
Artificial Intelligence:
Search Controls
CPSC 433: Artificial Intelligence
Fall 2022

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Thursday, October 13, 2022



2

Search Controls

General tasks:
• Determining all possible transitions, i.e. 

{(s1,s2) ∈ T | s1 is actual state}
• Selecting the next state
Important observation:
Transitions are usually based on applying general rules to parts of the actual state

Examples:
- extension rules in set-based search
- processing a leaf in tree- or graph-based search
 use observation to make tasks easier and faster

CPSC 433 - Artificial Intelligence Jörg Denzinger



3

Determining all possible transitions

Many general rules that were applicable in the last state usually are applicable in 
the current one

Therefore
• Have list of potential transitions from last state
• Delete from list potential transitions not possible any more (parts of state used 

for them do not exist now)
• Update remaining transitions if necessary

(remember: we are in a new state now)
• Add newly possible transitions (that are not already in the list)
List of all candidates for next transition

CPSC 433 - Artificial Intelligence Jörg Denzinger



4

Selecting the next state

Have to find best transition
 evaluation necessary

• Store evaluation with transition so that evaluation can be reused (but not 
always reusable, remember min-max search)

• Organize list of transitions as heap, since always the transition with best 
evaluation is looked for

• Finding best transition takes constant time
• Inserting new transitions much faster than in ordered list

CPSC 433 - Artificial Intelligence Jörg Denzinger



5

Evaluating transitions

Candidates for measuring
• Result state
• Parts of actual state enabling general rule for transition
• Parts new in the result state vs actual state
What to use?
Depends on how difficult it is to compute needed data
(i.e. resulting state resp. parts)

CPSC 433 - Artificial Intelligence Jörg Denzinger



6

General Ideas for What to Measure

• Distance to a goal state or parts of it
• Best that can be achieved from a state (using an approximation, used for 

optimization problems)
• Difficulty of new problems in state (needs knowledge about problems)
• Number of transitions that become possible
• Size of state
• History of search
• Use of similar search experiences

CPSC 433 - Artificial Intelligence Jörg Denzinger



7

General Problems 
(and solution approaches)
• States get too big

( local search, backtracking, forget history)
• Measuring states too time consuming

( abstract to significant parts, use less complex measures)
• Combining pieces of knowledge

( normalizing weights + weighted sums)
• Contradicting control knowledge

( distributed search approaches, competition)

CPSC 433 - Artificial Intelligence Jörg Denzinger



8

Simple Tree Search Controls



9

Search Algorithm Properties



10

Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers



11

DFS



12

Depth-First Search



13

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a 
deepest node first

Implementation: 
Fringe is a LIFO stack



14

Depth-First Search (DFS) Properties

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles 

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of 

depth or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers



15

BFS



16

Breadth-First Search



17

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a 
shallowest node first

Implementation: Fringe 
is a FIFO queue



18

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes



19

DFS vs BFS



20

Iterative Deepening



21

Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages

• Run a DFS with depth limit 1.  If no solution…
• Run a DFS with depth limit 2.  If no solution…
• Run a DFS with depth limit 3.  …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level 

searched, so not so bad!

…
b



22

Cost-Sensitive Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

How?



23

Uniform Cost



24

Uniform Cost Search



25

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest 
node first:

Fringe is a priority queue 
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost 
contours

2



26

…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least ε , then the 

“effective depth” is roughly C*/ε
• Takes time O(bC*/ε) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/ε)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

• Is it optimal?
• Yes!  (A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1



27

Uniform Cost Issues

• Remember: UCS explores increasing cost 
contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1



28

Informed Search



29

Informed Search

o Uninformed Search
o DFS
o BFS
o UCS

▪ Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search



30

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing? 
▪ Examples: Manhattan distance, Euclidean distance for pathing

10

5
11.2



31

Example: Heuristic Function

h(x)



33

Greedy Search



34

Greedy Search



35

Greedy Search

o Expand the node that seems closest…

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!



36

Greedy Search

o Strategy: expand a node that you think is 
closest to a goal state
o Heuristic: estimate of distance to nearest goal for 

each state

o A common case:
o Best-first takes you straight to the (wrong) goal

o Worst-case: like a badly-guided DFS

…
b

…
b



37

A* Search



38

A* Search



39

A* Search

UCS Greedy

A*



40

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost  g(n)
o Greedy orders by goal proximity, or forward cost  h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0 
h=6

g = 1 
h=5

g = 2 
h=6

g = 3 
h=7

g = 4 
h=2

g = 6 
h=0

g = 9 
h=1

g = 10 
h=2

g = 12 
h=0



41

When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S       0 3 3

g h +

S->A    2 2 4

S->B    2 1 3

S->B->G 5 0 5

S->A->G 4 0 4



42

Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

g h +

S       0 7 7
S->A    1 6 7
S->G    5 0 5



43

Optimality of A* Tree Search



44

Admissible Heuristics

o A heuristic h is admissible (optimistic) if:

where               is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s involved in using A* in practice.

15 11.5



45

Optimality of A* Tree Search

Assume:
o A is an optimal goal node
o B is a suboptimal goal node
o h is admissible

Claim:
o A will exit the fringe before B

…



46

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal



47

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…



48

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

o All ancestors of A expand before B
o A expands before B
o A* search is optimal

…



49

Properties of A*

…
b

…
b

Uniform-Cost A*



50

UCS vs A* Contours

o Uniform-cost expands equally in all “directions”

o A* expands mainly toward the goal, but does 
hedge its bets to ensure optimality

Start Goal

Start Goal



51

Comparison

Greedy Uniform Cost A*



54

A*: Summary

o A* uses both backward costs and (estimates of) forward costs

o A* is optimal with admissible / consistent heuristics

o Heuristic design is key: often use relaxed problems



55

Queueing



56

The One Queue

• All these search algorithms are the 
same except for fringe strategies

• Conceptually, all fringes are priority 
queues (i.e. collections of nodes with 
attached priorities)

• Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

• Can even code one implementation 
that takes a variable queuing object



57

Local Search



58

Local Search



59

Local Search (I)

General Idea:
After selecting a transition, do not consider any transitions that were possible in 

previous states
 “Never-look-back-Heuristic”
Example: trees (works for sets also  one-element sets)

eliminate older
possibilities

CPSC 433 - Artificial Intelligence Jörg Denzinger



60

Local Search (II)

Advantages:
Less decisions
Complexity can be bound by depth of tree (number of solution steps)
Each transition contributes to found solution
Predictable behavior with regard to run time
Disadvantages
- No guarantee for optimality of solution
- No guarantee for optimality of number of necessary transitions

CPSC 433 - Artificial Intelligence Jörg Denzinger



61

Local Search

• Tree search keeps unexplored alternatives on the fringe (ensures 
completeness)

• Local search: improve a single option until you can’t make it better (no fringe!)

• New successor function: local changes

• Generally much faster and more memory efficient (but incomplete and 
suboptimal)



62

Hill Climbing

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no neighbors better than current, quit

• What’s bad about this approach?

• What’s good about it?



63

Hill Climbing Diagram



64

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?



65

Simulated Annealing

• Idea:  Escape local maxima by allowing downhill moves
• But make them rarer as time goes on

65
This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Simulated_annealing
https://creativecommons.org/licenses/by-sa/3.0/


66

Simulated Annealing

• Theoretical guarantee:
• Stationary distribution:

• If T decreased slowly enough,
will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local 

optimum, the less likely you are to ever make them all in a 
row

• People think hard about ridge operators which let you 
jump around the space in better ways



67

Particle Swarm Optimization

• Design complexity grows.

• Think of particles as having ‘gravity’. The better the solution 
the more ‘gravity’.

• Particles also have momentum.

• Have many particles.

• Each step, particles follow their current direction of change 
with influence of the nearby local optima and global optima.

• Less touchy to parameters and good at exploration. Often 
cooling principle included to help find best at end.

• Challenges with discrete problems.



68

Genetic Algorithms (Common Set-Based Search)

• Genetic algorithms use a natural selection metaphor
• Keep best N hypotheses at each step (selection) based on a fitness function
• Also have pairwise crossover operators, with optional mutation to give variety

• Possibly the most misunderstood, misapplied (and even maligned) technique around



69

Search Summary



70

Search and Models

• Search operates over models of 
the world

• The agent doesn’t actually try all the 
plans out in the real world!

• Planning is all “in simulation”
• Your search is only as good as your 

models…



71

Search Gone Wrong?



Onward to … 
Knowledge Representation

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Artificial Intelligence:�Search Controls
	Search Controls
	Determining all possible transitions
	Selecting the next state
	Evaluating transitions
	General Ideas for What to Measure
	General Problems �(and solution approaches)
	Simple Tree Search Controls
	Search Algorithm Properties
	Search Algorithm Properties
	Slide Number 11
	Depth-First Search
	Depth-First Search
	Depth-First Search (DFS) Properties
	Slide Number 15
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search (BFS) Properties
	DFS vs BFS
	Slide Number 20
	Iterative Deepening
	Cost-Sensitive Search
	Slide Number 23
	Uniform Cost Search
	Uniform Cost Search
	Uniform Cost Search (UCS) Properties
	Uniform Cost Issues
	Informed Search
	Informed Search
	Search Heuristics
	Example: Heuristic Function
	Slide Number 33
	Greedy Search
	Greedy Search
	Greedy Search
	Slide Number 37
	A* Search
	A* Search
	Combining UCS and Greedy
	When should A* terminate?
	Is A* Optimal?
	Optimality of A* Tree Search
	Admissible Heuristics
	Optimality of A* Tree Search
	Optimality of A* Tree Search: Blocking
	Optimality of A* Tree Search: Blocking
	Optimality of A* Tree Search: Blocking
	Properties of A*
	UCS vs A* Contours
	Comparison
	A*: Summary
	Slide Number 55
	The One Queue
	Local Search
	Local Search
	Local Search (I)
	Local Search (II)
	Local Search
	Hill Climbing
	Hill Climbing Diagram
	Hill Climbing Quiz
	Simulated Annealing
	Simulated Annealing
	Particle Swarm Optimization
	Genetic Algorithms (Common Set-Based Search)
	Search Summary
	Search and Models
	Search Gone Wrong?
	Onward to … �Knowledge Representation

