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Search Controls

General tasks:
• Determining all possible transitions, i.e. 

{(s1,s2) ∈ T | s1 is actual state}
• Selecting the next state
Important observation:
Transitions are usually based on applying general rules to parts of the actual state

Examples:
- extension rules in set-based search
- processing a leaf in tree- or graph-based search
 use observation to make tasks easier and faster

CPSC 433 - Artificial Intelligence Jörg Denzinger



3

Determining all possible transitions

Many general rules that were applicable in the last state usually are applicable in 
the current one

Therefore
• Have list of potential transitions from last state
• Delete from list potential transitions not possible any more (parts of state used 

for them do not exist now)
• Update remaining transitions if necessary

(remember: we are in a new state now)
• Add newly possible transitions (that are not already in the list)
List of all candidates for next transition
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Selecting the next state

Have to find best transition
 evaluation necessary

• Store evaluation with transition so that evaluation can be reused (but not 
always reusable, remember min-max search)

• Organize list of transitions as heap, since always the transition with best 
evaluation is looked for

• Finding best transition takes constant time
• Inserting new transitions much faster than in ordered list
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Evaluating transitions

Candidates for measuring
• Result state
• Parts of actual state enabling general rule for transition
• Parts new in the result state vs actual state
What to use?
Depends on how difficult it is to compute needed data
(i.e. resulting state resp. parts)
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General Ideas for What to Measure

• Distance to a goal state or parts of it
• Best that can be achieved from a state (using an approximation, used for 

optimization problems)
• Difficulty of new problems in state (needs knowledge about problems)
• Number of transitions that become possible
• Size of state
• History of search
• Use of similar search experiences

CPSC 433 - Artificial Intelligence Jörg Denzinger



7

General Problems 
(and solution approaches)
• States get too big

( local search, backtracking, forget history)
• Measuring states too time consuming

( abstract to significant parts, use less complex measures)
• Combining pieces of knowledge

( normalizing weights + weighted sums)
• Contradicting control knowledge

( distributed search approaches, competition)
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Simple Tree Search Controls
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Search Algorithm Properties
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Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers
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DFS
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Depth-First Search
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Depth-First Search
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Depth-First Search (DFS) Properties

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles 

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of 

depth or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers
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BFS
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes
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DFS vs BFS
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Iterative Deepening
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Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages

• Run a DFS with depth limit 1.  If no solution…
• Run a DFS with depth limit 2.  If no solution…
• Run a DFS with depth limit 3.  …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level 

searched, so not so bad!

…
b



22

Cost-Sensitive Search
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Uniform Cost
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Uniform Cost Search
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Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least ε , then the 

“effective depth” is roughly C*/ε
• Takes time O(bC*/ε) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/ε)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

• Is it optimal?
• Yes!  (A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1
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Uniform Cost Issues

• Remember: UCS explores increasing cost 
contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1
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Informed Search
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Informed Search

o Uninformed Search
o DFS
o BFS
o UCS

▪ Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search
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Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing? 
▪ Examples: Manhattan distance, Euclidean distance for pathing

10

5
11.2
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Example: Heuristic Function

h(x)
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Greedy Search
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Greedy Search
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Greedy Search

o Expand the node that seems closest…

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!



36

Greedy Search

o Strategy: expand a node that you think is 
closest to a goal state
o Heuristic: estimate of distance to nearest goal for 

each state

o A common case:
o Best-first takes you straight to the (wrong) goal

o Worst-case: like a badly-guided DFS

…
b

…
b
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A* Search
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A* Search
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A* Search

UCS Greedy

A*
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Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost  g(n)
o Greedy orders by goal proximity, or forward cost  h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)
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When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal
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Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!
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Optimality of A* Tree Search
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Admissible Heuristics

o A heuristic h is admissible (optimistic) if:

where               is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s involved in using A* in practice.

15 11.5
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Optimality of A* Tree Search

Assume:
o A is an optimal goal node
o B is a suboptimal goal node
o h is admissible

Claim:
o A will exit the fringe before B

…
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Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal
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Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…
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Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

o All ancestors of A expand before B
o A expands before B
o A* search is optimal

…
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Properties of A*

…
b

…
b

Uniform-Cost A*
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UCS vs A* Contours

o Uniform-cost expands equally in all “directions”

o A* expands mainly toward the goal, but does 
hedge its bets to ensure optimality

Start Goal

Start Goal
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Comparison

Greedy Uniform Cost A*
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A*: Summary

o A* uses both backward costs and (estimates of) forward costs

o A* is optimal with admissible / consistent heuristics

o Heuristic design is key: often use relaxed problems
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Queueing
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The One Queue

• All these search algorithms are the 
same except for fringe strategies

• Conceptually, all fringes are priority 
queues (i.e. collections of nodes with 
attached priorities)

• Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

• Can even code one implementation 
that takes a variable queuing object
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Local Search
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Local Search
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Local Search (I)

General Idea:
After selecting a transition, do not consider any transitions that were possible in 

previous states
 “Never-look-back-Heuristic”
Example: trees (works for sets also  one-element sets)

eliminate older
possibilities

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Local Search (II)

Advantages:
Less decisions
Complexity can be bound by depth of tree (number of solution steps)
Each transition contributes to found solution
Predictable behavior with regard to run time
Disadvantages
- No guarantee for optimality of solution
- No guarantee for optimality of number of necessary transitions

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Local Search

• Tree search keeps unexplored alternatives on the fringe (ensures 
completeness)

• Local search: improve a single option until you can’t make it better (no fringe!)

• New successor function: local changes

• Generally much faster and more memory efficient (but incomplete and 
suboptimal)
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Hill Climbing

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no neighbors better than current, quit

• What’s bad about this approach?

• What’s good about it?
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Hill Climbing Diagram
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Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?
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Simulated Annealing

• Idea:  Escape local maxima by allowing downhill moves
• But make them rarer as time goes on

65
This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Simulated_annealing
https://creativecommons.org/licenses/by-sa/3.0/
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Simulated Annealing

• Theoretical guarantee:
• Stationary distribution:

• If T decreased slowly enough,
will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local 

optimum, the less likely you are to ever make them all in a 
row

• People think hard about ridge operators which let you 
jump around the space in better ways



67

Particle Swarm Optimization

• Design complexity grows.

• Think of particles as having ‘gravity’. The better the solution 
the more ‘gravity’.

• Particles also have momentum.

• Have many particles.

• Each step, particles follow their current direction of change 
with influence of the nearby local optima and global optima.

• Less touchy to parameters and good at exploration. Often 
cooling principle included to help find best at end.

• Challenges with discrete problems.
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Genetic Algorithms (Common Set-Based Search)

• Genetic algorithms use a natural selection metaphor
• Keep best N hypotheses at each step (selection) based on a fitness function
• Also have pairwise crossover operators, with optional mutation to give variety

• Possibly the most misunderstood, misapplied (and even maligned) technique around
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Search Summary
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Search and Models

• Search operates over models of 
the world

• The agent doesn’t actually try all the 
plans out in the real world!

• Planning is all “in simulation”
• Your search is only as good as your 

models…
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Search Gone Wrong?



Onward to … 
Knowledge Representation

Jonathan Hudson
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