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Or-tree-based Search

Basic Idea:
1. If every solution is okay, represent the different possibilities that might lead 

to a solution in the search state (as successors of a node)

Examples for solution possibilities:
• The different actions a robot can do
• The different instantiations for a variable

• Backtracking is messy!
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Definitions
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Formal Definitions: Search Model

Or-tree-based Search Model 𝐴𝐴∨ = 𝑆𝑆∨,𝑇𝑇∨
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 set of problem descriptions
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+ alternatives relation
𝑆𝑆∨ ⊆ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 set of possible states, is subset tree structures

where 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 is recursively defined by
(𝑝𝑝𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠) ∈ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 for 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠 ∈ {𝑦𝑦𝑡𝑡𝑠𝑠, ? ,𝑨𝑨𝒏𝒏}
𝑝𝑝𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠, 𝑃𝑃1, … , 𝑃𝑃𝑏𝑏 ∈ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 for 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠 ∈ {𝑦𝑦𝑡𝑡𝑠𝑠, ? ,𝑨𝑨𝒏𝒏}, 𝑃𝑃𝑖𝑖 ∈ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡

𝑇𝑇∨ ⊆ 𝑆𝑆∨ × 𝑆𝑆∨ transitions between states, but more specifically
𝑇𝑇∨ = 𝑠𝑠1 , 𝑠𝑠2 | 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆∨ and 𝐸𝐸𝑃𝑃𝑤𝑤∨ 𝑠𝑠1, 𝑠𝑠2 or 𝐸𝐸𝑃𝑃𝑤𝑤∨∗ 𝑠𝑠1, 𝑠𝑠2
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Less formally: Search Model

• The search model looks very similar to and-trees. Only differences:
• we can model that an alternative (subproblem) is unsolvable (sol-entry no)
• relation Altern instead of Div
• no backtracking

• The search control only has to compare the leafs of the tree and the 
(theoretically) one transition that has the problem of the leaf as the problem to 
work on

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Formal Definitions: Erw

Erw∨ is a relation on Otree defined by
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ? ), (𝑝𝑝𝑃𝑃,𝑦𝑦𝑡𝑡𝑠𝑠)) if pr is solved
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ? ), (𝑝𝑝𝑃𝑃,𝑏𝑏𝑃𝑃)) if pr is unsolvable
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ? ), (𝑝𝑝𝑃𝑃, ? , (𝑝𝑝𝑃𝑃1, ? ), … , (𝑝𝑝𝑃𝑃𝑛𝑛, ? )))

if 𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏(𝑝𝑝𝑃𝑃,𝑝𝑝𝑃𝑃1, … ,𝑝𝑝𝑃𝑃𝑛𝑛) holds
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛), (𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1′, … , 𝑃𝑃𝑛𝑛′))

if for an 𝑖𝑖: 𝐸𝐸𝑃𝑃𝑤𝑤∨(𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖′) and 𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑗𝑗′ for 𝑖𝑖≠𝑗𝑗
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Formal Definitions: Search Process

Or-tree-based Search Process 𝑃𝑃∨ = (𝐴𝐴∨,𝐸𝐸𝑏𝑏𝐸𝐸,𝐾𝐾∨)

Not more specific than general definition

What is selected is the leaf to expand.
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Formal Definitions: Search Instance

Or-tree-based Search Instance 𝐼𝐼𝑏𝑏𝑠𝑠∨ = (𝑠𝑠0,𝐺𝐺∨)

If the given problem to solve is pr, then we have
• 𝑠𝑠0 = (𝑝𝑝𝑃𝑃, ? )
• 𝐺𝐺∨(𝑠𝑠) = 𝑦𝑦𝑡𝑡𝑠𝑠, if and only if 

• 𝑠𝑠 = (𝑝𝑝𝑃𝑃′,𝑦𝑦𝑡𝑡𝑠𝑠) or 
• 𝑠𝑠 = (𝑝𝑝𝑃𝑃′, ? , 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛),𝐺𝐺∨(𝑃𝑃𝑖𝑖) = 𝑦𝑦𝑡𝑡𝑠𝑠 for an 𝑖𝑖 or 
• All leafs of s have either the sol-entry no or cannot be processed using 𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏
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Less formally 

• If all alternative decisions to a leaf are guaranteed to lead to a solution, we 
often do not want the alternatives showing up in the search state
( no temptation to change choices and do therefore 

redundant work).
Then we combine this first decision with the next decision and have several 
transitions to a leaf (see example).

• The search is finished, if the problem in one leaf has sol-entry yes (or all 
alternatives have proven to fail).
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Visualize
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Conceptual Example (III):
Or-tree-based Search

P0 ?

. . .. . . . . .

Pj ? Pk ?Pi ?

unsolvable

0 74
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Conceptual Example (III):
Or-tree-based Search

P0 ?

. . .. . . . . .

Pj No Pk ?Pi ?
74
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Conceptual Example (III):
Or-tree-based Search

P0 ?

. . .. . . . . .

Pj No Pk ?Pi ?
7

0 12
Pi1 ? Pi2 ?

solvable
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Conceptual Example (III):
Or-tree-based Search

P0 ?

. . .. . . . . .

Pj No Pk ?Pi ?

Pi1Yes Pi2 ?

 finished
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Design
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Designing or-tree-based search models

1. Identify how you can describe a problem (resp. what is needed to describe 
steps towards a solution) 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

2. Define how to identify if a problem is solved
3. Define how to identify if a problem is unsolvable
4. Identify the basic methods how a problem can be brought nearer to a 

solution; collect all these ideas for each problem  𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏
5. Check if you really need all methods or if finding a solution can be already 

guaranteed without a particular one  you might get rid of it

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Designing or-tree-based search processes

1. Identify how you can measure the problem in a leaf regarding how far away 
from a solution it is
 Priority to problems that are solved or unsolvable

2. Use 1. to select the leaf nearest a solution (if necessary, define tiebreakers)
3. If you have alternative collections of alternatives (i.e. several transitions with 

the same first problem in 𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏), select one of them either using 1. for all 
successor problems or some other criteria (see and-trees for ideas) 
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Constraint Satisfaction
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What is Search For?

• Assumptions about the world: a single agent, deterministic actions, fully observed state, 
discrete state space

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)
• CSPs are specialized for identification problems
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Constraint Satisfaction Problems
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Constraint Satisfaction Problems

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables Xi with values from a 

domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable 

combinations of values for subsets of variables

• Allows useful general-purpose algorithms with more 
power than standard search algorithms
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CSP Examples
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Example: Map Coloring
• Variables:

• Domains:

• Constraints: adjacent regions must have different 
colors

• Solutions are assignments satisfying all constraints, 
e.g.:

Implicit:

Explicit:
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Constraint Graphs
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Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:

X1
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Example: Sudoku

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)
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Real-World CSPs

• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … lots more!

• Many real-world problems involve real-valued variables…
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Applied to Constraint Satisfaction
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Solving CSPs
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Concrete Example: Constraint Satisfaction (I) 

• A constraint satisfaction problem (CSP) consists 
of 

• a set 𝑋𝑋 = {𝑋𝑋1, … ,𝑋𝑋𝑏𝑏} of variables over some finite, 
discrete-valued domains 𝐷𝐷 = {𝐷𝐷1, … ,𝐷𝐷𝑏𝑏} and

• a set of constraints 𝐶𝐶 = {𝐶𝐶1, … ,𝐶𝐶𝑚𝑚}. Each 
constraint 𝐶𝐶𝑖𝑖 is a relation over the domains of a 
subset of the variables, i.e.

𝐶𝐶𝑖𝑖 = 𝑅𝑅𝑖𝑖(𝑋𝑋𝑖𝑖,1, … ,𝑋𝑋𝑖𝑖,𝑘𝑘)
where the relation Ri describes every value-tuple in 
D𝑖𝑖,1 × ⋯× 𝐷𝐷𝑖𝑖,𝑘𝑘 that fulfills the constraint.
The problem is to find a value for each 𝑋𝑋𝑗𝑗 (out of its 𝐷𝐷𝑗𝑗) 

that fulfills all 𝐶𝐶𝑖𝑖.
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Constraint Satisfaction: Examples
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Constraint Satisfaction (II): Examples

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2
𝐷𝐷1 = 1,2,3
𝐷𝐷2 = 1,2,3,4
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 + 𝑋𝑋2 ≤ 4 𝐶𝐶2:𝑋𝑋1 + 𝑋𝑋2 ≥ 3 𝐶𝐶3:𝑋𝑋1 ≥ 2

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3
𝐷𝐷1 = 𝐷𝐷2 = 𝐷𝐷3 = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 ∨ ¬𝑋𝑋2 ∨ 𝑋𝑋3 𝐶𝐶2: ¬𝑋𝑋1 ∨ 𝑋𝑋3 𝐶𝐶3: ¬𝑋𝑋2 ∨ ¬𝑋𝑋3
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Constraint Satisfaction (II): Examples

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2
𝐷𝐷1 = 1,2,3
𝐷𝐷2 = 1,2,3,4
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 + 𝑋𝑋2 ≤ 4 𝐶𝐶2:𝑋𝑋1 + 𝑋𝑋2 ≥ 3 𝐶𝐶3:𝑋𝑋1 ≥ 2

CPSC 433 - Artificial Intelligence Jörg Denzinger



40

Constraint Satisfaction (II): Examples

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3
𝐷𝐷1 = 𝐷𝐷2 = 𝐷𝐷3 = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 ∨ ¬𝑋𝑋2 ∨ 𝑋𝑋3 𝐶𝐶2: ¬𝑋𝑋1 ∨ 𝑋𝑋3 𝐶𝐶3: ¬𝑋𝑋2 ∨ ¬𝑋𝑋3
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Constraint Satisfaction: Or-Tree-Based
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Constraint Satisfaction (III)

Tasks:
• Describe CSPs as or-tree-based search 

model
• Describe formally a search control for 

your model based on the idea of 
identifying the variable occuring in the 
most constraints and selecting it and its 
domain for branching
(combined with a depth-criteria and a 
tiebreaker, if necessary)

• Solve the problem instances from the last 
slide

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Search control for CSP example

Let (pr1,?),...,(pro,?) be the open leafs in the current state and let
const(Xj) = |{Ci | Ci ∈ C, Ci = Ri(Xi,1,…,Xi,k), Xj ∈ {Xi,1,…,Xi,k}}|
For a problem pr = (x1,...,xn) let
Csolved(pr) = |{Ci|Ci ∈ C, x1,...,xn fulfills Ci}|
Then our search control K selects the leaf to work on and the transition to this 

leaf (there are several possible, i.e. special case on “Less formally (II)) as 
follows:

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Search control for CSP example

If one of the prj is solved, perform the transition that changes its sol-entry. If 
there are several, select one of them randomly.

Else if one of the prj is unsolvable, perform the transition that changes its sol-
entry. If there are several, again select one of them randomly.

Else 
• select the leaf (prj,?) such that 

a) Csolved(prj) = maxprl({Csolved(prl)})
b) if there are several, select the deepest leaf in the tree with this property.
c) if there are still several, select the one the most left in the tree (tiebreaker 
without knowledge)

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Search control for CSP example

• for the transition select the one with 
Altern(prj,prj1,...,prjk) such that the variable Xi we use to create the element in 
Altern is the one with maximal Const-value.
If there are several of those, use the one with minimal index i (tiebreaker 
without knowledge) 

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Remarks

• And-tree-based and or-tree-based search have a lot in common. The difference 
from the search problem point of view can be best described as

or-tree: one solution
and-tree: all solutions

• Consequently, the criteria used by search controls differ, due to the different 
goals.

• A lot of problems have transformations into a CSP. Therefore there are a lot of 
papers on solving CSPs and good controls for it.

CPSC 433 - Artificial Intelligence Jörg Denzinger
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Structure?
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Bonus (time permitting): Structure
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Problem Structure

• Extreme case: independent subproblems
• Example: Tasmania and mainland do not interact

• Independent subproblems are identifiable as 
connected components of constraint graph

• Suppose a graph of n variables can be broken into 
subproblems of only c variables:

• Worst-case solution cost is O((n/c)(dc)), linear in n
• E.g., n = 80, d = 2, c =20
• 280 = 4 billion years at 10 million nodes/sec
• (4)(220) = 0.4 seconds at 10 million nodes/sec
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Tree-Structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning
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Improving Structure
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Nearly Tree-Structured CSPs

• Conditioning: instantiate a variable, prune its neighbors' domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that the 
remaining constraint graph is a tree

• Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c
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Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Onward to … 
… other search models

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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