways to think about fork()

int main() {
 fork(); //1
 fork(); //2
}

fork 1

fork 2 fork 2

fork 2 fork 2

fork
1

20

A multiprocess program in C

int main() {
 /* remember the return value */
 pid_t pid = fork();
 /* both parent and child will execute the
next line,
 * but will have different value for pid:
 * 0 for child,
 * >0 (positive) for parent,
 * -1 for error */
 printf("fork returned %d.\n", pid);
}

Possible output:

fork returned 7.
fork returned 0.

Possible output:

fork returned 0.
fork returned 7198.

Possible output:

fork returned -1.

21

Forking Exercise

22

Exercise

int main() {
 printf("A");
 fork();
 printf("B");
 fork();
 printf("C");
}

23

Hint:

■ find all unique topological orderings
in the graph

■ e.g. ABCCBCC

Exercise – helps you to stay in shape

C C C C

B B

A
int main() {
 printf("A");
 fork();
 printf("B");
 fork();
 printf("C");
}

24

Another forking exercise – predict all outputs

int main() {
 for(int i=0 ; i<4 ; i++) {
 fork();
 }
 printf("X");
}

25

Another forking exercise – predict all outputs

Hint: is this program equivalent to
the one on the left?

int main()
{
 fork();
 fork();
 fork();
 fork();
 printf("X");
}

int main() {
 for(int i=0 ; i<4 ; i++) {
 fork();
 }
 printf("X");
}

26

Another forking exercise – predict all outputs

int main() {
 for(int i=0 ; i<4 ; i++) {
 fork();
 printf("%d",i);
 }
}

27

Address space & fork

• fork() duplicates address space, creating nearly
identical copy of itself

• the next instruction is the same for both parent and
child, although it is usually "if-else", so code flow
afterwards is typically different for child vs. parent

28

Exercise – can you predict the output?

int x = 10;

int main() {
 printf("x=%d\n", x);
 fork();
 x ++;
 printf("x=%d\n", x);
}

// assume fork() does not
fail

29

Fork bomb

int main() {
 while(1) {
 fork();
 }
 printf("X"); //
???
}

30

External Programs

31

Starting an external program (programmatically)

• how do we start an external program in Unix?

• no dedicated system call for this purpose

• we have to fork() a new process
• then we replace child process with an external program using exec() system call

32

Starting an external program (programmatically)
$ man execve

int execve(const char *filename, char *const argv[], char *const envp[]);

execve() executes the program pointed to by filename. filename must be
either a binary executable, or a script starting with a line of the
form:
 #! interpreter [optional-arg]

For details of the latter case, see "Interpreter scripts" below.

argv is an array of argument strings passed to the new program. By
convention, the first of these strings should contain the filename
associated with the file being executed. envp is an array of strings,
conventionally of the form key=value, which are passed as environment
to the new program. Both argv and envp must be terminated by a null
pointer.

...

execve() does not return on success, and the text, initialized data,
uninitialized data (bss), and stack of the calling process are
overwritten according to the contents of the newly loaded program.

...

33

Starting an external program (programmatically)

$ man execlp

int execlp(const char *file, const char *arg, ...);

The exec() family of functions replaces the current process image with
a new process image. The functions described in this manual page are
front-ends for execve(2). (See the manual page for execve(2) for fur‐
ther details about the replacement of the current process image.)

The initial argument for these functions is the name of a file that is
to be executed.

...

34

int main() {
 pid_t pid = fork();
 if (pid < 0) {
 fprintf(stderr, "Fork failed");
 exit(-1);
 }
 else if (pid == 0) { /* child process created successfully */
 /* replace process with 'ls -l' */
 execlp("/bin/ls", "ls", "-l", NULL);
 /* execlp only returns if it fails, in which case errno contains the reason */
 printf("execlp failed\n");
 _exit(-1); /* _exit() is normally recommended for children */
 }
 else { /* parent process will wait for the child to complete */
 printf("Waiting for child process %d\n", pid);
 while (wait(NULL) > 0) {;} /* in this case, wait(NULL) would also work */
 printf("Child finished.\n");
 exit(0);
 }
}

Starting external program with fork() + exec()
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

35

A multiprocess program in C

$ man system
...
The system() library function uses fork(2)
to create a child process that executes the
shell command specified in command using
execl(3) as follows:

execl("/bin/sh", "sh", "-c", command,
(char *) 0);

system() returns after the command has been
completed.
...

#include <stdio.h>
#include <stdlib.h>

int main()
{
 printf("Before ls.\n");
 system("/bin/ls -l");
 printf("After ls.\n");
}

36

A multiprocess program in C

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE * fp = popen("/bin/ls -l", "r");
 if (fp == NULL) {
 fprintf(stderr, "popen failed.\n");
 exit(-1);
 }

 char buff[4096];
 while (fgets(buff, sizeof(buff), fp) != NULL)
 printf("%s", buff);

 pclose(fp);
}

$ man popen
...

The popen() function opens a
process by creating a pipe,
forking, and invoking the shell.
Since a pipe is by definition
unidirectional, the type argument
may specify only reading or
writing, not both; the
resulting stream is
correspondingly read-only or
write-only.

37

Process tree

• parent process - the creating process

• child process (child) - the newly created
process

• PID - the unique process identifier for
each process

• in Unix, parent and child processes
continue to be associated, forming a
process hierarchy

• in Windows, all processes are equal, the
parent process can give the control of its
children to any other process

init
(1)

sshd
(4)

bash
(20)

emacs
(24)

less
(224)

bash
(21)

cat
(27)

lightdm
(5)

terminal
(10)

csh
(11)

vi
(13)

firefox
(1001)

38

init process

• init or systemd is the first process started after booting
• older UNIX systems used init
• many/most newer Linux distros switched to systemd

• init is the ancestor of all user processes (direct or indirect parent), i.e. root of process tree

• init always has PID = 1

• orphaned processes are adopted by init (parent terminates before child)

• printing a process tree

• note: some special 'system processes' are created by kernel during boot, and do not have to be
descendants of init, such as swapper and pagedaemon

$ pstree
$ ps axjf

39

More PCB

40

Process management

program counter
registers
stack pointer
process state
priority
scheduling parameters
process ID
parent process
process group
signals
process start time
CPU time used
children's CPU time used
time of next alarm
...

Memory management

pointer to text segment
pointer to data segment
pointer to stack segment
...

File management

root directory
working directory
file descriptors
user ID
group ID
...

More examples of fields of a PCB

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
https://github.com/torvalds/linux/blob/master/include/linux/sched.h

41

Queues

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingS
ystems/3_Processes.html

https://www.cs.uic.edu/%7Ejbell/CourseNotes/OperatingSystems/3_Processes.html
https://www.cs.uic.edu/%7Ejbell/CourseNotes/OperatingSystems/3_Processes.html

42

Process Management

43

● parent continues to execute concurrently with child,
and periodically synchronizes with the child

● e.g. popen()
● we won't cover this scenario, because we will instead

focus on threads and related synchronization
mechanisms

● parent continues to execute concurrently and
independently of the child,

● e.g. browser launches PDF viewer after downloading
PDF

Common parent-child execution scenarios
after child process is created, parent process usually does one of 3 things:

pid = fork()
if pid > 0 :
 do_whatever()
 exit()

● parent waits until child is finished,
often used when child executes another program

● e.g. fork+exec+wait(), or system()

44

Process termination

• voluntary:
• normal exit - eg. application decides to terminate, or user instructs an app to 'close'

• app calls exit(0) or returns 0 from main() – which is the same thing in C
• error exit - application detects an error, optionally notifies user, and then terminates

• app calls exit(N) or returns N from main() with N!=0
• involuntary:

• fatal error – aka bugs in software
• error detected by OS, e.g. accessing invalid memory, division by zero

• external – killed by another process
• parent, or another process calls kill()
• e.g. system shutdown, pressing <ctrl-c> in terminal, closing GUI window

45

Process termination

• parent may decide to terminate its children for different reasons, for example:

• the task assigned to the child is no longer required

• the parent needs/wants to exit and wants to clean up first

• what happens when parent process is terminated before child (UNIX):

• the child processes may be terminated, or assigned to the grandparent process,
or to the init process

• process hierarchy is always maintained

• default behavior on Linux is to reparent the child process to the init process

• this can be changed (e.g. to kill children, reparent to some other process)
see prctl() for more details

46

Process termination

• process termination is not cheap

• after process terminates, OS needs to clean up:
• free memory used by the process
• delete PCB
• delete process from process table
• kill children or assign them a new parent
• close open files
• close network connections

. . .

47

Process Scheduling

48

Process scheduling (basics)

• part of multitasking is deciding which process gets the CPU next
• typical objective is to maximize CPU utilization

• process scheduler:
• kernel routine/algorithm that chooses one of available process to execute next on the CPU
• selected from processes in a ready queue
• ready queue: all processes that are ready to execute their next instruction

• e.g. linked list, priority queue, balanced binary search tree

• OS maintains other scheduling queues as well:
• job queue: all programs waiting to run, usually found in batch systems

• e.g. priority queue

• device queues: processes waiting for a particular device
• each device has its own queue

49

When OS needs to invoke scheduler

• variety of reasons
• basically any time CPU

becomes available
• examples:

• process yields
• thread calls

mutex lock
• time slice expires

CPU

I/O queue

blocking
system call

time slice
expired,

yield, fork

device

mutex

semaphore sem. queue

mutex queue

ready queue

wait for
interrupt

interrupt
source wait queue

scheduler

new
process

process
terminates

50

Process states

3 process states:

• running ― actually running on the CPU

• blocked ― waiting for some event to occur, eg. I/O

• ready ― the process is ready to execute on CPU

only 4 transitions are possible:

• ready → running

• running → ready

• running → blocked

• blocked → ready

ready running

blocked

creation

scheduler
dispatch

time slice
exc. or yield

termination

51

Process Scheduling Exercise

52

Exercise – simulating round-robin scheduling

• simulate 3 processes A, B, C
• A: 7 units of CPU, 1 unit of I/O, 7 units of CPU
• B: 4 CPU, 1 I/O, 3 CPU, 1 I/O, 1 CPU
• C: 5 CPU

• assume time slice of 3 units
• each process gets 3 units of CPU cycles
• if process requests I/O during its time slice, OS switches

to the next process
• otherwise, after time slices expires, OS switches to next

process
• assume I/O is very short, less than 1 time-slice

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C

53

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

54

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu

55

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu

56

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu

57

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu

58

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

59

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

60

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

i/o
cpu

61

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

i/o
cpu

cpu
cpu
cpu

62

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

i/o
cpu

cpu
cpu
cpu
cpu
cpu
cpu

63

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

i/o
cpu

cpu
cpu
cpu
cpu
cpu
cpu
i/o

64

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

i/o
cpu

cpu
cpu
cpu
cpu
cpu
cpu
i/o
cpu
cpu
cpu

65

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

i/o
cpu

cpu
cpu
cpu
cpu
cpu
cpu
i/o
cpu
cpu
cpu

cpu

66

Exercise

cpu

i/o

cpu
cpu
cpu
cpu
cpu
cpu

cpu
cpu
cpu
cpu
cpu
cpu
cpu

i/o

cpu
cpu
cpu
cpu

cpu
cpu
cpu
i/o
cpu

cpu
cpu
cpu
cpu
cpu

A B C CPU

tim
e

cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
cpu
i/o

cpu
cpu

i/o
cpu

cpu
cpu
cpu
cpu
cpu
cpu
i/o
cpu
cpu
cpu

cpu
cpu

67

Context Switching

68

Context switch

• essential part of any multitasking OS
• implements "OS takes CPU from one process, and gives it to another process“

• OS maintains a context (state) for each process
• usually part of PCB, includes saved registers, open files, ...

• when OS switches between executing processes A to process B:
• OS first saves A's state in A's PCB

• e.g. save current CPU registers into PCBA
• OS then restores B's state from B's PCB

• e.g. load CPU registers from PCBB

• on multitasking systems, context switch is called many times every second,
allowing the (illusion of) running more processes than the number of CPUs

69

Context switch

• context switch occurs in kernel mode:
• for example when process exceeds its time slice

• enforcing time slice policy usually implemented via timer interrupt
• or when current process voluntarily relinquishes (yields) CPU, eg. by sleeping
• or when current process requests a blocking I/O operation, or any blocking system call
• or due to other events, such as keyboard, mouse, network interrupts

• context switch introduces time overhead
• CPU spends cycles on no "useful" work, eg. saving/restoring CPU registers
• context switch routine is one of the most optimized parts of kernels

• context switch performance can be improved with hardware support:
• e.g. some CPUs support saving/restoring multiple registers in a single instruction,

or CPU could support multiple sets of registers
• software based context switch is slower, but more customizable, and often more efficient

70

Unix Signals

71

Unix signals

• a form of interprocess communication (IPC)
• similar concept to hardware interrupts on CPUs (you can think of it as process interrupt)
• very limited form of IPC - processes can send each other primitive messages
• the message is a single number, from a set of predefined integers

$ man -s 7 signal
...
 Signal Value Action Comment
 ──
 SIGHUP 1 Term Hangup detected on controlling terminal
 or death of controlling process
 SIGINT 2 Term Interrupt from keyboard
 SIGQUIT 3 Core Quit from keyboard
 SIGILL 4 Core Illegal Instruction
 SIGABRT 6 Core Abort signal from abort(3)
 SIGFPE 8 Core Floating-point exception
 SIGKILL 9 Term Kill signal
 SIGSEGV 11 Core Invalid memory reference
 SIGPIPE 13 Term Broken pipe: write to pipe with no
 readers; see pipe(7)

72

Unix signals

• signals are used to notify a process that a particular event has occurred
• one process (or thread) sends a signal, another process (or thread) receives it
• it is possible for a process to signal itself
• kernel can send signals to any processes

• signal lifetime:
• a signal is generated/sent, usually as a consequence of some event
• signal is delivered/pending to a process
• delivered signal is handled by the process by executing a signal handler
• some signals can be ignored - signal delivered to a process that ignores it is lost
• some signals can be blocked - signal stays pending until it is unblocked

73

Generating signals

• manually from one process to another process
kill(pid, signal); // pid can be the current process

• periodically via timer
alarm() or setitimer()

• by kernel ― to handle exceptions
e.g. on segmentation fault kernel sends SIGSEGV

• from command line
$ kill 12345 # tries to kill process w/pid=12345 by sending it signal

SIGTERM(15)

$ kill -9 12345 # kills a specific process with signal SIGKILL(9)
$ kill -9 -1 # kills all processes except pid=1 (init/systemd)

• more information on signals
$ man -s 7 signal

int main() {
 * (char *) 0 = 1;
}

74

Signal handling

• signal handler - a function that will be invoked when a signal is delivered

• default signal handler - all programs start with default handlers with default behaviours

• a user-defined signal handler - programs can override the default handlers
• signals handled by a user-defined handler are called 'caught signals’

• some signals cannot be caught – you cannot override their default signal handler
• $ kill -9 pid always kills the process because

SIGKILL(9) cannot be caught, blocked or ignored, and default handler kills the process
• <ctrl-c> in a terminal will deliver SIGINT(2) to the running process, which can be caught,

ignored or blocked
• <ctrl-z> in a terminal will deliver SIGSTOP signal to the running process, which cannot be

caught, ignored or blocked; default handler suspends the process

75

Signal handling

• signals can be delivered anytime, even while your program is in the middle of a function, or in

the middle of applying an operator (C++)
• the state of your data might be in an inconsistent state
• signal handler could itself be interrupted !!!
• when writing signal handlers, keep it as simple as possible...

□ e.g. modify a global flag variable and let the program handle the interrupt later
□ declare global variables with volatile keyword, e.g.

volatile sig_atomic_t sigStatus = 0;
□ only call reentrant functions inside the handler
□ more information and advanced tips, such as preventing signals

from interrupting signal handlers:
https://www.gnu.org/software/libc/manual/html_node/Signal-Handling.html

https://www.gnu.org/software/libc/manual/html_node/Signal-Handling.html

76

Re-entrant Functions

77

Re-entrant functions

• a function is re-entrant if:

□ it can be interrupted while in the middle of executing

□ and then called again (re-entered) from somewhere else

□ and finally the original function call can be resumed, and finish executing

• used in interrupt handlers, signal handlers, multi-threaded applications *

• when writing re-entrant functions:
• be very careful with global variables and data structures

• e.g. use atomic operations
• do not call non-reentrant functions

• unless you can temporarily disable interrupts / signals

78

Re-entrant functions

• example of a non-reentrant function:

• easy to fix… can you guess how?

int t;

void bad_swap(int *x, int *y)
{
 t = *x; // using a global variable t !!!
 *x = *y;
 // hardware interrupt or signal might
 // result in invoking (re-entering) swap()
here
 *y = t;
}

79

Re-entrant functions

• example of a re-entrant function:

• by using a local variable, the swap() function can be interrupted and re-entered anywhere
• please note that re-entrant functions, like the one above, are often also thread-safe, but not

always
see https://en.wikipedia.org/wiki/Reentrancy_(computing) for examples

void swap(int *x, int *y)
{
 int t = *x; // using a local variable t
 *x = *y;
 // hardware interrupt / signal here would be safe to call
swap() again
 *y = t;
}

https://en.wikipedia.org/wiki/Reentrancy_(computing)

80

Signal Handling Example

81

Signal handling example
#include <stdio.h> <stdlib.h> <signal.h> <unistd.h>

void sigint_handler(int signum)
{
printf("\ncaught signal=%d\n", signum);
printf("LOL, you think <ctrl-c> will stop me?!!?!\n");

}

int main (int argc, char *argv[])
{
/* catch <ctrl-c> and laugh at the user */
signal(SIGINT, sigint_handler);

for(int i = 1 ; i < 10 ; i++) {
printf("Loop=%d\n", i);
sleep(1);

}
printf("Exiting now.\n");
exit(0);

}

Output:

$./a.out
Loop=1
Loop=2
Loop=3
Loop=4
Loop=5
Loop=6
Loop=7
Loop=8
Loop=9
Exiting now.

82

Signal handling example
#include <stdio.h> <stdlib.h> <signal.h> <unistd.h>

void sigint_handler(int signum)
{
printf("\ncaught signal=%d\n", signum);
printf("LOL, you think <ctrl-c> will stop me?!!?!\n");

}

int main (int argc, char *argv[])
{
/* catch <ctrl-c> and laugh at the user */
signal(SIGINT, sigint_handler);

for(int i = 1 ; i < 10 ; i++) {
printf("Loop=%d\n", i);
sleep(1);

}
printf("Exiting now.\n");
exit(0);

}

Possible output:

$./a.out
Loop=1
Loop=2
Loop=3
^C
caught signal=2
LOL, you think <ctrl-c> will stop
me?!!?!
Loop=4
Loop=5
Loop=6
^C
caught signal=2
LOL, you think <ctrl-c> will stop
me?!!?!
Loop=7
Loop=8
Loop=9
Exiting now.

83

Swap

84

swap() in C and C++

/* swap in C
 * pointers are ugly
 */

void
swap(int *x, int *y)
{
 int t = *x;
 *x = *y;
 *y = t;
}

int a, b;
swap(&a, &b);

// swap in C++
// references are
cool

void
swap(int &x, int &y)
{
 int t = x;
 x = y;
 y = t;
}

int a, b;
swap(a, b);

// swap in C++
// templates are cool

template <class T>
void swap(T &x, T &y)
{
 T t(x);
 x = y;
 y = t;
}

double a, b;
swap(a, b);
std::vector<int> c, d;
swap(c, d);

85

CPU Utilization Example

86

CPU utilization

• example:
• OS is running 4 processes, P1, P2, P3 and P4

• P1 spends 40% of the time waiting on I/O

• P2 spends 20% of the time waiting on I/O
• P3 spends 50% of the time waiting on I/O
• P4 spends 90% of the time waiting on I/O

• if there is only one CPU, what will be the CPU utilization?

i.e. what percentage of the time is the CPU going to be running 'something'?
• Answer:

• CPU utilization = probability that at least one of the processes is not waiting on I/O
= ? ? ?

87

CPU utilization

• example:
• OS is running 4 processes, P1, P2, P3 and P4

• P1 spends 40% of the time waiting on I/O

• P2 spends 20% of the time waiting on I/O
• P3 spends 50% of the time waiting on I/O
• P4 spends 90% of the time waiting on I/O

• if there is only one CPU, what will be the CPU utilization?

i.e. what percentage of the time is the CPU going to be running 'something'?

• Answer:

• CPU utilization = probability that at least one of the processes is not waiting on I/O

= 1.0 - probability that all processes are waiting on I/O

= 1.0 - 0.4 * 0.2 * 0.5 * 0.9 = 0.964

= 96.4%

88

CPU utilization - under simplistic multiprogramming
model

CPU utilization as a function of the
number of processes in memory.

Tanenbaum & Bo,Modern Operating Systems:4th ed.

● assume n similar processes

● each process spends the same

fraction p of its time waiting on

I/O

● then CPU utilization = 1 - pn

number of processes

89

CPU utilization example

• example:
• computer has 8GB of RAM
• 2GB are taken up by OS, leaving 6GB available to user programs
• user wants to run multiple copies of a program that needs 2GB RAM, with average 80% I/O
• with 6GB remaining, user could run 3 copies of the program
• CPU utilization would be = 1 - 0.83 ~= 49%

• is it a good idea to buy 8GB more of RAM?

90

CPU utilization example

• example:
• computer has 8GB of RAM
• 2GB are taken up by OS, leaving 6GB available to user programs
• user wants to run multiple copies of a program that needs 2GB RAM, with average 80% I/O
• with 6GB remaining, user could run 3 copies of the program
• CPU utilization would be = 1 - 0.83 ~= 49%

• is it a good idea to buy 8GB more of RAM?
• with 14 GB available, we could run 7 copies of the program
• CPU utilization would be = 1 - 0.87 ~= 79%
• throughput increased by 79% - 49% = 30%

• is it a good idea to buy 8 GB more?
• we could run 11 programs ⟶ CPU utilization = 1 - 0.811 ~= 91%
• throughput increased only by 91% - 79% = 12% (diminishing returns)

91

Process Creation

92

Process creation

• in UNIX
• init process is created at boot time by kernel (special case)

• in most modern Linux distributions init was replaced by systemd
• afterwards, only an existing process can create a new processes, via fork()
• therefore all other processes are descendants of init

• in Windows:
• CreateProcess() is used to create processes
• but the behavior is quite different from fork()

93

Process creation

• typical scenarios when process need to create new process[es]:

• during system initialization (boot)
• spawning background processes ― daemons, services, e.g. database server
• calling custom scripts

• application decides to spawn additional processes
• e.g. to execute external programs or to do parallel work

• a user requests to create a new process
• e.g. window manager allows users to launch applications

• starting batch jobs
• mainframes

94

Signals

Recommendations:

■ avoid signals as an IPC mechanism if you can

■ especially in multi-threaded programs

■ use signals only if you 'have to', eg. for background processes

■ more info on signals & C++

https://en.cppreference.com/w/cpp/utility/program/signal

https://en.cppreference.com/w/cpp/utility/program/signal

95

Resource allocation

• several options for allocating resources for a new process, for example:

• child obtains resources directly from the OS
• most common, easiest to implement
• every new process gets the same resources
• fork bomb crashes the system

• child obtains subset of parent's resources
• parent must give some of its resources to child
• fork bomb has limited impact

• parent shares resources with the child – e.g. with threads

• hybrids

96

Review

97

Review

• Which one of the following executes in kernel mode?
• A user program
• A library function call
• A system call
• A system call wrapper function

• In C, printf() is a system call.
• True
• False

97

98

Review

• When 4 programs are executing on a computer with a single CPU,
how many program counters are there?

• When does a program become a process?

98

99

Review

• What is the name of the PCB data structure in Linux?

• Name some of fields in a PCB.
• On UNIX systems, what is the name of the process that is the ancestor of all user processes?

99

100

Summary

• Multi-programming vs. Multi-tasking

• Program vs. Process
• Forking
• External Programs

• More PCB
• Process Management & Scheduling
• Context switching

• Unix Signals
• Re-entrant Functions
• Signal Handling

• CPU Utilization

• Process Creation

100

Onward to …
Basic File Systems

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Processes
	Topics
	Multi-Programming and Multi-Tasking
	Multiprogramming and multitasking
	Multiprogramming on a single CPU
	Multitasking
	Multitasking
	Program vs. Process
	Program vs Process
	A process in memory
	Process control block (PCB)
	Operations on processes
	Multi-process
	A multiprocess program in C
	A multiprocess program in C
	A multiprocess program in C
	A multiprocess program in C
	A multiprocess program in C
	2 different ways to think about fork()
	A multiprocess program in C
	Forking Exercise
	Exercise
	Exercise – helps you to stay in shape
	Another forking exercise – predict all outputs
	Another forking exercise – predict all outputs
	Another forking exercise – predict all outputs
	Address space & fork
	Exercise – can you predict the output?
	Fork bomb
	External Programs
	Starting an external program (programmatically)
	Starting an external program (programmatically)
	Starting an external program (programmatically)
	Starting external program with fork() + exec()
	A multiprocess program in C
	A multiprocess program in C
	Process tree
	init process
	More PCB
	More examples of fields of a PCB
	Queues
	Process Management
	Common parent-child execution scenarios
	Process termination
	Process termination
	Process termination
	Process Scheduling
	Process scheduling (basics)
	When OS needs to invoke scheduler
	Process states
	Process Scheduling Exercise
	Exercise – simulating round-robin scheduling
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Context Switching
	Context switch
	Context switch
	Unix Signals
	Unix signals
	Unix signals
	Generating signals
	Signal handling
	Signal handling
	Re-entrant Functions
	Re-entrant functions
	Re-entrant functions
	Re-entrant functions
	Signal Handling Example
	Signal handling example
	Signal handling example
	Swap
	swap() in C and C++
	CPU Utilization Example
	CPU utilization
	CPU utilization
	CPU utilization - under simplistic multiprogramming model
	CPU utilization example
	CPU utilization example
	Process Creation
	Process creation
	Process creation
	Signals
	Resource allocation
	Review
	Review
	Review
	Review
	Summary
	Onward to …�Basic File Systems

