
CPSC 457: Principles of Operating Systems
Assignment 3: threads, pthreads, C++ threads

Weight: 21%

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do and an
excellent way to learn. However, the work you hand in must ultimately be your work. This is
essential for you to benefit from the learning experience and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work but is represented as such is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in
the university calendar.

Here are some �ps to avoid plagiarism in your programming assignments.

1. Cite all sources of code you hand in that are not your original work. You can put the cita�ons into comments in
your program. For example, if you find and use code found on a website, include a comment that says, for
example:

The following code is from htps://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. A tool like chat-GPT can be used to improve small code blocks. For example, three lines of code. If you get help
from code assistance like Chat-GPT, you should comment above the block of code you requested assistance on
debugging or improving and cite the tool used to get that sugges�on. Using a tool like chat-GPT to write the
majority of your assignment requirements will be treated as plagiarism if found without cita�on, and with
cita�on, it will be treated as 0 for the component the student did not complete. Code improvement of short
length will get credit if commented/cited properly.

3. Ci�ng sources avoids accusa�ons of plagiarism and penal�es for academic misconduct. However, you may s�ll
get a low grade if you submit code not primarily developed by yourself. Cited material should never be used
to complete core assignment specifica�ons unless clearly approved. Before submi�ng, you can and should
verify any code you are concerned about with your instructor/TA.

4. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code, it is your own. A good rule of thumb is to wait 20 minutes a�er talking with somebody before wri�ng
your code. If you exchange code with another student, write code while discussing it with a fellow student, or
copy code from another person’s screen, this code is not yours.

5. Collabora�ve coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collabora�on. This includes
sharing code, discussing the code itself, or modelling code a�er another student's algorithm. You can not use
(even with cita�on) another student’s code.

6. Making your code available, even passively, for others to copy or poten�ally copy is also plagiarism.
7. We will look for plagiarism in all code submissions, possibly using automated so�ware designed for the task.

For example, see Measures of So�ware Similarity (MOSS - htps://theory.stanford.edu/~aiken/moss/).
8. Remember, if you are having trouble with an assignment, it is always beter to go to your TA and/or instructor

for help rather than plagiarizing. A common penalty is an F on a plagiarized assignment.

Late Policy

All students will have 6 total days during the semester that can be used for none, one,
some, or all the 6 assignments. Students can use these days all on one assignment, or
some on each of the six.

Each 24-hour period late after an assignment deadline counts as one full day regardless of
how many hours the assignment was late within that period. For example, deadlines are
generally Fridays 11:59pm local time. That means an assignment submitted any time
Saturday before 11:59pm local time will be considered as 1 day late and count against the
students 5 total days.

As long as a student still has days left to use, their assignment will be graded without
penalty. If a student has no more days left or their submission exceeds the days they have
remaining, then they will receive a 0 grade for a late assignment. Students who use up late
days on earlier assignments will not have them available for later assignments.

TAs will indicate the student’s late day usage in grading feedback.

Due date is posted on D2L. Your D2L submission should include the files requested and a link to
a Gitlab repository you used while comple�ng the assignment with your TA added as a
Developer role. Help with Gitlab Clone/Developer role access is available in D2L video.

Q1. Programming question – calculating 𝛑𝛑 [10 marks]

Improve the performance of an exis�ng single-threaded calcpi program by conver�ng it to a
mul�-threaded implementa�on.

Start by cloning the repository with starter code (type the following on the command line on
the linux lab computers). You may need to update the repository if you pulled it before to see
future assignment changes before star�ng an assignment:

$ git clone https://csgit.ucalgary.ca/jwhudson/cpsc457w24.git

$ cd cpsc457w24/pi-calc

$ make

$./calcpi

Usage: ./calcpi radius n_threads

 where 0 <= radius <= 100000

 and 1 <= n_threads <= 256

The calcpi program es�mates the value of π using an algorithm described in:

htps://en.wikipedia.org/wiki/Approxima�ons_of_%CF%80#Summing_a_circle's_area.

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Summing_a_circle's_area

Most of the algorithm is implemented inside the func�on count_pixels() in file calcpi.cpp. The
included driver (main.cpp) parses the command line arguments, calls count_pixels() and prints
the results. The driver takes 2 command line arguments: an integer radius and number of
threads. For example, to es�mate the value of π using radius of 10 and 2 threads, you would run
it like this:

$./calcpi 10 2

Calling count_pixels(r=10, n_threads=2)...

Result = 317 pixels (estimated PI=3.17)

The func�on uint64_t count_pixels(int r, int N) takes two parameters – the radius and number
of threads. It then returns the number of pixels inside the circle with radius 𝑟𝑟 and centered at
(0,0), by checking every pixel (𝑥𝑥,𝑦𝑦) in squre −𝒓𝒓 ≤ 𝒙𝒙,𝒚𝒚 ≤ 𝒓𝒓.

The current implementa�on is single threaded, so it ignores the 2nd argument N. Your job is to
re-implement the func�on so that it uses N threads to speed up its execu�on, such that it runs
N �mes faster with N threads on hardware where N threads can run concurrently.

Please note that your code will be marked both for correctness and for the speedup it achieves.
In order for your code to be considered correct, your mul�-threaded implementa�on needs to
return the same number of pixels as the single-threaded implementa�on.

For this ques�on, you are only allowed to create and join threads. You need to find a way to
parallelize count_pixels() without using any synchroniza�on mechanisms, such as mutexes,
semaphores, atomic types, etc.

Write all code into calcpi.cpp and submit this file for grading. Make sure your calcpi.cpp works
with the included driver program. We may use a different driver program during marking, so it is
important that your code follows the correct API. Make sure your program runs on
cslinux.ucalgary.ca.

Assume 𝟎𝟎 ≤ 𝒓𝒓 ≤ 𝟏𝟏𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎𝟎𝟎 and 𝟏𝟏 ≤ 𝒏𝒏𝒏𝒏𝒏𝒏𝒓𝒓𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐.

Timing your code on lab machines

Please note that not all machines may be the same. Before you report and threaded �mings you
must report the informa�on returned by lscpu command.

For example from ssh to cslinux: “Model name: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz”

This model has 12 cores and 1 thread per core (so no Hyper-Threading).

Physical lab machines will be different. For example, some have 6 physical cores with hyper-
threading enabled, while others have 8 physical cores, but no hyperthreading. When you are
running your �mings, please make sure you do all of them on the same machine. Otherwise,
you will get inconsistent results.

My basic mul�-threaded implementa�on using cthreads and -O2 achieves the following �mings
using r=100000. I expect your solu�ons to achieve similar results on the same CPU.

CPU 1 thread 2 threads 4 threads 8 threads 16 threads
Intel(R) Xeon(R) Gold 6240 14.316s 8.543s 4.819s 2.768s 2.146s

Q2. Written answer [3 marks]

Time your mul�-threaded solu�on from Q1 with 𝑟𝑟=50000 using the �me command on
cslinux.ucalgary.ca. Record the real-�me for 1, 2, 3, 4, 6, 8, 12, 16, 24 and 32 threads. Also
record the �mings of the original single-threaded program.

A. Record your �mings in a table and create a corresponding bar graph. Format the table
and the graph like the ones below (the numbers below are random and your �mings
should look different).

B. When you run your implementa�on with N threads, you should see N-�mes speed up

compared to the original single threaded program. Do you observe this in your �mings
for all values of N?

C. Why do you stop seeing the speed up a�er some value of N?

Q3. Programming question – detecting primes [30 marks]

For this part of the assignment, you must convert a single-threaded program detectPrimes to a
mul�-threaded implementa�on.

Start by cloning the repository with starter code (type the following on the command line on
the linux lab computers). You may need to update the repository if you pulled it before to see
future assignment changes before star�ng an assignment:

$ git clone https://csgit.ucalgary.ca/jwhudson/cpsc457w24.git

$ cd cpsc457w24/detect-primes

$ make

$ cat example.txt

 0 3 19 25 3

4012009 165 1033

$./detectPrimes 5 < example.txt

Using 5 threads.

Identified 4 primes:

 3 19 3 1033

Finished in 0.0000s

$ seq 100000000000000000 100000000000000300 | ./detectPrimes 2

Using 2 threads.

Identified 9 primes:

 100000000000000003 100000000000000013 100000000000000019 100000000000000021

 100000000000000049 100000000000000081 100000000000000099 100000000000000141

 100000000000000181

Finished in 7.3076s

The detectPrimes program reads integers in range [𝟐𝟐,𝟐𝟐𝟐𝟐𝟔𝟔 − 𝟐𝟐] from standard input, and then
outputs the ones that are prime numbers. The first invoca�on example above detects prime
numbers 3, 19, 3 and 1033 in a file example.txt (no�ce that number 3 is repeated both in the
input and output). The second invoca�on uses the program to find all primes in the range
[𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 ,𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 + 𝟔𝟔𝟎𝟎𝟎𝟎]. If duplicate primes appear in the input, they will be duplicated in the
output.

detectPrimes accepts a single command line argument – a number of threads. This parameter is
not used in the current implementa�on, as the starter code is single threaded. Your job is to
improve the execu�on �me of detectPrimes by making it mul�-threaded, and your
implementa�on should use the number of threads given on the command line. To do this, you
will need to re-implement the code in detectPrimes.cpp, namely the func�on:

std::vector<int64_t>

detect_primes(const std::vector<int64_t> & nums, int n_threads);

The func�on takes two parameters: the list of numbers to test, and the number of threads to
use. It returns the prime numbers found, in arbitrary order. The func�on is called by the driver
(main.cpp) a�er parsing the standard input and command line. Your implementa�on should use
n_threads number of threads.

Ideally, if the original single-threaded program takes �me 𝑇𝑇 to complete a test, then your mul�-
threaded implementa�on should finish that same test in 𝑇𝑇/𝑁𝑁 �me when using 𝑁𝑁 threads. For
example, if it takes 10s to complete a test for the original single-threaded program, then it
should take your mul�-threaded program only 2.5s to complete that same test with 4 threads.
To achieve this goal, you will need to design your program so that:

• You give each thread the same amount of work;
• your mul�-threaded implementa�on does the same amount of work as the single-

threaded version; and
• the synchroniza�on mechanisms you u�lize are efficient.

We will mark your assignment by running the code against mul�ple different inputs and using
different numbers of threads. To get full marks for this assignment, your program needs to
output correct results but also achieve near op�mal speedup for the given number of threads
and available cores. If your code does not achieve op�mal speedup on all inputs, you will lose
some marks for those tests.

You may assume that there will be no more than 100,000 numbers in the input, and that all
numbers will be in the range [𝟐𝟐,𝟐𝟐𝟐𝟐𝟔𝟔 − 𝟐𝟐]. Some inputs will include many numbers, some inputs
will include just few numbers, some numbers will be large, some small, some will be prime
numbers, others will be large composite numbers, etc… For some numbers it will take long �me
to compute their smallest factor, for others it will take very litle �me. You need to take all these
possibili�es into considera�on. Design your own test inputs and test your code thoroughly.

Write all code into detectPrimes.cpp and submit it for grading. Make sure your
detectPrimes.cpp works with the included main.cpp driver. We may use a different driver
during marking, so it is important that your code follows the correct API. Make sure your
program runs on cslinux.ucalgary.ca.

You may use any of the synchroniza�on mechanisms we covered in lectures, such as
semaphores, mutexes, condi�on variables, spinlocks, atomic variables, and barriers. Make sure
your code compiles and runs on cslinux.ucalgary.ca.

Please note that the purpose of this ques�on is NOT to find a more efficient factoriza�on
algorithm. You must implement the exact same factoriza�on algorithm as given in the skeleton
code, except you need to make it mul�-threaded.

Q4. Written question (5 marks)

Time the original single-threaded detectPrimes.cpp as well as your mul�-threaded version on
three files: medium.txt, hard.txt and hard2.txt. For each of these files, you will run your
solu�on 6 �mes, using 1, 2, 3, 4, 8 and 16 threads. You will record your results in 3 tables, one
for each file, formated like this:

medium.txt
threads Observed timing Observed speedup

compared to
original timing

Expected speedup

original program 1.0 1.0
1 1.0
2 2.0
3 3.0
4 4.0
8 8.0
16 16.0

The ‘Observed �ming’ column will contain the raw �ming results of your runs. The ‘Observed
speedup’ column will be calculated as a ra�o of your raw �ming with respect to the �ming of
the original single-threaded program.

Once you have created the tables, explain the results you obtained. Are the �mings what you
expected them to be? If not, explain why they differ.

Submission

Submit one file for this assignment to D2L:

• Your solu�on to Q1 in a file called calcpi.cpp.
• Your solu�on to Q3 in a file called detectPrimes.cpp.
• Your answers to writen ques�ons Q2/Q4 in a file called report.pdf.

Please note – you need to submit all files every �me you make a submission, as the previous
submission will be overwriten.

Submit this as a separate file. Do not submit an archive, such as ZIP or TAR. If you submit an
archive, you will receive a penalty.

Submit the web address of your Gitlab repository you used for your assignment (I recommend
one repository for all 6 of your assignments that you can re-use). Your TA must be added as a
Developer. There are penal�es for submissions without the ability to access the corresponding
students Gitlab by the TA.

While the starter code contains many different files, the only file you are allowed to modify is
calcpi.cpp/detectPrimes.cpp. Do not modify any other files. All code you write must go in the
calcpi.cpp/detectPrimes.cpp files, and that should be the only file you will submit for grading.
We will test your code by supplying our own main() func�on, which will be different from the
main() func�on in the starter code. It is therefore vital that you maintain the same func�on
signature as declared in calcpi.h/detectPrimes.h. Before you submit

calcpi.cpp/detectPrimes.cpp to D2L, make sure it works with unmodified files from the starter
code!

General information about all assignments:

All assignments are due on the date listed on D2L. Late submissions without remaining late
days banked will not be marked.

1. Extensions beyond the late day policy can be discussed more than 5 business days in
advance and are granted only by the course instructor.

2. A�er you submit your work to D2L, verify your submission by re-downloading it.
3. You can submit many �mes before the due date. D2L will simply overwrite previous

submissions with newer ones. It is beter to submit incomplete work for a chance of
ge�ng par�al marks, than not to submit anything. Please bear in mind that you cannot
re-submit a single file if you have already submited other files. Your new submission
would delete the previous files you submited. So please keep a copy of all files you
intend to submit and resubmit all of them every �me.

4. Assignments are likely going to be marked by your TAs. If you have ques�ons about
assignment marking, contact your TA first. If you s�ll have ques�ons a�er you have
talked to your TA, then you can contact your instructor.

5. All programs you submit must run on linux lab or cslinux.ucalgary.ca. If your TA is unable
to run your code on these, you will receive 0 marks.

6. Unless specified otherwise, you must submit code that can finish on any valid input
under 10s on linux lab or cslinux.ucalgary.ca, when compiled with -O2 op�miza�on.
Any code that runs longer than this may receive a deduc�on, and code that runs for too
long (about 30s) will receive 0 marks.

7. Assignments must reflect individual work. Here are some examples of what you are not
allowed to do for individual assignments: you are not allowed to copy code or writen
answers (in part, or in whole) from anyone else; you are not allowed to collaborate with
anyone; you are not allowed to share your solu�ons (code or pseudocode) with anyone;
you are not allowed to sell or purchase a solu�on; you are not allowed to make your
code available publicly (e.g. via public git repositories). This list is not exclusive. For
further informa�on on plagiarism, chea�ng and other academic misconduct, check the
informa�on at this link: htp://www.ucalgary.ca/pubs/calendar/current/k-5.html .

8. We will use automated similarity detec�on so�ware to check for plagiarism. Your
submission will be compared to other students (current and previous), as well as to any
known online sources. Any cases of detected plagiarism or any other academic
misconduct will be inves�gated and reported.

http://www.ucalgary.ca/pubs/calendar/current/k-5.html

Appendix – Hints for Q1

I suggest you parallelize the outer loop. Give each thread roughly equal number of columns in
which to count the pixels. Then sum up the counts from each thread. Your overall algorithm
could look like this:

• Create separate memory area for each thread (for input and output), e.g. as seen in class
notes struct Task

• Divide the work evenly between threads, e.g. a por�on of the range of one of the loops
• Create threads and run each thread on the work assigned to it. Each thread counts pixels

for the x-range assigned to it and updates its par�al_count.
• Join the threads.
• Combine the results of each thread into final result – i.e. return the sum of all

par�al_counts.

Appendix – Hints for Q3

Hint 1 – bad solu�on (do not implement this)

A bad solu�on would be to parallelize the outer loop of the algorithm and assign a fixed por�on
of the numbers to each thread to check. This is a terrible solu�on because it would not achieve
speedups on many inputs, for example where all hard numbers are at the beginning, and all the
easy ones at the end. Your program would then likely give all hard numbers to one thread and
would end up running just as slowly as a single-threaded version.

Hint 2 – simple solu�on (start with this)

A much beter, yet s�ll simple solu�on, would be to parallelize the outer loop, but instead of
giving each thread a fixed por�on of the input to test, each thread would dynamically
determine how many numbers it would process. For example, each thread could be setup to
process the next number in the list, and if it is a prime, it would add it to the result vector. This
would repeat un�l all numbers have been tested. All you need to implement this solu�on is a
single mutex to guard access to the input vector, and to the result vector. I strongly suggest you
start by implemen�ng this simple solu�on first, and only atempt the more difficult approaches
a�er your simple solu�on works.

Note that this solu�on would achieve op�mal speedup for many inputs, but not for all. For
example, on input with a single large prime number, it will not achieve any speedup at all.
Consequently, if you choose this approach, you will not be able to receive full marks for some
tests.

Hint 3 – good solu�on

Even more efficient approach is to parallelize the inner loop (the loop inside the is_prime
func�on). In this approach, all threads would work on tes�ng the same number for primality. If

you choose this approach, you need to give each thread a different por�on of divisors to check.
This will allow you to handle more input cases than the simple solu�on men�oned earlier. For
extra efficiency, and beter marks, you should consider implemen�ng thread re-use, e.g., by
using barriers. Here is a possible rough outline of an algorithm that you could implement:

detectPrimes():
prepare memory for each thread
initialize empty array result[] – this could be a global variable
set global_finished = false – make it atomic to be safe
start N threads, each runs thread_function() on its own memory
join N threads
return results

thread_function():
repeat forever:

serial task – pick one thread using barrier
get the next number from nums[]
if no more numbers left:

set global_finished=true to indicate end
otherwise:

divide work for each thread
parallel task – executed by all threads, via barrier

if global_finished flag is set
exit thread

otherwise
do work assigned above
record per-thread result

serial task - pick one thread using barrier
combine the per-thread results
update the result[] array if necessary

The only synchroniza�on primi�ve you should need to implement this hint is a barrier. You
should not need to use any other synchroniza�on primi�ves (remember that any code inside
your serial code does not require to be protected by mutexes…). You may use my C++ barrier
implementa�on from lecture notes if you wish.

Hint 4 – best solu�on

This builds on top of the hint 3 above, by adding to it thread cancella�on. You need cancella�on
for cases where one of the threads discovers the number being tested is not a prime, so that it
can cancel the work of the other threads. I suggest using a single atomic boolean variable to
implement the cancella�on flag. Please note that while thread cancella�on is very simple to
implement, it does take non-trivial effort to get it working correctly.

Appendix – Approximate grading scheme for Q3

The test cases that we will use for marking will be designed so that you will get full marks only if
you implement the most op�mal solu�on. However, you will receive par�al marks even if you
implement one of the less op�mal solu�ons. Hint 2 as the starter would be about half the marks

for Q3 and hint 1 which is not suggested would be less than half even if the correct primes are
all recognized.

Please note that any tests on which your program produces wrong results will receive 0 marks.

