System Calls

CPSC 457: Principles of Operating Systems
Winter 2024

Contains slides from Pavol Federl, Mea Wang, Andrew Tanenbaum and Herbert Bos, Silberschatz, Galvin and Gagne

Jonathan Hudson, Ph.D.
Instructor

Department of Computer Science
University of Calgary

Tuesday, 28 November 2024

Copyright © 2024
m=m UNIVERSITY OF

) CALGARY

Topics

* Kernel
* System Calls
* Libraries

* Examples
* C/Win32/Unix

* Unix APIs
* Timing
* Tracing

* strace

LGN UNIVERSITY OF

™/

CALGARY

Kernel

n=n UNIVERSITY OF

) CALGARY

Kernel services

* OS provides services to applications, e.g. access to hardware
* these services are accessible through system calls
» often implemented using software interrupts (traps) or similar mechanisms

* recall that traps allow for a safe way to switch CPU from user-mode to kernel-mode

A UNIVERSITY OF

&) CALGARY

Kernel vs. user mode

Compiler || Editor Shell Browser Game
______ L L T T .
System Call Mechanism
| | ! ! |
Kernel

Hardware:

keyboard, mouse, disk, network ...

—

L user mode - no access to

hardware, limited
instruction set

kernel mode - full
access to hardware, full
instruction set

= UNIVERSITY OF

CALGARY

System Calls

""""""""""""""

7 CALGARY

System calls

* to access a service / resource of the system, applications must make system calls

* system calls implemented using special instruction (e.g. software interrupt) that safely switch
from user mode to kernel mode and then execute a kernel routine

* inside kernel routine:
1. kernel saves application state, e.g. registers
2. kernel performs the requested operation, e.g. involving some hardware

* if operation takes a while, kernel suspends the application until the operation is
finished, and gives CPU to another process in the meantime

3. after operation is done, kernel switches back to user mode and restores application state,
i.e. resumes application

* from application's perspective, making a system call is just like calling a library function,
but the call may take quite a long time before returning

A UNIVERSITY OF

CALGARY

System calls

* we can think of system calls as a set of APIs

provided by the OS for all applications
Compiler Editor Shell * system calls are different on different operating
X A 4 systems, but they are many similarities
\ / * OSes often need to execute 1000s of system
read() Hurite(y H open() Hclose(Ol - calls per second
Kernel

Hardware:

keyboard, mouse, disk, network ...

A UNIVERSITY OF

CALGARY

Hello-World in assembly for 64-bit Linux

.global start

.text
_start:
mov $1, %rax # system call #1 - write
mov $1, %rdi # fd = 1 » stdout
mov $msg, %rsi # address of first byte
mov $13, %rdx # string length
syscall # system call
mov $60, %rax # system call #60 - exit
xor %rdi, %rdi # return code ©
syscall # system call
msg:
.ascii "Hello, world\n"
Hello-World in C

#include <unistd.h>
int main() {

char * s = "Hello world\n";
write(1, s, 12);
return ©;

Example: copying file

* even simple programs make int main() {
many system calls std::string fnamel, fname2; char c;
. std::cout << "Source filename:";
* example: a program that copies std::cin >> fnamel;
a file std::cout << "Destination filename:";

std::cin >> fname2;
int fdl = open(fnamel.c_str(), O _RDONLY);
if (fd1l < 0) err(-1, "Could not open source file.");
int fd2 =
open(fname2.c_str(),0 WRONLY|O_EXCL|O _CREAT);
if (fd2 < 0) err(-1, "Could not create dest. file.");
while (1) {
if (read(fdl, &c, 1) <= 0) break;
write(fd2, &c, 1);
}
close(fdl);
close(fd2);
std::cout << "Success.\n";
exit(0);

}

https://replit.com/@jonathanwhudson/copy-files#main.cpp

A UNIVERSITY OF

N
™/

&% CALGARY

10

11

Libraries

""""""""""""""

7 CALGARY

12

Libraries and system calls

* system calls are usually implemented in assembly, hand optimized for performance
e.g. system call number and parameters passed in registers or stack

mov eax,4 ; system call # (sys_write on 32bit Linux)
mov ebx,1 ; fd = stdout

mov edx,4 ; message length

mov ecx,msg ; ptr to message

int 0x80 ; trap

e http://blog.rchapman.org/posts/Linux System Call Table for x86 64/

* system calls are cumbersome to invoke from higher level languages
* it is much easier (and common) to make system calls through higher-level wrapper functions

* on Unix-like systems:
libc (Clibrary), 1ibstdc++ or 1ibc++ (C++ library)

write(fd, buff, len); // write() is a C/C++ wrapper for system call sys_write

N
W

A UNIVERSITY OF

CALGARY

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

13

Libraries and system calls

* system call wrappers hide the implementation details of system calls
e.g. convert parameters from stack into registers, and vice versa

* extra benefits of using system call wrappers:

* an application using wrappers can compile and run on any system
that supports the same wrapper APIs

* if the system call ever changes / is deprecated, the program using the wrapper
could still continue to function properly, as long as the wrapper is updated

* some common APIs:
* POSIX APIs for Unix, Linux, Mac OS X
* Win32 APIs for windows
* Java APIs for Java virtual machine

* usually, there is a strong correlation between a wrapper and the corresponding system call, such
as name, number and types of parameters, return value type, etc, but wrapper ! = system call

A UNIVERSITY OF

CALGARY

Example: write()

* standard C library provides access to many OS system calls

* for example write() is a wrapper for sys _write system call

S man -s2 write

SYNOPSIS
#include <unistd.h>
ssize t write(int fd, const void *buf, size t count);

Hmwrite()
* converts the arguments passed to it on the stack into appropriate registers
* invokes sys write system call, e.g. by executing a trap instruction

* takes the value returned by sys _write and passes it back to the caller

14

N
W

A UNIVERSITY OF

CALGARY

15

API / System calls / OS relationship

user mode

kernel mode

libc's implementation of
write() includes some inline

assembly [link]

| 2

T

Application calls
write()

system routine
3 g call # address

sys_write

System-call table: A 1

table of all system calls,

indexed by a unique 4

Sys_open

number associated with

each system call.

sys_close

sys _write:
; implementation of
; write system call

ret

Blz_ick-box: Application
Writers do not need to
know how the System
call works, they only
need to obey the AP|
and understang the

functionality of the
calls.

\

A UNIVERSITY OF

&) CALGARY

Example: printf()

c . .
© #include <stdio.h>
* standard C library provides also many useful ® int main() {
i)) . = printf("Hello world");
higher-level convenience functions, e.g. printf () g K
« printf () implementation does some formatting
and then calls the system call sys_write directly
.. . . 2 printf()
or indirectly, viawrite() sser | = write()
* same applies to std: :cout in libc++ mode)
kernel
mode
v
= sys_write
E system call

A UNIVERSITY OF

[1IE3
=/

&% CALGARY

Examples

""""""""""""""

7 CALGARY

18

Examples of system calls in C

Common file related system calls

fd = open(file_name, how, ..)

s = close(fd)
n = read(fd, buffer, nbytes)
n = write(fd, buffer, nbytes)

newpos = Lseek(fd, offset, whence)

s = stat(name, & buf)

open file for reading, writing, ...
close open file

read data from a file into buffer
write data from buffer to an open file
move file pointer

get more info about a file (e.qg. file length)

A UNIVERSITY OF

N
™/

&% CALGARY

19

Examples of system calls in C

Common file related system calls

s = mkdir(name, mode) create new directory

s = rmdir(name) remove an empty directory

s = link(namel, name2) create a file link name2 pointing to name1
s = unlink(name) remove link (possibly delete file)

A UNIVERSITY OF

N
™/

&% CALGARY

20

Examples of system calls in C

Miscellaneous

s = chdir(dirname) change current working directory
s = chmod(name, mode) change file's protection bits
s = kill(pid, signal) send a signal to a process

seconds = time(& seconds) get elapsed seconds since Jan 1, 1970

A UNIVERSITY OF

N
™/

&% CALGARY

21

System calls (UNIX vs Win32)

UNIX Win3z Description

fork W Create a new process

waitpid | WaitForSingleObject] Can wait for a process to exit

execve | (noneg) CreateProcess = fork + execve

axit ExitProcess Terminate execution

open CreateFile Create a file or open an existing file

close CloseHandle Close a file

read HeadFile Read data from a file

write WriteFile Write data to a file

Iseek SetFilePointer Move the file pointer

stat GetFileAftributesEx | Get various file attributes
L, 2l CrgatgDingatary. o | Ll CFogteea NARLOIFRIOR 1 pr | pot. fous ot St g nr st

LGN UNIVERSITY OF

S8Z

¥ CALGARY

22

Unix APIs

n=n UNIVERSITY OF

) CALGARY

23

Unix file APlIs

UNIX-like OSs make use of files and associated APIs for different operations and services

* pipes - communication between different programs (processes)
* sockets - networking
* communications with devices (/dev)
* random number generator (/dev/random and /dev/urandom)
* export kernel parameters (/proc and /sys)

* pseudo filesystems containing virtual files

* e.g. information about processes, memory usage, 5 @3 e T
hardware devices $ cat /proc/meminfo

ezl UNIVERSITY OF

L1183
™/

&% CALGARY

24

Pipes

Process Process
Pipe
A B

* 0N unix systems, two processes can communicate with each other via a pipe

* pipes are accessed using file I/O APIs

S ls -altr | tail -10

LN UNIVERSITY OF

Sz

¥ CALGARY

25

Al

* UNIVERSITY OF

D
-

) CALGARY

26

Assignment 1

the coding part is about improving performance of an existing program

system calls are slow (they are essentially interrupts)

making too many system calls slows down your program

the objective is to try to reduce the number of system calls
hint:
* the existing program calls read () for every single byte
« adjust the program so that read() gets multiple bytes in a single call, eg. 1MiB

LGN UNIVERSITY OF

™/

CALGARY

n=n UNIVERSITY OF

) CALGARY

28

time

* let's time how long it takes to calculate 40th fibonacci number recursively

#include <stdio.h>

long long fib(int n) {
: fib(n-1) + fib(n-2); S g++ fib.cpp

return n <2 ? n

}

int main() {

printf("%lld\n", fib(40));

}

S ./a.out
102334155

* we can use a built-in time utility to get some basic timings

S time .

[a.out

102334155

real
user
Sys

®Om1.190s
®m1.183s
OmO.002s

_-* sys - time kernel spent executing code your application's

real — same as if you used a stopwatch
user — time program spent executing on CPU

behalf, but does not include [/0 wait time

__

N
W

A UNIVERSITY OF

CALGARY

time

S time ./a.out
102334155

real Oml1.190s
user Om1.183s
Sys OmO.002s

29

real = (user) + (sys) + (I/O) + (other)

other = things CPU was doing while executing your application (e.g.
running other applications)

on an idle system, subtracting (user) from (real) will be a close estimate
of how long an application spent waiting on I/O

a.out finished in 1.19s, of which 1.183s was spent executing on CPU,
and 1.19-1.183=0.007s was spent on |/0O (if the computer was mostly
idle, and application only made 1/0 related system calls)

LGN UNIVERSITY OF

S8Z

¥ CALGARY

30

Tracing

n=n UNIVERSITY OF

) CALGARY

31

Tracing system calls

* tracing system calls = running an application and logging all system calls

 usually for debugging or performance optimization purposes

* onlinux: $ strace onMacOSX: S dtruss

* refer to the man page for further detail on these commands

* the same program/command could invoke different set of system calls on different OSes

* your program may run significantly slower when run through strace

* on Windows: Windows Performance Analysis Tools
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer

LGN UNIVERSITY OF

S8Z

¥ CALGARY

https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer

UNIX manual pages

Manual section:

time
read 1 Executable programs or shell commands
-s2 read 2 System calls (functions provided by the kernel)
e 3 Library calls (functions within program 11-
braries)
4 Special files (usually found in /dev)
5 File formats and conventions, e.g. /etc/passwd
6 Games
7 Miscellaneous (including macro packages and con-

ventions), e.g. man(7), groff(7), man-pages(7)

8 System administration commands (usually only for
root)

9 Kernel routines [Non standard]

LN UNIVERSITY OF

Sz

¥ CALGARY

33

Man pages

$ man strace

STRACE(1) General Commands Manual STRACE(1)

NAME
strace - trace system calls and signals

SYNOPSIS
strace [-CdffhikqrtttTvVxxy] [-In] [-bexecve] [-eexpr]... [-acolumn]
[-ofile] [-sstrsize] [-Ppath]... -ppid... / [-D] [-Evar[=val]l]...
[-uusername] command [args]

strace -c[df] [-In] [-bexecve] [-eexpr]... [-Ooverhead] [-Ssortby]
-ppid... [/ [-D] [-Evar[=val]]... [-uusername] command [args]
DESCRIPTION

In the simplest case strace runs the specified command until it exits.
It 1intercepts and records the system calls which are called by a
process and the signals which are received by a process. The name of
each system call, 1its arguments and its return value are printed on
standard error or to the file specified with the -o option.

W

UNIVERSITY OF

CALGARY

34

strace example

.000073
.000034
.000017
.000017
.000016
.000010
.000009
.000008
.000008
.000007
.000004
.000002
.000002

.000207

errors syscall

1 total

W

UNIVERSITY OF

CALGARY

strace example

$ cat test.cpp

int main() {
return 0;

}

$ g++ test.cpp
$./a.out
$

$ strace -c ./a.out
seconds

.000697
.000475
.000117
.000084
.000072
.000058
.000048
.000030
.000021
.000013
.000011
.000000
.000000
.000000
.000000
.000000
.000000
.000000

.001626

usecs/call

errors

syscall

execve
mmap

openat
newfstatat
pread64

read

close

mprotect

access

brk

arch_prctl
munmap

futex

set tid address
set _robust_list
priimit64
getrandom

W

UNIVERSITY OF

CALGARY

36

Review

n=n UNIVERSITY OF

) CALGARY

37

Summary

* Kernel
* System Calls
* Libraries

* Examples
* C/Win32/Unix

* Unix APIs
* Timing
* Tracing

* strace

LGN UNIVERSITY OF

S8Z

¥ CALGARY

38

Previews

n=n UNIVERSITY OF

) CALGARY

39

Processes

key concept in all operating systems

quick definition: a program in execution

* process is associated with
* an address space

set of resources

e program counter, stack pointer
unique identifier (process ID)
... anything else?

* process can be thought of as a container that
holds all information needed by an OS to run a program

A UNIVERSITY OF

CALGARY

40

Process tree

* processes are allowed to create new processes
* A creates two child processes: B and C

* B creates three child processes: D, E and F

* Ais the parent process of B

* Bis a parent process of E

* Aisan ancestor of F

°* Fis adescendant of A

LGN UNIVERSITY OF

S8Z

CALGARY

File system - tree structure (subdirectories and files)

Root directory

=

Students / Faculty

" "

o -

Hobbert Aﬁy Leo Prof Brown Prof.Green \rﬂf.%ite
i L)

FA)"/

i

LY
¥ \w Y
pErs Grants Committees
i i
i i
/

f]
Courses Pa
1)

i

[
: / .
| { !

lll I
FIN LN
Y i
\ O o O O r/
Cs5101 C5105 . S05pP

Files

COS5T-11

LN UNIVERSITY OF

Sz

§ CALGARY

Onward to ...
Processes

Jonathan Hudson

LL1&9 1]
iwhudson@ucalgary.ca UNIVERSITY OF

N
https://pages.cpsc.ucalgary.ca/~jwhudson/ W CALGARY

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	System Calls
	Topics
	Kernel
	Kernel services
	Kernel vs. user mode
	System Calls
	System calls
	System calls
	Slide Number 9
	Example: copying file
	Libraries
	Libraries and system calls
	Libraries and system calls
	Example: write()
	API / System calls / OS relationship
	Example: printf()
	Examples
	Examples of system calls in C
	Examples of system calls in C
	Examples of system calls in C
	System calls (UNIX vs Win32)
	Unix APIs
	Unix file APIs
	Pipes
	Slide Number 25
	Assignment 1
	Timing
	time
	time
	Tracing
	Tracing system calls
	UNIX manual pages
	Man pages
	strace example
	strace example
	Review
	Summary
	Previews
	Processes
	Process tree
	File system - tree structure (subdirectories and files)
	Onward to …�Processes

