
CPSC 457: Principles of Operating Systems
Assignment 2: more system calls, directory structures

Weight: 19%

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do and an
excellent way to learn. However, the work you hand in must ultimately be your work. This is
essential for you to benefit from the learning experience and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work but is represented as such is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in
the university calendar.

Here are some �ps to avoid plagiarism in your programming assignments.

1. Cite all sources of code you hand in that are not your original work. You can put the cita�ons into comments in
your program. For example, if you find and use code found on a website, include a comment that says, for
example:

The following code is from htps://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. A tool like chat-GPT can be used to improve small code blocks. For example, three lines of code. If you get help
from code assistance like Chat-GPT, you should comment above the block of code you requested assistance on
debugging or improving and cite the tool used to get that sugges�on. Using a tool like chat-GPT to write the
majority of your assignment requirements will be treated as plagiarism if found without cita�on, and with
cita�on, it will be treated as 0 for the component the student did not complete. Code improvement of short
length will get credit if commented/cited properly.

3. Ci�ng sources avoids accusa�ons of plagiarism and penal�es for academic misconduct. However, you may s�ll
get a low grade if you submit code not primarily developed by yourself. Cited material should never be used
to complete core assignment specifica�ons unless clearly approved. Before submi�ng, you can and should
verify any code you are concerned about with your instructor/TA.

4. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code, it is your own. A good rule of thumb is to wait 20 minutes a�er talking with somebody before wri�ng
your code. If you exchange code with another student, write code while discussing it with a fellow student, or
copy code from another person’s screen, this code is not yours.

5. Collabora�ve coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collabora�on. This includes
sharing code, discussing the code itself, or modelling code a�er another student's algorithm. You can not use
(even with cita�on) another student’s code.

6. Making your code available, even passively, for others to copy or poten�ally copy is also plagiarism.
7. We will look for plagiarism in all code submissions, possibly using automated so�ware designed for the task.

For example, see Measures of So�ware Similarity (MOSS - htps://theory.stanford.edu/~aiken/moss/).
8. Remember, if you are having trouble with an assignment, it is always beter to go to your TA and/or instructor

for help rather than plagiarizing. A common penalty is an F on a plagiarized assignment.

Late Policy

All students will have 6 total days during the semester that can be used for none, one,
some, or all the 6 assignments. Students can use these days all on one assignment, or
some on each of the six.

Each 24-hour period late after an assignment deadline counts as one full day regardless of
how many hours the assignment was late within that period. For example, deadlines are
generally Fridays 11:59pm local time. That means an assignment submitted any time
Saturday before 11:59pm local time will be considered as 1 day late and count against the
students 5 total days.

As long as a student still has days left to use, their assignment will be graded without
penalty. If a student has no more days left or their submission exceeds the days they have
remaining, then they will receive a 0 grade for a late assignment. Students who use up late
days on earlier assignments will not have them available for later assignments.

TAs will indicate the student’s late day usage in grading feedback.

Due date is posted on D2L. Your D2L submission should include the files requested and a link to
a Gitlab repository you used while comple�ng the assignment with your TA added as a
Developer role. Help with Gitlab Clone/Developer role access is available in D2L video.

Description

For this assignment you will write code that recursively a directory for all files and sub-
directories. During the scan, your code will need to collect some informa�on, such as:

• the size and path to the largest file;
• the cumula�ve size of all files;
• the number of all files and directories;
• up to N of the largest directories (non-empty)
• up to N most common words in .txt files;
• a list of all top-level vacant directories (defined below); and
• up to N largest dimension images.

To finish this assignment, you will need to make use of several different system calls. You will
also need to recall and implement one of the tree-traversal algorithms you learned in earlier
courses.

There will be a provided code structure that you can work within and examples of a number of
system calls being used. Looking in sub-folders and tracking the data returned from system calls
is a large part of the assignment. Like assignment 1 there is some example projects you can cite
code from to complete parts of the assignment not directly related to directory structure.

Starter Code

Start by cloning the repository with starter code (type the following on the command line on
the linux lab computers). You may need to update the repository if you pulled it before to see
future assignment changes before star�ng an assignment:

$ git clone https://csgit.ucalgary.ca/jwhudson/cpsc457w24.git

$ cd cpsc457w24/analyzedir

The repository contains the following files:

analyzeDir.py Python program that completes the assignment output correctly in
python. Use this like you did the assignment 1 reference for correctness.

main.cpp Do not change this file. It is how your program starts.
analyzeDir.h main.cpp assumes you do not modify this header and that your

analyzeDir.cpp fulfills the requirements of the header file.
analyzeDir.cpp Where you complete your assignment. Modify the based func�on required

by analyzeDir.h and add other func�ons it uses to complete assignment 2.
test* Five different test directories that can be used for early tes�ng.
runner.sh $ sh runner.sh is quick way to run a full diff check between all 5 provided

test directories with analyzeDir.py and the analyzeDir from make command
MakeFile Used to make and clean your cpp code in right order (main.cpp,

anaylzeDir.h, analyzeDir.cpp)

The driver (main.cpp) accepts two command line arguments: N (a posi�ve integer) and
directory_name (a valid directory name). The driver then changes the current working directory
to directory_name and calls analyzeDir(N). A�er analyzeDir() returns results, the driver displays
these results on standard output. The analyzeDir() func�on is incomplete, and your job is to
finish its implementa�on. It is defined in the analyzeDir.cpp file, which is the only file you
should edit and submit for grading.

Here is how you can invoke the analyzeDir to analyze "test1" directory with N=10, but note that
the results are incorrect, since analyzeDir() is incomplete:

$ python python./analyzeDir 10 test1
--
Largest file: "some_dir/some_file.txt"
Largest file size: 123
Number of files: 321
Number of dirs: 333
Total file size: 1000000
Largest directories:
 - "path1" x 150
Most common words from .txt files:
 - "hello" x 3
 - "world" x 1

Vacant directories:
 - "path1/subdir1"
 - "test2/xyz"
Largest images:
 - "img1" 640x480
 - "img2.png" 200x300 - "dir1/down.png" 16x16
--

The starter code includes a python solu�on called analyzeDir.py which is described in the
appendix. You can use it to see what the correct output should look like. It is clearly different
form this output.

The analyzeDir() function

The analyzeDir() is declared in analyzeDir.h and defined in analyzeDir.cpp:

Results analyzeDir(int N);

The analyzeDir func�on needs to recursively scan all files and subdirectories in the current
directory, compute some results during the scan, and then return the computed results. The
results will be returned as an instance of a data structure called struct Results, which is also
declared in analyzeDir.h. Your code will use the input parameter N to limit the number of
reported most frequent words and largest images, as described below. Populate Results as
follows:

std::string largest_file_path;

long largest_file_size;

During your scan, you need to determine which of the encountered files contains the
most bytes, using the stat() system call. The fields largest_file_path and largest_file_size
will contain the path and size of the largest file, respec�vely. If your scan does not find any
files, set largest_file_path="" (empty string) and largest_file_size=-1 (nega�ve one). If
mul�ple files have the same maximum size, report the path to any of them.

long n_files, n_dirs;

The n_files field should contain the total number of files encountered during the scan.
Similarly, n_dirs should contain the total number of sub-directories, including the current
directory.

long all_files_size;

This field should contain the sum of all sizes of all files encountered during the scan. Hint:
use stat() to determine file sizes for each file.

std::vector<std::pair<std::string, int>> largest_dirs;

This vector should include a list of up to N largest directories (non-empty/size > 0). Here
we will only determine a size of a directory by the size of all the files immediately in the
directory (you have this size from stat() already if you done the prior. You should not add
the size of the sub-directories or files within it to the size tracked for this list. List should
be sorted by decreasing size first (largest size directory printed first), and then directory
path second (std::string default order) for directories of the same size.

std::vector<std::pair<std::string, int>> most_common_words;

This field will contain a list of up to N most common words inside all text files, together
with the number of occurrences of each word. The list must be sorted first by the number
of occurrences in descending order (largest printed first), and then word second
(std::string default order).

For this assignment, text file is any file that has extension ".txt", and word is a sequence
of more than 5 alphabe�c characters, converted to lower case.

Couple of examples: the string "My name is Jonathan, my password: is abc1ab2ZYZaaa"
contains words "jonathan", "password" and "zyzaaa"; the string "HeLLLo,Helllo" contains
one word "helllo", repeated twice.

You need to open and read the contents of every file you find and extract the words from
the file contents. You need to create and maintain a histogram data structure as you
extract the words. Look at the code in the wordhistogram example below for mo�va�on.

std::vector<std::string> vacant_dirs;

This field will contain a list of all top-level vacant directories. For this assignment, a vacant
directory is a directory, such that the filesystem subtree star�ng at that directory contains
no files. Here is a recursive defini�on:

a vacant directory is either empty directory (no files, nor directories), or it contains only
vacant directories. Another way to think of vacant directory is that if you deleted it
recursively, no files would be deleted.

A top-level vacant directory is a vacant directory, whose parent is not vacant. This means
that once a directory is reported in vacant_dirs, none of its descendants can be included
in this list. For example, if "dir1/sub/xy", "dir1/sub" and "dir1" are all vacant directories,
but "." is not vacant, then only "dir1" is top-level vacant, and "dir1" should be the only
one included in the results.

Special case: if the en�re current directory is vacant, return "." (dot) as the only entry in
vacant_dirs.

Sort this list by order of directory path (std::string default order).

std::vector<ImageInfo> largest_images;

This field will contain a list of up to N largest dimension images (size measured as number
of pixels) encountered during the recursive scan. Each image will be listed using the
ImageInfo struct, with its path, and its dimensions, width, and height.

The list will be sorted in descending order by the number of pixels in each images largest
dimension (largest number of pixels in image dimensions =max(width , height). If this first
order sort is �ed, then sort by width, then height, and finally sort by filepath last
(std::string default order).

IMPORTANT: All paths reported in any of the results must be rela�ve to the current
directory, but they must not begin with "./" (dot slash), nor contain any unnecessary "."
(dot) and ".." (dot dot) parts. The included python solu�on follows this requirement. If
you want, you can remove the leading "./" from your paths as final postprocessing step.

If you follow the correct sort orderings you should be able to run analyzeDir.py and retrieve
exact results. If you don’t follow the sort orderings you can get par�al marks on tests if the
primary (first) order is correct, but the �e break on second, third, fourth orders is not. For
example, if the largest directories are sorted correctly by size but you did not complete sor�ng
by naming for �ed directories, then you will get par�al marks. The penalty will only be minor for
not comple�ng the full sort order.

IMPORTANT: All paths reported in any of the results must be rela�ve to the current directory,
but they must not begin with "./" (dot slash), nor contain any unnecessary "." (dot) and ".."
(dot dot) parts. The included python solu�on follows this requirement. If you want, you can
remove the leading "./" from your paths as final post-processing step

Using iden�fy to determine image dimensions

You will need to call an external program iden�fy to test whether a file is an image, and if it is
an image, to determine its dimensions (width and height). iden�fy takes a filename as input,
and if the filename represents an image, it prints various informa�on about the file on standard
output. To reduce the amount of output it generates, and to simplify its parsing, you should use
the -format '%w %h' op�on to print out only the width and height of the image.

For example:

$ identify -format '%w %h' test5/picasso.jpg

192 199

You will need to use popen() to run iden�fy and to collect its output. You will need to examine
the exit code from iden�fy to determine whether the file is an image or not. If a filename given
to iden�fy is an image, it will exit with status 0. If the filename is not an image, it will exit with a
non-zero status. The exit status can be retrieved as a return value when you call pclose(). The

starter code contains a short snippet of code illustra�ng how to accomplish this. Other than
calling the iden�fy program, you may not use popen() for any other purpose.

Extra test directories

Addi�onal test directories are available on linuxlab machines in
~jwhudson/public/cpsc457w24/a2/extra-tests

You can run your code or the python solu�on on these test directories like this:

$ time ./analyzeDir 10 ~jwhudson/public/cpsc457w24/a2/extra-tests/test3

$ time python ./analyzeDir.py 10 ~jwhudson/public/cpsc457w24/a2/extra-tests/test3

Miscellaneous hints

Remember to call the appropriate close func�ons for open file descriptors, e.g. close(), fclose(),
pclose().

Sample code showing how to recursively examine a directory: findLargestDir

Sample program illustra�ng how to use std::unordered_map to create a histogram of words,
and how to extract the top N entries from it using 2 different approaches: word-histogram

Feel free to re-use any code above, but please include appropriate cita�ons.

Allowed APIs

You are free to use the following APIs from the libc/libc++ libraries for this assignment:

• popen(), pclose(), but only to get the output of the iden�fy u�lity
• stat(), opendir(), closedir(), readdir(), getcwd(), chdir()
• open(), close(), read(), fopen(), fread(), fclose(), fgets(), fgetc(), qsort()
• any C++ containers & associated algorithms
• C++ streams, C++ string related APIs
• std::sort, std::filesystem

If you want to use other APIs, please check with your TA whether it would be allowed.

Not-allowed APIs

• You may not use system(3) at all.
• You may not call any external programs, other than iden�fy. For example, you may not

call find, awk, grep, uniq, etc...

Addi�onal requirements

• The total number of directories and files will be less than 10000.

• You may assume that none of the file names nor directory names will contain spaces or
quota�ons.

• Each file path will contain less than 4096 characters.
• Words will have less than 1024 characters.
• If mul�ple entries in a list are �ed in the primary ordering (ex. Size for directories), you

can get par�al marks if you return those in arbitrary order. However, full marks need you
to return them in the request second, third, fourth orderings requested.

• You need to consider all files as poten�al images, regardless of their extension.
• Use the filename extension only to iden�fy which files to use for calcula�ng the most

common words, i.e. consider only files which have the extension .txt.

Grading

Your code will be graded on correctness and efficiency. Your code should be at least as efficient
as the included Python solu�on (described in the appendix), but read below for more
explana�on.

Some�mes your C++ solu�on will run a litle bit slower than the Python solu�on. This is
expected. In case you are wondering why: the libc's implementa�on of popen is less efficient
than the one used in the python solu�on. Essen�ally, the libc’s popen ends up calling fork()
twice.

Consequently, on directories with many files, your C++ code will end up running a bit slower
than the python version.

To give you an idea what I expect in terms of performance, here are some �mings I obtained
using my own quick student like C++ solu�on on the extra test directories:

• On test6, which contains 1342 files, the Python solu�on took 27s, my C++ solu�on took 29s;
• On test9, which contains only 72 files, Python finished in ~2.5s, and my C++ solu�on in ~2s.

Do not forget to design some of your own test cases to make sure your code is correct.

When �ming your code, run your test at least twice, back-to-back, and use the best �me. This
will remove the effects of filesystem caching, and you will get more reliable �mings.

Submission

Submit one file for this assignment to D2L:

• Your solu�on in a file called analyzeDir.cpp.

Submit this as a separate file. Do not submit an archive, such as ZIP or TAR. If you submit an
archive, you will receive a penalty.

Submit the web address of your Gitlab repository you used for your assignment (I recommend
one repository for all 6 of your assignments that you can re-use). Your TA must be added as a

Developer. There are penal�es for submissions without the ability to access the corresponding
students Gitlab by the TA.

While the starter code contains many different files, the only file you are allowed to modify is
analyzeDir.cpp. Do not modify any other files. All code you write must go in the analyzeDir.cpp
file, and that should be the only file you will submit for grading. We will test your code by
supplying our own main() func�on, which will be different from the main() func�on in the
starter code. It is therefore vital that you maintain the same func�on signature as declared in
analyzeDir.h. Before you submit analyzeDir.cpp to D2L, make sure it works with unmodified files
from the starter code!

General information about all assignments

All assignments are due on the date listed on D2L. Late submissions without remaining late
days banked will not be marked.

1. Extensions beyond the late day policy can be discussed more than 5 business days in
advance and are granted only by the course instructor.

2. A�er you submit your work to D2L, verify your submission by re-downloading it.
3. You can submit many �mes before the due date. D2L will simply overwrite previous

submissions with newer ones. It is beter to submit incomplete work for a chance of
ge�ng par�al marks, than not to submit anything. Please bear in mind that you cannot
re-submit a single file if you have already submited other files. Your new submission
would delete the previous files you submited. So please keep a copy of all files you
intend to submit and resubmit all of them every �me.

4. Assignments are likely going to be marked by your TAs. If you have ques�ons about
assignment marking, contact your TA first. If you s�ll have ques�ons a�er you have
talked to your TA, then you can contact your instructor.

5. All programs you submit must run on linux lab or cslinux.ucalgary.ca. If your TA is unable
to run your code on these, you will receive 0 marks.

6. Unless specified otherwise, you must submit code that can finish on any valid input
under 10s on linux lab or cslinux.ucalgary.ca, when compiled with -O2 op�miza�on.
Any code that runs longer than this may receive a deduc�on, and code that runs for too
long (about 30s) will receive 0 marks.

7. Assignments must reflect individual work. Here are some examples of what you are not
allowed to do for individual assignments: you are not allowed to copy code or writen
answers (in part, or in whole) from anyone else; you are not allowed to collaborate with
anyone; you are not allowed to share your solu�ons (code or pseudocode) with anyone;
you are not allowed to sell or purchase a solu�on; you are not allowed to make your
code available publicly (e.g. via public git repositories). This list is not exclusive. For
further informa�on on plagiarism, chea�ng and other academic misconduct, check the
informa�on at this link: htp://www.ucalgary.ca/pubs/calendar/current/k-5.html .

http://www.ucalgary.ca/pubs/calendar/current/k-5.html

8. We will use automated similarity detec�on so�ware to check for plagiarism. Your
submission will be compared to other students (current and previous), as well as to any
known online sources. Any cases of detected plagiarism or any other academic
misconduct will be inves�gated and reported.

Appendix – Python Solu�on analyzeDir.py

The repository includes a Python program analyzeDir.py that implements the assignment. This
should help you design your own test cases and see what the expected output should look like.
Your C++ code must produce iden�cal results. Here is an example of running it on the test3
directory with N=5:

$ python ./analyzeDir.py 5 ~jwhudson/public/cpsc457w24/a2/extra-tests/test3
Pre-counting files... 4
Analyzing: ## (100.00%)
--
Largest file: "happy.jpg"
Largest file size: 26155
Number of files: 4
Number of dirs: 9
Total file size: 35681
Largest directories:
 - "." x 31547
 - "empty2.txt/file2.cpp" x 4134
Most common words from .txt files:
 - "elizabeth" x 4
 - "catherine" x 3
 - "marriage" x 3
 - "appeared" x 2
 - "certain" x 2
Vacant directories:
 - "e3"
 - "empty1"
 - "empty2.txt/file1.png"
 - "empty2.txt/file2.jpg"
Largest images:
 - "happy.jpg" 506x900
 - "what-is-this" 192x199
--

Please note that the python program displays a progress bar as it is scanning the directory. This
can be turned off with a third argument False. Triggering this will let you create output you’d
expect to match the output of your cpp program you complete in analyzeDir.cpp

$ python ./analyzeDir.py 5 ~jwhudson/public/cpsc457w24/a2/extra-tests/test3 False

