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Kernel
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Kernel services

• OS provides services to applications, e.g. access to hardware
• these services are accessible through system calls

• often implemented using software interrupts (traps) or similar mechanisms
• recall that traps allow for a safe way to switch CPU from user-mode to kernel-mode
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Kernel vs. user mode



6

System Calls
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System calls

• to access a service / resource of the system, applications must make system calls
• system calls implemented using special instruction (e.g. software interrupt) that safely switch 

from user mode to kernel mode and then execute a kernel routine
• inside kernel routine:

1. kernel saves application state, e.g. registers
2. kernel performs the requested operation, e.g. involving some hardware

• if operation takes a while, kernel suspends the application until the operation is 
finished, and gives CPU to another process in the meantime

3. after operation is done, kernel switches back to user mode and restores application state,
i.e. resumes application

• from application's perspective, making a system call is just like calling a library function,
but the call may take quite a long time before returning
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System calls

• we can think of system calls as a set of APIs 
provided by the OS for all applications

• system calls are different on different operating 
systems, but they are many similarities

• OSes often need to execute 1000s of system 
calls per second
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Example: copying file

• even simple programs make 
many system calls

• example: a program that copies 
a file

https://replit.com/@jonathanwhudson/copy-files#main.cpp
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Libraries
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Libraries and system calls
• system calls are usually implemented in assembly, hand optimized for performance

e.g. system call number and parameters passed in registers or stack

• http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
• system calls are cumbersome to invoke from higher level languages
• it is much easier (and common) to make system calls through higher-level wrapper functions
• on Unix-like systems:
libc (C library), libstdc++ or libc++ (C++ library)

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
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Libraries and system calls
• system call wrappers hide the implementation details of system calls

e.g. convert parameters from stack into registers, and vice versa

• extra benefits of using system call wrappers:

• an application using wrappers can compile and run on any system
that supports the same wrapper APIs

• if the system call ever changes / is deprecated, the program using the wrapper
could still continue to function properly, as long as the wrapper is updated

• some common APIs:

• POSIX APIs for Unix, Linux, Mac OS X

• Win32 APIs for windows

• Java APIs for Java virtual machine

• usually, there is a strong correlation between a wrapper and the corresponding system call, such 
as name, number and types of parameters, return value type, etc, but wrapper != system call
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Example: write()

• standard C library provides access to many OS system calls
• for example write() is a wrapper for sys_write system call

■ write()

• converts the arguments passed to it on the stack into appropriate registers
• invokes sys_write system call, e.g. by executing a trap instruction
• takes the value returned by sys_write and passes it back to the caller
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API / System calls / OS relationship
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Example: printf()

• standard C library provides also many useful
higher-level convenience functions, e.g. printf()

• printf() implementation does some formatting 
and then calls the system call sys_write directly 
or indirectly, via write()

• same applies to std::cout in libc++
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Examples
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Examples of system calls in C
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Examples of system calls in C
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Examples of system calls in C
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System calls (UNIX vs Win32)
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Unix APIs
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Unix file APIs

UNIX-like OSs make use of files and associated APIs for different operations and services

• pipes - communication between different programs (processes)
• sockets - networking
• communications with devices (/dev)
• random number generator (/dev/random and /dev/urandom)
• export kernel parameters (/proc and /sys)

• pseudo filesystems containing virtual files
• e.g. information about processes, memory usage,

hardware devices
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Pipes

• on unix systems, two processes can communicate with each other via a pipe

• pipes are accessed using file I/O APIs
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A1
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Assignment 1

• the coding part is about improving performance of an existing program
• system calls are slow (they are essentially interrupts)
• making too many system calls slows down your program

• the objective is to try to reduce the number of system calls
• hint:

• the existing program calls read() for every single byte
• adjust the program so that read() gets multiple bytes in a single call, eg. 1MiB
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Timing
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time

• let's time how long it takes to calculate 40th fibonacci number recursively

• we can use a built-in time utility to get some basic timings
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time

• real = (user) + (sys) + (I/O) + (other)
• other = things CPU was doing while executing your application (e.g. 

running other applications)
• on an idle system, subtracting (user) from (real) will be a close estimate 

of how long an application spent waiting on I/O
• a.out finished in 1.19s, of which 1.183s was spent executing on CPU, 

and 1.19-1.183=0.007s was spent on I/O (if the computer was mostly 
idle, and application only made I/O related system calls)
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Tracing
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Tracing system calls

• tracing system calls = running an application and logging all system calls
• usually for debugging or performance optimization purposes
• on Linux:  $ strace on Mac OS X:  $ dtruss
• refer to the man page for further detail on these commands
• the same program/command could invoke different set of system calls on different OSes
• your program may run significantly slower when run through strace

• on Windows:  Windows Performance Analysis Tools
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer

https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer
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UNIX manual pages

Manual section:

1   Executable programs or shell commands
2   System calls (functions provided by the kernel)
3   Library   calls  (functions  within  program  li‐
    braries)
4   Special files (usually found in /dev)
5   File formats and conventions, e.g. /etc/passwd
6   Games
7   Miscellaneous (including macro packages and  con‐
    ventions), e.g. man(7), groff(7), man-pages(7)
8   System  administration commands (usually only for
    root)
9   Kernel routines [Non standard]
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Man pages
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strace example
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strace example
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Review



37

Summary

• Kernel

• System Calls
• Libraries
• Examples

• C/Win32/Unix
• Unix APIs

• Timing
• Tracing

• strace
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Previews
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Processes

• key concept in all operating systems
• quick definition: a program in execution
• process is associated with

• an address space
• set of resources
• program counter, stack pointer
• unique identifier (process ID)
• … anything else?

• process can be thought of as a container that 
holds all information needed by an OS to run a program



40

Process tree

• processes are allowed to create new processes
• A creates two child processes: B and C
• B creates three child processes: D, E and F
• A is the parent process of B
• B is a parent process of E

• A is an ancestor of F
• F is a descendant of A
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File system - tree structure (subdirectories and files)



Onward to …
Processes
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