
CPSC 457: Principles of Operating Systems
Assignment 1: basic C++, make, time, strace, system calls

Weight: 15%

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do and an
excellent way to learn. However, the work you hand in must ultimately be your work. This is
essential for you to benefit from the learning experience and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work but is represented as such is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in
the university calendar.

Here are some �ps to avoid plagiarism in your programming assignments.

1. Cite all sources of code you hand in that are not your original work. You can put the cita�ons into comments in
your program. For example, if you find and use code found on a website, include a comment that says, for
example:

The following code is from htps://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. A tool like chat-GPT can be used to improve small code blocks. For example, three lines of code. If you get help
from code assistance like Chat-GPT, you should comment above the block of code you requested assistance on
debugging or improving and cite the tool used to get that sugges�on. Using a tool like chat-GPT to write the
majority of your assignment requirements will be treated as plagiarism if found without cita�on, and with
cita�on, it will be treated as 0 for the component the student did not complete. Code improvement of short
length will get credit if commented/cited properly.

3. Ci�ng sources avoids accusa�ons of plagiarism and penal�es for academic misconduct. However, you may s�ll
get a low grade if you submit code not primarily developed by yourself. Cited material should never be used
to complete core assignment specifica�ons. Before submi�ng, you can and should verify any code you are
concerned about with your instructor/TA.

4. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code, it is your own. A good rule of thumb is to wait 20 minutes a�er talking with somebody before wri�ng
your code. If you exchange code with another student, write code while discussing it with a fellow student, or
copy code from another person’s screen, this code is not yours.

5. Collabora�ve coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collabora�on. This includes
sharing code, discussing the code itself, or modelling code a�er another student's algorithm. You can not use
(even with cita�on) another student’s code.

6. Making your code available, even passively, for others to copy or poten�ally copy is also plagiarism.
7. We will look for plagiarism in all code submissions, possibly using automated so�ware designed for the task.

For example, see Measures of So�ware Similarity (MOSS - htps://theory.stanford.edu/~aiken/moss/).
8. Remember, if you are having trouble with an assignment, it is always beter to go to your TA and/or instructor

for help rather than plagiarizing. A common penalty is an F on a plagiarized assignment.

Late Policy

All students will have 6 total days during the semester that can be used for none, one,
some, or all the 6 assignments. Students can use these days all on one assignment, or
some on each of the six.

Each 24-hour period late after an assignment deadline counts as one full day regardless of
how many hours the assignment was late within that period. For example, deadlines are
generally Fridays 11:59pm local time. That means an assignment submitted any time
Saturday before 11:59pm local time will be considered as 1 day late and count against the
students 5 total days.

As long as a student still has days left to use, their assignment will be graded without
penalty. If a student has no more days left or their submission exceeds the days they have
remaining, then they will receive a 0 grade for a late assignment. Students who use up late
days on earlier assignments will not have them available for later assignments.

TAs will indicate the student’s late day usage in grading feedback.

Due date is posted on D2L. Your D2L submission should include the files requested and a link to
a Gitlab repository you used while comple�ng the assignment with your TA added as a
Developer role. Help with Gitlab Clone/Developer role access is available in D2L video.

Description

Well writen C++ code will usually outperform an equivalent Python code. However, a badly
writen C++ can easily run slower than Python code. A common reason why some C++ programs
run slowly is due to inefficient use of system calls. You will be given two programs – one writen
in Python and the other one writen in C++. They both find and print the longest stuter from
text supplied via standard input. The Python version is well writen and runs fast. The C++
version is not well writen and runs slowly. In this assignment:

• You will analyze and compare the performance of the Python and the C++ program.
• You will improve the performance of the badly writen C++ program, by modifying it to

use system calls more efficiently.
• Finally, you will compare the performance of your new C++ implementa�on to the

original Python and C++ programs.

Start by cloning the repository with starter code (type the following on the command line on
the linux lab computers). You may need to update the repository if you pulled it before to see
future assignment changes before star�ng an assignment:

$ git clone https://csgit.ucalgary.ca/jwhudson/cpsc457w24.git

$ cd cpsc457w24/stutter

The repository contains the following files:

stuter.py Python program that reads in text from standard input and reports the
longest stuter to standard output.

slow-stut.cpp Inefficient C++ implementa�on of stuter.py. Feel free to re-use any part of
this code in your solu�on.

fast-stut.cpp This is where you will write your efficient implementa�on, which you then
submit for grading.

Makefile Makes compila�on a bit easier.
t*.txt Few sample test files.
dup.py Python3 script that can generate big data (see appendix).

To remove ambiguity, we will use the following defini�ons for this assignment:

standard input Please read htp://www.linfo.org/standard_input.html .
white space Any character that isspace() reports as white-space. Read the man page for

isspace() or htps://www.cplusplus.com/reference/cctype/isspace/ for
more informa�on.

word Non-zero-length sequence of non-white-space characters delimited by
white space, or beginning of file, or end of file.

stuter Any word in which the first half is the same as the second half a�er ignoring
the case. Examples of stuters: ‘DiddiD’, ’0101’, ‘xx’

longest Stuter with most characters. If mul�ple stuters have the same stuter
maximum length, your program must report the first one.

Q1 – Written question (5 marks)

For this ques�on you will compare the performance of the python program (stuter.py) to the
C++ program (slow-stut.cpp) by using �me and strace u�li�es. For example, to �me stuter.py
on the t5.txt file, execute this command:

$ time python stutter.py < t5.txt

Longest stutter: DetartrateDDetartrateD

real 0m0.034s

user 0m0.021s

sys 0m0.011s

To get a summary of all system calls made by stuter.py, run this:

$ strace -c python stutter.py < t5.txt

Longest stutter: DetartrateDDetartrateD

http://www.linfo.org/standard_input.html
https://www.cplusplus.com/reference/cctype/isspace/

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

 23.89 0.000984 3 290 108 newfstatat

 13.74 0.000566 21 26 mmap

 12.92 0.000532 532 1 execve

 9.49 0.000391 7 51 7 openat

 7.77 0.000320 17 18 getdents64

 7.53 0.000310 4 65 read

 4.56 0.000188 4 44 close

 4.47 0.000184 2 66 rt_sigaction

 2.79 0.000115 2 55 2 lseek

 2.35 0.000097 19 5 mprotect

 2.16 0.000089 2 34 29 ioctl

 1.99 0.000082 7 11 brk

 0.90 0.000037 9 4 munmap

 0.78 0.000032 6 5 3 readlink

 0.66 0.000027 13 2 pread64

 0.63 0.000026 13 2 1 arch_prctl

 0.49 0.000020 10 2 getrandom

 0.41 0.000017 17 1 1 access

 0.32 0.000013 6 2 getcwd

 0.32 0.000013 13 1 set_robust_list

 0.29 0.000012 12 1 set_tid_address

 0.29 0.000012 12 1 rseq

 0.24 0.000010 2 4 fcntl

 0.24 0.000010 10 1 futex

 0.22 0.000009 9 1 gettid

 0.22 0.000009 9 1 prlimit64

 0.15 0.000006 6 1 write

 0.05 0.000002 2 1 getuid

 0.05 0.000002 2 1 getgid

 0.05 0.000002 2 1 geteuid

 0.05 0.000002 2 1 getegid

 0.00 0.000000 0 1 sysinfo

------ ----------- ----------- --------- --------- ----------------

100.00 0.004119 5 700 151 total

The results above indicate that the read() system call was executed 65 �mes.

Before you can �me the C++ code, you will need to compile it. The easiest way to compile it is
using the included Makefile:

$ make

You can also compile it by hand, if you prefer. Don’t forget the “-O2” op�on:

$ g++ -O2 -Wall slow-stut.cpp –o slow-stut

Now you can use ‘�me’ and ‘strace -c’ on the resul�ng executable slow-stut:

$ time slow-stut < t5.txt

Longest stutter: DetartrateDDetartrateD

real 0m0.011s

user 0m0.004s

sys 0m0.006s

$ strace -c slow-stut < t5.txt

Longest stutter: DetartrateDDetartrateD

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

 48.39 0.001828 8 215 read

 17.65 0.000667 667 1 execve

 16.94 0.000640 27 23 mmap

...

Answer the following ques�ons:

a) Use the �me u�lity to �me stuter.py and slow-stut.cpp on files t3.txt and t4.txt.
Copy/paste the output of �me from the terminal window into your report.

b) How much �me did the C++ and python programs spend execu�ng on the CPU, and how
much �me did each of them spend wai�ng for I/O to finish?

c) Run ‘strace -c’ on stuter.py and slow-stut.cpp on t3.txt and t4.txt. Copy/paste the output
from the terminal window into your report.

d) When compared to the C++ code, why is the python program faster on some inputs, but
slower on others? Try to jus�fy your answers using the results you obtained above.

Q2 – Programming question (15 marks)

Your job is to improve slow-stut.cpp by wri�ng a new implementa�on called fast-stut.cpp. Your
new implementa�on should be faster than slow-stut.cpp and at least as fast as stuter.py for all
possible inputs! Your new implementa�on must match the output of the slow implementa�on
and the Python implementa�on. You may re-use any code from the slow-stut.cpp file.

Hints

The slow-stut.cpp makes too many calls to the read() system call, as it calls read() for every
single character. You need to find a way to reduce the number of calls to read. I suggest you
refactor the slow code so that read() is called with a buffer size of 1MB, i.e. you should read
about 1 million bytes per system call. This should drama�cally speed up your program.

The repository sub-directory longest-int contains a similar problem and the corresponding
solu�on. Feel free to reuse any parts of this code in your own solu�on, but please include
cita�ons for the parts you reuse.

If you study and understand the above code, this assignment will be very easy!

Valid input

Your program must be able to handle any data on standard input. You may assume that no word
will be longer than 1024 bytes. The files may or may not include a new line at the end.

A small number of test files are available in the GitLab repository, but it is expected that you
create your own test files to help you validate your solu�ons. Use stuter.py to obtain correct
outputs for your own test files.

Please note: we will grade your solu�on on inputs that are not published to you.

Requirements

• Your code must produce the same output as slow-stut.cpp
• Your code must run efficiently – e.g. on 2GB input, it should finish under 30s.
• You are only allowed to use the read() system call to read data from standard input.
• You may not use any other I/O APIs, such as mmap(), fopen(), fread(), fgetc(), C++’s

streams, etc.
• Do not store the en�re input in memory. You need to write your code so that it can

handle any input size, even if it is bigger than the available memory.
• Your program must run on linux lab computers or cslinux.ucalgary.ca. You should test

your code on the Linux worksta�ons in the MS labs or use SSH to test it remotely.

Marking

Your code needs to be both correct, and efficient. Programs that output wrong results, or run
very slowly, will receive 0 marks. On 2GB input your program should finish under 30s on linux

lab machines. Below are some �mings I obtained using my own solu�on, to give you an idea of
what you should be aiming for.

$ python dup.py 2000000000 < t4.txt | time fast-stut

Longest stutter: Tartar

35.60user 0.62system 0:36.76elapsed 98%CPU (0avgtext+0avgdata
3584maxresident)k

0inputs+0outputs (0major+171minor)pagefaults 0swaps

$ seq 101010101 | time -p ./fast-stut

Longest stutter: 10001000

real 11.80

user 11.45

sys 0.29

Q3 – Written question (5 marks)

a) Run your fast-stut.cpp on t3.txt and t4.txt files using ’�me’ and ’strace -c’. Copy/paste
the output from the terminal window into your report.

b) Is your fast-stut.cpp faster than slow-stut.cpp? Why do you think that is?
c) Is your program faster than stuter.py and why?

Jus�fy your answers for (b) and (c) by comparing the outputs of ’�me’ and ‘strace -c’.

Submission

Submit two files for this assignment to D2L:

• Answers to the writen ques�ons Q1 and Q3 combined into a single file called
report.pdf. You can also use .docx and .txt file format. Do not use any other file formats.

• Your solu�on to Q2 in a file called fast-stut.cpp.

Submit these as two separate files. Do not submit an archive, such as ZIP or TAR. If you submit
an archive, you will receive a penalty.

Submit the web address of your Gitlab repository you used for your assignment (I recommend
one repository for all 6 of your assignments that you can re-use). Your TA must be added as a
Developer. There are penal�es for submissions without the ability to access the corresponding
students Gitlab by the TA.

General information about all assignments

All assignments are due on the date listed on D2L. Late submissions without remaining late
days banked will not be marked.

1. Extensions beyond the late day policy can be discussed more than 5 business days in
advance and are granted only by the course instructor.

2. A�er you submit your work to D2L, verify your submission by re-downloading it.
3. You can submit many �mes before the due date. D2L will simply overwrite previous

submissions with newer ones. It is beter to submit incomplete work for a chance of
ge�ng par�al marks, than not to submit anything. Please bear in mind that you cannot
re-submit a single file if you have already submited other files. Your new submission
would delete the previous files you submited. So please keep a copy of all files you
intend to submit and resubmit all of them every �me.

4. Assignments are likely going to be marked by your TAs. If you have ques�ons about
assignment marking, contact your TA first. If you s�ll have ques�ons a�er you have
talked to your TA, then you can contact your instructor.

5. All programs you submit must run on linux lab or cslinux.ucalgary.ca. If your TA is unable
to run your code on these, you will receive 0 marks.

6. Unless specified otherwise, you must submit code that can finish on any valid input
under 10s on linux lab or cslinux.ucalgary.ca, when compiled with -O2 op�miza�on.
Any code that runs longer than this may receive a deduc�on, and code that runs for too
long (about 30s) will receive 0 marks.

7. Assignments must reflect individual work. Here are some examples of what you are not
allowed to do for individual assignments: you are not allowed to copy code or writen
answers (in part, or in whole) from anyone else; you are not allowed to collaborate with
anyone; you are not allowed to share your solu�ons (code or pseudocode) with anyone;
you are not allowed to sell or purchase a solu�on; you are not allowed to make your
code available publicly (e.g. via public git repositories). This list is not exclusive. For
further informa�on on plagiarism, chea�ng and other academic misconduct, check the
informa�on at this link: htp://www.ucalgary.ca/pubs/calendar/current/k-5.html .

8. We will use automated similarity detec�on so�ware to check for plagiarism. Your
submission will be compared to other students (current and previous), as well as to any
known online sources. Any cases of detected plagiarism or any other academic
misconduct will be inves�gated and reported.

Appendix – dup.py utility (aka. Testing your code on large inputs)

Many of you probably do not have enough storage quota to store 2Gib test files in your
accounts. There is a python script dup.py to make it possible to test your program on large
inputs, without having to store big files.

http://www.ucalgary.ca/pubs/calendar/current/k-5.html

dup.py is a simple python program that accepts a single command line argument "N", which
indicates the number of bytes that the script will generate on standard output. dup.py reads in
data from stdin, byte by byte, and outputs the data to stdout. It always outputs N bytes. If the
data on stdin is bigger than N bytes, only the first N bytes are copied. If the data on stdin is
shorter than N, the script will repeat the input data, un�l N bytes are generated. Example:

$ echo "hello." | python ./dup.py 10

hello.

hel

Here is an example of how to feed 2GB of data to your program, generated by repea�ng t3.txt:

$ python ./dup.py 2000000000 < t3.txt | ./fast-stut

Here is how you can �me your code on the same data:

$ python./dup.py 2000000000 < t3.txt | time ./fast-stut

Here is how to run strace in combina�on with dup.py:

$ python./dup.py 2000000000 < t3.txt | strace -c ./fast-stut

Warning: If you follow the hints, this assignment is quite simple, as it requires minimum
amount of coding. Please do not assume that future assignments will be this simple.

More hints

The code for reading a singular character using read() in slow_stut.cpp looks like this:

unsigned char buff;

read(STDIN_FILENO, & buff, 1);

The reason you include & is because read() requires a pointer to memory where to store the
data it reads. If I change the defini�on of the buffer to be an array of chars

unsigned char buff[1024];

then the variable buff is already a pointer (it points to an array of chars). Now the call to read()
must be made without the &. i.e.

read(STDIN_FILENO, buff, 1024);

It would be a mistake to write:

read(STDIN_FILENO, &buff, 1024);

Ques�ons

My code crashes on large inputs, but works fine on smaller inputs. The error message looks
like this: “Command terminated by signal 9.” What is wrong?

You are likely trying to read all the input into memory at once. Try and debug to see the size of
your inputs or input requests.

Why do I see errors like this when I use dup.py? “broken pipe”

Your code does not read all input from dup.py before your program exits. This means you have a
bug in your code.

