
Artificial Intelligence:
Or-Tree-based Search
CPSC 433: Artificial Intelligence
Fall 2022

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Thursday, October 13, 2022

2

Or-tree-based Search

Basic Idea:
1. If every solution is okay, represent the different possibilities that might lead

to a solution in the search state (as successors of a node)

Examples for solution possibilities:
• The different actions a robot can do
• The different instantiations for a variable

• Backtracking is messy!

CPSC 433 - Artificial Intelligence Jörg Denzinger

3

Definitions

4

Formal Definitions: Search Model

Or-tree-based Search Model 𝐴𝐴∨ = 𝑆𝑆∨,𝑇𝑇∨
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 set of problem descriptions
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+ alternatives relation
𝑆𝑆∨ ⊆ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 set of possible states, is subset tree structures

where 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 is recursively defined by
(𝑝𝑝𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠) ∈ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 for 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠 ∈ {𝑦𝑦𝑡𝑡𝑠𝑠, ? ,𝑨𝑨𝒏𝒏}
𝑝𝑝𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠, 𝑃𝑃1, … , 𝑃𝑃𝑏𝑏 ∈ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 for 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠 ∈ {𝑦𝑦𝑡𝑡𝑠𝑠, ? ,𝑨𝑨𝒏𝒏}, 𝑃𝑃𝑖𝑖 ∈ 𝑂𝑂𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡

𝑇𝑇∨ ⊆ 𝑆𝑆∨ × 𝑆𝑆∨ transitions between states, but more specifically
𝑇𝑇∨ = 𝑠𝑠1 , 𝑠𝑠2 | 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆∨ and 𝐸𝐸𝑃𝑃𝑤𝑤∨ 𝑠𝑠1, 𝑠𝑠2 or 𝐸𝐸𝑃𝑃𝑤𝑤∨∗ 𝑠𝑠1, 𝑠𝑠2

CPSC 433 - Artificial Intelligence Jörg Denzinger

5

Less formally: Search Model

• The search model looks very similar to and-trees. Only differences:
• we can model that an alternative (subproblem) is unsolvable (sol-entry no)
• relation Altern instead of Div
• no backtracking

• The search control only has to compare the leafs of the tree and the
(theoretically) one transition that has the problem of the leaf as the problem to
work on

CPSC 433 - Artificial Intelligence Jörg Denzinger

6

Formal Definitions: Erw

Erw∨ is a relation on Otree defined by
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ?), (𝑝𝑝𝑃𝑃,𝑦𝑦𝑡𝑡𝑠𝑠)) if pr is solved
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ?), (𝑝𝑝𝑃𝑃,𝑏𝑏𝑃𝑃)) if pr is unsolvable
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ?), (𝑝𝑝𝑃𝑃, ? , (𝑝𝑝𝑃𝑃1, ?), … , (𝑝𝑝𝑃𝑃𝑛𝑛, ?)))

if 𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏(𝑝𝑝𝑃𝑃,𝑝𝑝𝑃𝑃1, … ,𝑝𝑝𝑃𝑃𝑛𝑛) holds
• 𝐸𝐸𝑃𝑃𝑤𝑤∨((𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛), (𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1′, … , 𝑃𝑃𝑛𝑛′))

if for an 𝑖𝑖: 𝐸𝐸𝑃𝑃𝑤𝑤∨(𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖′) and 𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑗𝑗′ for 𝑖𝑖≠𝑗𝑗

CPSC 433 - Artificial Intelligence Jörg Denzinger

7

Formal Definitions: Search Process

Or-tree-based Search Process 𝑃𝑃∨ = (𝐴𝐴∨,𝐸𝐸𝑏𝑏𝐸𝐸,𝐾𝐾∨)

Not more specific than general definition

What is selected is the leaf to expand.

CPSC 433 - Artificial Intelligence Jörg Denzinger

8

Formal Definitions: Search Instance

Or-tree-based Search Instance 𝐼𝐼𝑏𝑏𝑠𝑠∨ = (𝑠𝑠0,𝐺𝐺∨)

If the given problem to solve is pr, then we have
• 𝑠𝑠0 = (𝑝𝑝𝑃𝑃, ?)
• 𝐺𝐺∨(𝑠𝑠) = 𝑦𝑦𝑡𝑡𝑠𝑠, if and only if

• 𝑠𝑠 = (𝑝𝑝𝑃𝑃′,𝑦𝑦𝑡𝑡𝑠𝑠) or
• 𝑠𝑠 = (𝑝𝑝𝑃𝑃′, ? , 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛),𝐺𝐺∨(𝑃𝑃𝑖𝑖) = 𝑦𝑦𝑡𝑡𝑠𝑠 for an 𝑖𝑖 or
• All leafs of s have either the sol-entry no or cannot be processed using 𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏

CPSC 433 - Artificial Intelligence Jörg Denzinger

9

Less formally

• If all alternative decisions to a leaf are guaranteed to lead to a solution, we
often do not want the alternatives showing up in the search state
(no temptation to change choices and do therefore

redundant work).
Then we combine this first decision with the next decision and have several
transitions to a leaf (see example).

• The search is finished, if the problem in one leaf has sol-entry yes (or all
alternatives have proven to fail).

CPSC 433 - Artificial Intelligence Jörg Denzinger

10

Visualize

11

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj ? Pk ?Pi ?

unsolvable

0 74

CPSC 433 - Artificial Intelligence Jörg Denzinger

12

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj No Pk ?Pi ?
74

CPSC 433 - Artificial Intelligence Jörg Denzinger

13

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj No Pk ?Pi ?
7

0 12
Pi1 ? Pi2 ?

solvable

CPSC 433 - Artificial Intelligence Jörg Denzinger

14

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj No Pk ?Pi ?

Pi1Yes Pi2 ?

 finished

CPSC 433 - Artificial Intelligence Jörg Denzinger

15

Design

16

Designing or-tree-based search models

1. Identify how you can describe a problem (resp. what is needed to describe
steps towards a solution)
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

2. Define how to identify if a problem is solved
3. Define how to identify if a problem is unsolvable
4. Identify the basic methods how a problem can be brought nearer to a

solution; collect all these ideas for each problem 𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏
5. Check if you really need all methods or if finding a solution can be already

guaranteed without a particular one you might get rid of it

CPSC 433 - Artificial Intelligence Jörg Denzinger

17

Designing or-tree-based search processes

1. Identify how you can measure the problem in a leaf regarding how far away
from a solution it is
 Priority to problems that are solved or unsolvable

2. Use 1. to select the leaf nearest a solution (if necessary, define tiebreakers)
3. If you have alternative collections of alternatives (i.e. several transitions with

the same first problem in 𝐴𝐴𝑠𝑠𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏), select one of them either using 1. for all
successor problems or some other criteria (see and-trees for ideas)

CPSC 433 - Artificial Intelligence Jörg Denzinger

18

Constraint Satisfaction

19

What is Search For?

• Assumptions about the world: a single agent, deterministic actions, fully observed state,
discrete state space

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)
• CSPs are specialized for identification problems

20

Constraint Satisfaction Problems

21

Constraint Satisfaction Problems

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

• Allows useful general-purpose algorithms with more
power than standard search algorithms

22

CSP Examples

23

Example: Map Coloring
• Variables:

• Domains:

• Constraints: adjacent regions must have different
colors

• Solutions are assignments satisfying all constraints,
e.g.:

Implicit:

Explicit:

24

Constraint Graphs

26

Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:

X1

27

Example: Sudoku

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

33

Real-World CSPs

• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … lots more!

• Many real-world problems involve real-valued variables…

34

Applied to Constraint Satisfaction

35

Solving CSPs

36

Concrete Example: Constraint Satisfaction (I)

• A constraint satisfaction problem (CSP) consists
of

• a set 𝑋𝑋 = {𝑋𝑋1, … ,𝑋𝑋𝑏𝑏} of variables over some finite,
discrete-valued domains 𝐷𝐷 = {𝐷𝐷1, … ,𝐷𝐷𝑏𝑏} and

• a set of constraints 𝐶𝐶 = {𝐶𝐶1, … ,𝐶𝐶𝑚𝑚}. Each
constraint 𝐶𝐶𝑖𝑖 is a relation over the domains of a
subset of the variables, i.e.

𝐶𝐶𝑖𝑖 = 𝑅𝑅𝑖𝑖(𝑋𝑋𝑖𝑖,1, … ,𝑋𝑋𝑖𝑖,𝑘𝑘)
where the relation Ri describes every value-tuple in
D𝑖𝑖,1 × ⋯× 𝐷𝐷𝑖𝑖,𝑘𝑘 that fulfills the constraint.
The problem is to find a value for each 𝑋𝑋𝑗𝑗 (out of its 𝐷𝐷𝑗𝑗)

that fulfills all 𝐶𝐶𝑖𝑖.

CPSC 433 - Artificial Intelligence Jörg Denzinger

37

Constraint Satisfaction: Examples

38

Constraint Satisfaction (II): Examples

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2
𝐷𝐷1 = 1,2,3
𝐷𝐷2 = 1,2,3,4
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 + 𝑋𝑋2 ≤ 4 𝐶𝐶2:𝑋𝑋1 + 𝑋𝑋2 ≥ 3 𝐶𝐶3:𝑋𝑋1 ≥ 2

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3
𝐷𝐷1 = 𝐷𝐷2 = 𝐷𝐷3 = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 ∨ ¬𝑋𝑋2 ∨ 𝑋𝑋3 𝐶𝐶2: ¬𝑋𝑋1 ∨ 𝑋𝑋3 𝐶𝐶3: ¬𝑋𝑋2 ∨ ¬𝑋𝑋3

CPSC 433 - Artificial Intelligence Jörg Denzinger

39

Constraint Satisfaction (II): Examples

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2
𝐷𝐷1 = 1,2,3
𝐷𝐷2 = 1,2,3,4
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 + 𝑋𝑋2 ≤ 4 𝐶𝐶2:𝑋𝑋1 + 𝑋𝑋2 ≥ 3 𝐶𝐶3:𝑋𝑋1 ≥ 2

CPSC 433 - Artificial Intelligence Jörg Denzinger

40

Constraint Satisfaction (II): Examples

• 𝑋𝑋 = 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3
𝐷𝐷1 = 𝐷𝐷2 = 𝐷𝐷3 = 𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡,𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡
𝐶𝐶 = 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3
𝐶𝐶1:𝑋𝑋1 ∨ ¬𝑋𝑋2 ∨ 𝑋𝑋3 𝐶𝐶2: ¬𝑋𝑋1 ∨ 𝑋𝑋3 𝐶𝐶3: ¬𝑋𝑋2 ∨ ¬𝑋𝑋3

CPSC 433 - Artificial Intelligence Jörg Denzinger

41

Constraint Satisfaction: Or-Tree-Based

42

Constraint Satisfaction (III)

Tasks:
• Describe CSPs as or-tree-based search

model
• Describe formally a search control for

your model based on the idea of
identifying the variable occuring in the
most constraints and selecting it and its
domain for branching
(combined with a depth-criteria and a
tiebreaker, if necessary)

• Solve the problem instances from the last
slide

CPSC 433 - Artificial Intelligence Jörg Denzinger

43

Search control for CSP example

Let (pr1,?),...,(pro,?) be the open leafs in the current state and let
const(Xj) = |{Ci | Ci ∈ C, Ci = Ri(Xi,1,…,Xi,k), Xj ∈ {Xi,1,…,Xi,k}}|
For a problem pr = (x1,...,xn) let
Csolved(pr) = |{Ci|Ci ∈ C, x1,...,xn fulfills Ci}|
Then our search control K selects the leaf to work on and the transition to this

leaf (there are several possible, i.e. special case on “Less formally (II)) as
follows:

CPSC 433 - Artificial Intelligence Jörg Denzinger

44

Search control for CSP example

If one of the prj is solved, perform the transition that changes its sol-entry. If
there are several, select one of them randomly.

Else if one of the prj is unsolvable, perform the transition that changes its sol-
entry. If there are several, again select one of them randomly.

Else
• select the leaf (prj,?) such that

a) Csolved(prj) = maxprl({Csolved(prl)})
b) if there are several, select the deepest leaf in the tree with this property.
c) if there are still several, select the one the most left in the tree (tiebreaker
without knowledge)

CPSC 433 - Artificial Intelligence Jörg Denzinger

45

Search control for CSP example

• for the transition select the one with
Altern(prj,prj1,...,prjk) such that the variable Xi we use to create the element in
Altern is the one with maximal Const-value.
If there are several of those, use the one with minimal index i (tiebreaker
without knowledge)

CPSC 433 - Artificial Intelligence Jörg Denzinger

46

Remarks

• And-tree-based and or-tree-based search have a lot in common. The difference
from the search problem point of view can be best described as

or-tree: one solution
and-tree: all solutions

• Consequently, the criteria used by search controls differ, due to the different
goals.

• A lot of problems have transformations into a CSP. Therefore there are a lot of
papers on solving CSPs and good controls for it.

CPSC 433 - Artificial Intelligence Jörg Denzinger

48

Structure?

49

Bonus (time permitting): Structure

50

Problem Structure

• Extreme case: independent subproblems
• Example: Tasmania and mainland do not interact

• Independent subproblems are identifiable as
connected components of constraint graph

• Suppose a graph of n variables can be broken into
subproblems of only c variables:

• Worst-case solution cost is O((n/c)(dc)), linear in n
• E.g., n = 80, d = 2, c =20
• 280 = 4 billion years at 10 million nodes/sec
• (4)(220) = 0.4 seconds at 10 million nodes/sec

51

Tree-Structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

52

Improving Structure

53

Nearly Tree-Structured CSPs

• Conditioning: instantiate a variable, prune its neighbors' domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

• Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

54

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Onward to …
… other search models

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Artificial Intelligence:�Or-Tree-based Search
	Or-tree-based Search
	Definitions
	Formal Definitions: Search Model
	Less formally: Search Model
	Formal Definitions: Erw
	Formal Definitions: Search Process
	Formal Definitions: Search Instance
	Less formally
	Visualize
	Conceptual Example (III):�Or-tree-based Search
	Conceptual Example (III):�Or-tree-based Search
	Conceptual Example (III):�Or-tree-based Search
	Conceptual Example (III):�Or-tree-based Search
	Design
	Designing or-tree-based search models
	Designing or-tree-based search processes
	Constraint Satisfaction
	What is Search For?
	Constraint Satisfaction Problems�
	Constraint Satisfaction Problems
	CSP Examples
	Example: Map Coloring
	Constraint Graphs
	Example: Cryptarithmetic
	Example: Sudoku
	Real-World CSPs
	Applied to Constraint Satisfaction
	Solving CSPs
	Concrete Example: Constraint Satisfaction (I)
	Constraint Satisfaction: Examples
	Constraint Satisfaction (II): Examples
	Constraint Satisfaction (II): Examples
	Constraint Satisfaction (II): Examples
	Constraint Satisfaction: Or-Tree-Based
	Constraint Satisfaction (III)
	Search control for CSP example
	Search control for CSP example
	Search control for CSP example
	Remarks
	Structure?
	Bonus (time permitting): Structure
	Problem Structure
	Tree-Structured CSPs
	Improving Structure
	Nearly Tree-Structured CSPs
	Cutset Conditioning
	Onward to … �… other search models

