
CPSC 457: Principles of Operating Systems
Assignment 4: deadlocks, CPU scheduling

Weight: 22%

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do and an
excellent way to learn. However, the work you hand in must ultimately be your work. This is
essential for you to benefit from the learning experience and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work but is represented as such is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in
the university calendar.

Here are some �ps to avoid plagiarism in your programming assignments.

1. Cite all sources of code you hand in that are not your original work. You can put the cita�ons into comments in
your program. For example, if you find and use code found on a website, include a comment that says, for
example:

The following code is from htps://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. A tool like chat-GPT can be used to improve small code blocks. For example, three lines of code. If you get help
from code assistance like Chat-GPT, you should comment above the block of code you requested assistance on
debugging or improving and cite the tool used to get that sugges�on. Using a tool like chat-GPT to write the
majority of your assignment requirements will be treated as plagiarism if found without cita�on, and with
cita�on, it will be treated as 0 for the component the student did not complete. Code improvement of short
length will get credit if commented/cited properly.

3. Ci�ng sources avoids accusa�ons of plagiarism and penal�es for academic misconduct. However, you may s�ll
get a low grade if you submit code not primarily developed by yourself. Cited material should never be used
to complete core assignment specifica�ons unless clearly approved. Before submi�ng, you can and should
verify any code you are concerned about with your instructor/TA.

4. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code, it is your own. A good rule of thumb is to wait 20 minutes a�er talking with somebody before wri�ng
your code. If you exchange code with another student, write code while discussing it with a fellow student, or
copy code from another person’s screen, this code is not yours.

5. Collabora�ve coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collabora�on. This includes
sharing code, discussing the code itself, or modelling code a�er another student's algorithm. You can not use
(even with cita�on) another student’s code.

6. Making your code available, even passively, for others to copy or poten�ally copy is also plagiarism.
7. We will look for plagiarism in all code submissions, possibly using automated so�ware designed for the task.

For example, see Measures of So�ware Similarity (MOSS - htps://theory.stanford.edu/~aiken/moss/).
8. Remember, if you are having trouble with an assignment, it is always beter to go to your TA and/or instructor

for help rather than plagiarizing. A common penalty is an F on a plagiarized assignment.

Late Policy

All students will have 6 total days during the semester that can be used for none, one,
some, or all the 6 assignments. Students can use these days all on one assignment, or
some on each of the six.

Each 24-hour period late after an assignment deadline counts as one full day regardless of
how many hours the assignment was late within that period. For example, deadlines are
generally Fridays 11:59pm local time. That means an assignment submitted any time
Saturday before 11:59pm local time will be considered as 1 day late and count against the
students 5 total days.

As long as a student still has days left to use, their assignment will be graded without
penalty. If a student has no more days left or their submission exceeds the days they have
remaining, then they will receive a 0 grade for a late assignment. Students who use up late
days on earlier assignments will not have them available for later assignments.

TAs will indicate the student’s late day usage in grading feedback.

Due date is posted on D2L. Your D2L submission should include the files requested and a link to
a Gitlab repository you used while comple�ng the assignment with your TA added as a
Developer role. Help with Gitlab Clone/Developer role access is available in D2L video.

Q1. Programming ques�on – deadlock detec�on [50 marks]

For this ques�on you will write a deadlock detec�on algorithm for a system state with a single
instance per resource type. The input will be an ordered sequence of request and assignment
edges. Your algorithm will start by ini�alizing an empty system state (e.g. empty graph), and
then process the edges one at a �me. For each edge, your algorithm will update the system
state (e.g. insert the edge into a graph), and then run a deadlock detec�on algorithm (e.g.
topological sort). If a deadlock is detected a�er processing an edge, your algorithm will stop
processing further edges and return results immediately.

Below is the signature of the find_deadlock func�on you need to implement:

struct Result {
int index;
std::vector<std::string> procs;

};
Result find_deadlock(const std::vector<std::string> & edges);

The parameter edges is an ordered list of strings, each represen�ng an edge. The func�on
returns an instance of Result containing two fields as described below.
Your func�on will start with an empty system state – by ini�alizing an empty graph data
structure. For each string edges[i] it will parse it to determine if it represents an assignment
edge or request edge and update the graph accordingly. A�er inser�ng each edge into the

graph, the func�on will run an algorithm that will look for a deadlock (by detec�ng if a cycle is
present in the graph). If deadlock is detected, your func�on will stop processing any more edges
and immediately return Result:

• with index=i, where i indicates which edges[i] caused the deadlock; and
• with procs[] containing process names that are involved in a deadlock, in arbitrary order.

If no deadlock is detected a�er processing all edges, your func�on will indicate this by returning
Result with index=-1 and an empty procs[].

Edge descrip�on Your func�on will be given the edges as a vector of strings, where each string
will represent and edge. A request edge will have the format "process -> resource", and
assignment edge will be of the form "process <- resource", where process and resource are the
names of the process and resource, respec�vely. Here is a sample input, and its graphical
representa�on:

The input above represents a system with three processes: "plato", "socrates" and "2", and two
resources: "fork1" and "2". The first line "2 <- fork1" represents an assignment edge, and it
denotes process "2" currently holding resource "fork1". The second line "plato -> fork1" is a
request edge, meaning that process "plato" is reques�ng resource "fork1". The resource
alloca�on graph on the right is a graphical representa�on of the input. Process and resource
names are independent from each other, and it is therefore possible for processes and
resources to have the same names.

No�ce that each individual string represen�ng an edge may contain an arbitrary number of
white spaces. Feel free to use the provided split_line() func�on to help you parse these strings,
as it correctly deals with white spaces.

Starter code

Start by downloading the following starter code:
$ git clone https://csgit.ucalgary.ca/jwhudson/cpsc457w24.git

$ cd cpsc457w24/deadlock

$ make

edges =
 [" 2 < - f ork1 ",
 " plato - 1 fork > ",
 " plato - > 2 ",
 " socrates - > fork 1 ",
 " socrates < - 2 "
]

You need to implement find_deadlock() func�on by modifying the find_deadlock.cpp file. Only
modify file find_deadlock.cpp, and do not modify any other files.

The included driver (main.cpp) will read edge descrip�ons from standard input. It parses them
into an array of strings, calls your find_deadlock() and finally prints out the results. The driver
will ensure that the input passed to your func�on is syntac�cally valid, i.e. every string in
edges[] will contain a valid edge. Here is how you run it on file test1.txt:

$./deadlock < test1.txt
Reading in lines from stdin...
Running find_deadlock()...

index : 6
procs : [12,7,7]
real time : 0.0000s

$./deadlock < test1.txt
Reading in lines from stdin...
Running find_deadlock()...

index : -1
procs : []
real time : 0.0001s

If you run the starter code (with an incomplete implementa�on), you will get the output on the
le�, which is obviously incorrect. Once implemented correctly, the output of your program will
look like the one on the right, indica�ng no deadlock.

Few more examples:

Limits
You may assume the following limits on input:

• Both process and resource names will only contain alphanumeric characters and will be
at most 40 characters long.

• Number of edges will be in the range [0 ... 30,000].
Your solu�on should be efficient enough to run on any input within the above limits in less than
10s, which means you should implement an efficient deadlock-detec�on algorithm (see
appendix for hints). Remember, you are responsible for designing your own test cases.

Marking
Your submission will be marked both on correctness and speed for several test files. To get full
marks, your program will need to finish under 10s on all inputs during marking. You can not use
threading on this assignment and thus must use one thread to achieve this speed
requirement.

About 80% of the marks will be based on tests with less than 10,000 edges, which should be
easy to achieve. For example, your program should be able to finish test6.txt under 10s on
linuxlab machines. The remaining 20% will be awarded only to submissions that can finish
under 10s for ~30,000 edges, which is more difficult (e.g. test7.txt file). It is useful to note that
the physical lab machines in the CPSC main lab are the machines with the 10s benchmark
requirement. The ssh compute server will provide you with a less powerful CPU and thus a
slower �me.

Hints
I suggest using the following pseudocode for your implementa�on of find_deadlocks():

result = empty Result
g = initialize empty graph
for i = 0 to edges.size():

e = parse edge in edges[i]
insert e into g
run toposort on g
if toposort failed to finish:

result.procs = proc. nodes that toposort did not remove
result.index = i
return result

result.index = -1
return result

The above uses topological sort to detect whether a graph has cycles. Please note that toposort
iden�fies any nodes that are directly or indirectly involved in a cycle, which is perfect for this
assignment, as you need to report any processes that are involved in a deadlock.

I suggest you start with the following data structures to represent a graph. These data structures
should be good enough to finish under 10s on medium sized files, such as test6.txt.

class Graph {
std::unordered_map<std::string, std::vector<std::string>> adj_list;
std::unordered_map<std::string, int> out_counts;
...

} graph;

The field adj_list is a hash table of dynamic arrays, represen�ng an adjacency list. Insert nodes
into it so that adj_list["node"] will contain a list of all nodes with edges poin�ng towards
"node". The out_counts field is a hash table of integers, represen�ng the number of outgoing
edges for every node (outdegrees). Populate it so that out_counts["node"] contains the
number of edges poin�ng out from "node".

With these data structures you can implement efficient topological sort (pseudo-code):

out = out_counts # copy out_counts so that we can modify it
zeros[] = find all nodes in graph with outdegree == 0
while zeros is not empty:

n = remove one entry from zeros[]
for every n2 in adj_list[n]:

out[n2] --
if out[n2] == 0:
 append n2 to zeros[]

processes involved in deadlock are proc. nodes n with out[n]>0

To get run �mes under 10s on large files, such as test7.txt, you can use the same algorithm as
above, but you will need to switch to data structures that are more efficient than hash tables.
The problem with hash tables is that they spend considerable �me on calcula�ng hashes on
strings, and also on resolving collisions. To avoid this overhead, you can pre-convert all strings
(process and resource names) into consecu�ve integers, and then use fast dynamic arrays
instead of hash tables to store the adjacency list and outdegree counts:

class FastGraph {
 std::vector<std::vector<int>> adj_list;
 std::vector<int> out_counts;
 ...
You can use the provided Word2Int class to help you with converting strings to unique
consecutive integers. The topological sort algorithm would remain the same as above. Do
not forget to convert the integers back to strings at the end, to correctly populate procs[].

Q2. Programming ques�on – CPU scheduling [50 marks]

For this ques�on you will implement a shortest-job-first and round-robin CPU scheduling
simulator. The input to your simulator will be a set of processes and a �me slice. Each process
will be described by an id, arrival �me and CPU burst. Your simulator will simulate SJF/RR
scheduling on these processes and for each process it will calculate its start �me and finish
�me. Your simulator will also compute a condensed execu�on sequence of all processes. You
will implement your simulator as func�ons simulate_sjf(),simulate_rr() with the following
signatures:

void simulate_sjf(
int64_t max_seq_len,
std::vector<Process> & processes,
std::vector<int> & seq);

void simulate_rr(
int64_t quantum,
int64_t max_seq_len,
std::vector<Process> & processes,
std::vector<int> & seq);

The parameter quantum will contain a posi�ve integer describing the length of the �me slice
and max_seq_len will contain the maximum length of execu�on order to be reported. The array
processes will contain the descrip�on of processes, where struct Process is defined in
scheduler.h as:

struct Process {
int id;
int64_t arrival, burst;
int64_t start_time, finish_time;

};

The fields id, arrival and burst for each process are the inputs to your simulator, and you should
not modify these. However, you must populate the start_�me and finish_�me for each process
with computed values. You must also report the condensed execu�on sequence of the
processes via the output parameter seq[]. You need to make sure the reported order contains at
most the first max_seq_len entries. The entries in seq[] will contain either process ids, or -1 to
denote idle CPU. You will also be required to report a sequence chart as will be shown later as
the simula�on progresses step by step.

A condensed execu�on sequence is similar to a regular execu�on sequence, except consecu�ve
repeated numbers are condensed to a single value. For example, if a regular non-condensed
sequence was [-1,-1,-1,1,1,2,1,2,2,2], then the condensed equivalent would be [-1,1,2,1,2].

Starter code
$ git clone https://csgit.ucalgary.ca/jwhudson/cpsc457w24.git

$ cd cpsc457w24/sched

$ make

You need to implement the simulate_sjf()simulate_rr() func�ons in scheduler.cpp. Do not
modify any files except scheduler.cpp.

Using the driver

The starter code includes a driver (main.cpp) that parses command lines arguments to obtain
the �me slice and the maximum execu�on sequence length. It then parses standard input for
the descrip�on of processes, where each process is specified on a separate line. Each input line
contains 2 integers: the first one denotes the arrival �me of the process, and the second one
denotes the CPU burst length. For example, the file test1.txt contains informa�on about 3
processes: P0, P1 and P2:

$ cat test1.txt
1 10
3 5
5 3
The 2nd line "3 5" means that process P1 arrives at �me 3 and it has a CPU burst of 5 seconds.

A�er parsing the inputs, the driver calls your simulatesjf() or simulate_rr() based on if you’ve
chosen the SJF or RR flags, and a�erwards prints out the results. For example, to run your
simulator with quantum=3 and max_seq_len=20 on a file test1.txt, you would invoke the driver
like this (obviously these are the incorrect outputs in the default code):

Please note that the output above is incorrect, as the starter code contains an incomplete
implementa�on of the scheduling algorithm. The correct results should look like this:

You should note that quantum will be ignored in SJF scheduling but will be used by RR. Only
capital RR triggers round-robin, lower case or anything else will default to SJF in main.cpp as it is
implemented.

The completed output has two new parts you can see here:

1. a table describing the state of each process for every simula�on �me step,
2. followed by a summary, which includes the wait �me for each process and the average

wait �me for all processes.

The first column in the table is the simula�on �me. There is also one column for each process to
describe its state for the given simula�on �me. Use “.” to denote READY state, “#” to denote
RUNNING state, and a empty space “ “ to denote a process that has not yet arrived or a finished
process. Make sure the output of your program is nicely aligned like the example above.

Important - If your simula�on detects that an exis�ng process exceeds its �me slice at the same
�me as a new process arrives, you need to insert the exis�ng process into the ready queue
before inser�ng the newly arriving process.

Limits

You may make the following assump�ons about the inputs:

The processes are sorted by their arrival �me, in ascending order. Processes arriving at the same
�me must be inserted into the ready queue in the order they are listed.

• All arrival �mes will be non-nega�ve.
• All burst �mes will be greater than 0.
• Process IDs will be consecu�vely numbered star�ng with 0.
• All processes are 100% CPU-bound, i.e., a process will never be in the wai�ng state.
• There will be between 0 and 30 processes.
• Time slice and CPU bursts will be integers in the range [1 … 262]
• Process arrival �mes will be integers in the range [0 … 262]
• finish �me of every process will fit into int64_t.

The git repository includes some test files and the README.md contains several sample results.
Please remember to also design your own test data to make sure your program works correctly
and efficiently for all of the above limits.

Marking

Your submission will be marked both on correctness and speed for a number of different test
files. To get full marks, your program will need to finish under 10s on all test cases. About half of
the test cases will include inputs with small values for arrival �mes and CPU bursts. We do not
plan to test anything that should be an efficiency concern. For example, we will NOT have very
large arrival �mes, or very large burst �mes, or a quantum much smaller than process burst
�mes. All of these would result in the step by step solu�on we are requested for simula�on
output to be dras�cally slowed down.

Start with a simula�on loop that increments current �me by 1. This should make your simulator
work fast enough for small arrival �mes and bursts.

Hints for a simple solu�on

This simple solu�on increments the current �me in the simula�on loop by at most 1 �me unit,
and many students will find it the easiest to debug.

Please refer to the lecture slides for ideas on how to structure your simula�on loop. Here are
some sugges�ons for data structures for keeping track of the current state:

• The current �me, e.g. int64_t curr_�me

• The remaining �me slice of the currently execu�ng process, e.g. int64_t remaining_slice
• Currently execu�ng process, e.g. int cpu, so that cpu is an index into processes[], and

cpu=-1 represents idle CPU
• Ready Queue (RQ) and Job Queue (JQ), e.g. std::vector<int> rq, jq

o the integers stored in jq and rq would be indices into processes[], just like cpu
o ini�alize JQ with all processes, and remove them from JQ as they ‘arrive’

• You will need to keep track of the remaining bursts for all processes
o Since you cannot modify processes[], you need to keep track of this in your own

data structure, e.g. std::vector<int64_t> remaining_bursts;

Submission

Submit 2 files for this assignment to D2L:

• Your solu�on to Q1 in a file called find_deadlock.cpp.
• Your solu�on to Q2 in a file called scheduler.cpp.

Please note – you need to submit all files every �me you make a submission, as the previous
submission will be overwriten.

Submit this as a separate file. Do not submit an archive, such as ZIP or TAR. If you submit an
archive, you will receive a penalty.

Submit the web address of your Gitlab repository you used for your assignment (I recommend
one repository for all 6 of your assignments that you can re-use). Your TA must be added as a
Developer. There are penal�es for submissions without the ability to access the corresponding
students Gitlab by the TA.

While the starter code contains many different files, the only file you are allowed to modify is
find_deadlock.cpp/ scheduler.cpp. Do not modify any other files. All code you write must go in
the find_deadlock.cpp/ scheduler.cpp files, and that should be the only file you will submit for
grading. We will test your code by supplying our own main() func�on, which will be different
from the main() func�on in the starter code. It is therefore vital that you maintain the same
func�on signature as declared in find_deadlock.h/ scheduler.h. Before you submit
find_deadlock.cpp/ scheduler.cpp to D2L, make sure it works with unmodified files from the
starter code!

General information about all assignments:

All assignments are due on the date listed on D2L. Late submissions without remaining late
days banked will not be marked.

1. Extensions beyond the late day policy can be discussed more than 5 business days in
advance and are granted only by the course instructor.

2. A�er you submit your work to D2L, verify your submission by re-downloading it.

3. You can submit many �mes before the due date. D2L will simply overwrite previous
submissions with newer ones. It is beter to submit incomplete work for a chance of
ge�ng par�al marks, than not to submit anything. Please bear in mind that you cannot
re-submit a single file if you have already submited other files. Your new submission
would delete the previous files you submited. So please keep a copy of all files you
intend to submit and resubmit all of them every �me.

4. Assignments are likely going to be marked by your TAs. If you have ques�ons about
assignment marking, contact your TA first. If you s�ll have ques�ons a�er you have
talked to your TA, then you can contact your instructor.

5. All programs you submit must run on linux lab or cslinux.ucalgary.ca. If your TA is unable
to run your code on these, you will receive 0 marks.

6. Unless specified otherwise, you must submit code that can finish on any valid input
under 10s on linux lab or cslinux.ucalgary.ca (will be slower), when compiled with -O2
op�miza�on. Any code that runs longer than this may receive a deduc�on, and code
that runs for too long (about 30s) will receive 0 marks.

7. Assignments must reflect individual work. Here are some examples of what you are not
allowed to do for individual assignments: you are not allowed to copy code or writen
answers (in part, or in whole) from anyone else; you are not allowed to collaborate with
anyone; you are not allowed to share your solu�ons (code or pseudocode) with anyone;
you are not allowed to sell or purchase a solu�on; you are not allowed to make your
code available publicly (e.g. via public git repositories). This list is not exclusive. For
further informa�on on plagiarism, chea�ng and other academic misconduct, check the
informa�on at this link: htp://www.ucalgary.ca/pubs/calendar/current/k-5.html .

8. We will use automated similarity detec�on so�ware to check for plagiarism. Your
submission will be compared to other students (current and previous), as well as to any
known online sources. Any cases of detected plagiarism or any other academic
misconduct will be inves�gated and reported.

http://www.ucalgary.ca/pubs/calendar/current/k-5.html

	Limits
	Marking
	Hints

