
Artificial Intelligence:
And-Tree-based Search
CPSC 433: Artificial Intelligence
Fall 2022

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Thursday, September 29, 2022

2

And-tree-based Search

Basic Idea:
1. Divide a problem into subproblems, whose solutions can be put together into

a solution for the initial problem.

Examples of subproblem division:
• Construction of something: different parts of it
• Optimization problems: different instantiations of free variables; putting

solution together by comparing all possibilities

CPSC 433 - Artificial Intelligence Jörg Denzinger

3

Tree Search

4

Tree Search

5

Search Example: Romania

6

Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible

7

General Tree Search

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question: which fringe nodes to explore?

8

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

9

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s d
s e
s p
s d b
s d c
s d e
s d e h
s d e r
s d e r f
s d e r f c
s d e r f G

10

Definitions
And-tree (one type of tree search)

11

Formal Definitions: Model

And-tree-based Search Model 𝐴𝐴∧ = (𝑆𝑆∧,𝑇𝑇∧)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 set of problem descriptions
𝐷𝐷𝐷𝐷𝐷𝐷 ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+ division relation (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+ → things that can be generated

by dividing problems in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
𝑆𝑆∧ ⊆ 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 set of possible states, is subset tree structures

where 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 is recursively defined by
𝑝𝑝𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠 ∈ 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 for 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠 ∈ {𝑦𝑦𝐴𝐴𝑠𝑠, ? }
𝑝𝑝𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠, 𝑃𝑃1, … , 𝑃𝑃𝑏𝑏 ∈ 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 for 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑃𝑃𝑠𝑠 ∈ {𝑦𝑦𝐴𝐴𝑠𝑠, ? }, 𝑃𝑃𝑖𝑖 ∈ 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴

𝑇𝑇∧ ⊆ 𝑆𝑆∧ × 𝑆𝑆∧ transitions between states, but more specifically
𝑇𝑇∧ = 𝑠𝑠1 , 𝑠𝑠2 | 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆∧ and 𝐸𝐸𝑃𝑃𝑤𝑤∧ 𝑠𝑠1, 𝑠𝑠2 or 𝐸𝐸𝑃𝑃𝑤𝑤∧∗ 𝑠𝑠1, 𝑠𝑠2

CPSC 433 - Artificial Intelligence Jörg Denzinger

12

Less formally: Model

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 usually is described using an additional data structure: a set of formulas
describing the world, a matrix describing distances to remaining cities, and so
on.

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 can also just remember all decisions made so far
• Obviously, different problems produce different sets 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
• 𝐷𝐷𝐷𝐷𝐷𝐷 formally describes what divisions of problems into subproblems are

possible; also absolutely dependent on the problem we want to solve.

CPSC 433 - Artificial Intelligence Jörg Denzinger

13

Less formally: Model (II)

• A node containing a problem and a sol-entry is an and-tree (Atree).
• If we have several (i.e. n) and-trees, then putting them as successors to a node

representing a problem and a sol-entry also produces an and-tree.

Note: this does not say anything about the connection between the problems in
such a tree; in fact, most elements of 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 will never be used as search states,
because they do not make sense for the application.

CPSC 433 - Artificial Intelligence Jörg Denzinger

14

Formal Definitions: Erw (Extension function)

𝐸𝐸𝑃𝑃𝑤𝑤∧ and 𝐸𝐸𝑃𝑃𝑤𝑤∧∗ are relations on 𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 defined by

• 𝐸𝐸𝑃𝑃𝑤𝑤∧ 𝑝𝑝𝑃𝑃, ? , 𝑝𝑝𝑃𝑃,𝑦𝑦𝐴𝐴𝑠𝑠 if pr is solved

• 𝐸𝐸𝑃𝑃𝑤𝑤∧ 𝑝𝑝𝑃𝑃, ? , 𝑝𝑝𝑃𝑃, ? , 𝑝𝑝𝑃𝑃1, ? , … , 𝑝𝑝𝑃𝑃𝑏𝑏, ? if D𝐷𝐷𝐷𝐷(𝑝𝑝𝑃𝑃,𝑝𝑝𝑃𝑃1, … ,𝑝𝑝𝑃𝑃𝑛𝑛) holds

• 𝐸𝐸𝑃𝑃𝑤𝑤∧ 𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛 , 𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1′ , … , 𝑃𝑃𝑛𝑛′

if for an 𝐷𝐷: 𝐸𝐸𝑃𝑃𝑤𝑤∧(𝑃𝑃𝐷𝐷, 𝑃𝑃𝐷𝐷′) and b𝑗𝑗 = 𝑃𝑃𝑗𝑗′ for 𝐷𝐷≠𝑗𝑗
• 𝐸𝐸𝑃𝑃𝑤𝑤∧⊆ 𝐸𝐸𝑃𝑃𝑤𝑤∧∗

• 𝐸𝐸𝑃𝑃𝑤𝑤∧∗ 𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛 , 𝑝𝑝𝑃𝑃, ? , 𝑃𝑃1′, … , 𝑃𝑃𝑛𝑛′
if for all 𝐷𝐷 either 𝐸𝐸𝑃𝑃𝑤𝑤∧∗(𝑃𝑃𝐷𝐷, 𝑃𝑃𝐷𝐷′) or b𝑖𝑖 = 𝑃𝑃𝑖𝑖′ holds

CPSC 433 - Artificial Intelligence Jörg Denzinger

15

Less formally: Erw (Extension function)

• 𝐸𝐸𝑃𝑃𝑤𝑤∧ connects and-trees that reflect the idea of dividing problems into
subproblems

• if we know the solution to a problem in a node (i.e. it is solved for us), we mark it (sol-
entry yes)

• else, if we know the division of a problem in a (leaf) node into subproblems, then we
generate successors to this node for each subproblem

• else, see remarks about 𝐸𝐸𝑃𝑃𝑤𝑤∧∗

• The 3rd definition for 𝐸𝐸𝑃𝑃𝑤𝑤∧ allows us to apply the construction of above not
only to a root node, but to leaf nodes of a tree.

CPSC 433 - Artificial Intelligence Jörg Denzinger

16

Backtracking Search

17

Less formally: Erw* (Extension function)

• 𝐸𝐸𝑃𝑃𝑤𝑤∧∗ is for intelligent backtracking (note the sequence of arguments in the
definition of 𝑇𝑇∧). It allows us to take away the results of several applications of
𝐸𝐸𝑃𝑃𝑤𝑤∧ as one transition (therefore "intelligent").

• Backtracking is necessary, if you reach a tree with a leaf that neither represents
a solved problem nor has a problem that can be divided into subproblems (or
we already have unsuccessfully tried out all of its divisions defined by 𝐷𝐷𝐷𝐷𝐷𝐷).

• Controls usually employ backtracking only in very clearly defined (special)
cases.

CPSC 433 - Artificial Intelligence Jörg Denzinger

18

Formal Definitions: Search Process

And-tree-based Search Process 𝑃𝑃∧ = (𝐴𝐴∧,𝐸𝐸𝑏𝑏𝐷𝐷,𝐾𝐾∧)

Not more specific than general definition given previously

But: often control uses two functions
• one function 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 that compares all leaves of the tree representing the state

and selecting one
• one function 𝑓𝑓𝑡𝑡𝑡𝑡𝑙𝑙𝑛𝑛𝑡𝑡 that selects one of the transitions that deal with the

selected leaf

CPSC 433 - Artificial Intelligence Jörg Denzinger

19

Less formally: Search Process

• Due to the possibility of having several divisions of the same problem in 𝐷𝐷𝐷𝐷𝐷𝐷,
first determining a leaf to "expand" and then selecting the division is often
sensible.

• But sometimes the availability of certain divisions determines what leaf to
select next, so that 𝑓𝑓𝑠𝑠𝐴𝐴𝑙𝑙𝑓𝑓 and 𝑓𝑓𝐴𝐴𝑃𝑃𝑙𝑙𝑏𝑏𝑠𝑠 are not always used.

• An and-tree-based search starts with putting the problem instance to solve into
the root of an and-tree.

• If we have found a solution to every subproblem represented by a leaf, then it
is still possible that the solutions are not compatible. Then other solutions have
to be found (backtracking).

CPSC 433 - Artificial Intelligence Jörg Denzinger

20

Formal Definitions: Search Instance (IV)

And-tree-based Search Instance 𝐼𝐼𝑏𝑏𝑠𝑠∧ = (𝑠𝑠0,𝐺𝐺∧)

If the given problem to solve is 𝑝𝑝𝑃𝑃, then we have
• 𝑠𝑠0 = (𝑝𝑝𝑃𝑃, ?)
• 𝐺𝐺∧(𝑠𝑠) = 𝑦𝑦𝐴𝐴𝑠𝑠, if and only if

1. 𝑠𝑠 = (𝑝𝑝𝑃𝑃′,𝑦𝑦𝐴𝐴𝑠𝑠) or
2. 𝑠𝑠 = (𝑝𝑝𝑃𝑃′, ? , 𝑃𝑃1, … , 𝑃𝑃𝑏𝑏),𝐺𝐺∧(𝑃𝑃1) = ⋯ = 𝐺𝐺∧(𝑃𝑃𝑏𝑏) = 𝑦𝑦𝐴𝐴𝑠𝑠 and the solutions to 𝑃𝑃1, … , 𝑃𝑃𝑏𝑏 are

compatible with each other or
3. there is no transition that has not been tried out already

CPSC 433 - Artificial Intelligence Jörg Denzinger

21

Visualize

22

Conceptual Example (II):
And-tree-based Search

P0 ?

.

Pj ? Pk ?Pi ?

YesYes

0 74

CPSC 433 - Artificial Intelligence Jörg Denzinger

23

Conceptual Example (II):
And-tree-based Search

P0 ?

.

PjYes Pk ?Pi ?
74

4611

CPSC 433 - Artificial Intelligence Jörg Denzinger

24

Conceptual Example (II):
And-tree-based Search

P0 ?

.

PjYes Pk ?Pi ?

Pi1 ? Pi2 ?

7

0 12

unsolvable

 backtracking

CPSC 433 - Artificial Intelligence Jörg Denzinger

25

Conceptual Example (II):
And-tree-based Search

P0 ?

.

PjYes Pk ?Pi ?
76

611

CPSC 433 - Artificial Intelligence Jörg Denzinger

26

Design

27

Designing and-tree-based search models

1. Identify how you can describe a problem (resp. what is needed to describe
sub-problems) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

2. Define how to identify if a problem is solved
3. Identify the basic ideas how to divide a problem into subproblems 𝐷𝐷𝐷𝐷𝐷𝐷
4. Determine if it is possible that you run into deadends (i.e. can there be leafs

that neither are solved nor appear in 𝐷𝐷𝐷𝐷𝐷𝐷 as first argument). If yes, we need
backtracking, if no, we do not need backtracking.

CPSC 433 - Artificial Intelligence Jörg Denzinger

28

Designing and-tree-based search processes

1. Identify how you can measure a problem in a leaf
1. Priority to problems that are solved
2. See other slides for criteria

2. Use 1. to come up with a 𝑓𝑓𝑠𝑠𝐴𝐴𝑙𝑙𝑓𝑓-function comparing the leaves in an and-tree.
3. For the 𝑓𝑓𝐴𝐴𝑃𝑃𝑙𝑙𝑏𝑏𝑠𝑠-function that determines the transition you are doing:

1. If there is an unsolvable problem in a leaf then backtrack
2. If the selected leaf can be solved, do it
3. Determine the different divisions of the leaf problem and measure them

CPSC 433 - Artificial Intelligence Jörg Denzinger

29

Applied to Model-elimination

30

Concrete Example: Model-elimination

• Another, now analytical, way to solve the problem of determining if a formula is
a consequence of a set of formulas

• Again works with sets of clauses
• A problem is divided into subproblems by employing a clause L1 ∨…∨ Ln:

n subproblems are generated, each of which assumes that additionally a
certain instance σ of Li is true (each subproblem uses a different Li but the same
σ)

CPSC 433 - Artificial Intelligence Jörg Denzinger

31

Modelelimination (II)

• We start with a "world" containing no predicate or its negation (i.e. everything
is possible)

• Then we select a leaf in our tree and a clause
L1 ∨…∨ Ln and generate the successor nodes as described above.
One additional condition is that at least one of the resulting subproblems is
solved (except for a transition out of the "empty" world).

• A subproblem is solved, if it contains P and ¬P' such that there is a σ with σ(P)
≡ σ(P') (usually we use σ = mgu(P,P'))

CPSC 433 - Artificial Intelligence Jörg Denzinger

32

Modelelimination (III)

• By using the mgu, each time we do this, we have to apply it to all subproblems
we have generated so far (in order to guarantee that solutions to subproblems
are compatible).

• Our problem is solved (positively), if all subproblems are solved.

CPSC 433 - Artificial Intelligence Jörg Denzinger

33

Model-elimination: Examples

34

Modelelimination (IV)

• Solve the following problem instances:
1) 𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞
2) 𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞
3) 𝑃𝑃 𝑥𝑥 ∨ 𝑅𝑅 𝑥𝑥 , ¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)

CPSC 433 - Artificial Intelligence Jörg Denzinger

35

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

36

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({}, ?)

37

Modelelimination (IV)

• Solve the following problem instances:
𝒑𝒑 ∨ 𝒒𝒒,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?) ({𝑞𝑞}, ?)

({}, ?)

38

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝒑𝒑 ∨ 𝒒𝒒, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, ?)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞}, ?)

({}, ?)

39

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝},𝒚𝒚𝒚𝒚𝒚𝒚)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞}, ?)

({}, ?)

40

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝒑𝒑 ∨ ¬𝒒𝒒

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞}, ?)({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝}, ?)

({𝑝𝑝, 𝑞𝑞}, ?)

({}, ?)

41

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞}, ?)({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝},𝒚𝒚𝒚𝒚𝒚𝒚)

({𝑝𝑝, 𝑞𝑞}, ?)

({}, ?)

42

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞},𝒚𝒚𝒚𝒚𝒚𝒚)({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞}, ?)

({}, ?)

43

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝒑𝒑 ∨ ¬𝒒𝒒, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞, ¬𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞}, ?) ({𝑞𝑞, 𝑝𝑝}, ?)

({}, ?)

44

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞, ¬𝑞𝑞},𝒚𝒚𝒚𝒚𝒚𝒚)

({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞}, ?) ({𝑞𝑞, 𝑝𝑝}, ?)

({}, ?)

45

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝒑𝒑 ∨ ¬𝒒𝒒

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞, ¬𝑞𝑞},𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞}, ?) ({𝑞𝑞, 𝑝𝑝}, ?)

({}, ?)

({𝑞𝑞, 𝑝𝑝, ¬𝑞𝑞}, ?)({𝑞𝑞, 𝑝𝑝, ¬𝑝𝑝}, ?)

46

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞, ¬𝑞𝑞},𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞}, ?) ({𝑞𝑞, 𝑝𝑝}, ?)

({}, ?)

({𝑞𝑞, 𝑝𝑝, ¬𝑞𝑞}, ?)({𝑞𝑞, 𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

47

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞

CPSC 433 - Artificial Intelligence Jörg Denzinger

({𝑝𝑝}, ?)

({𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞}, ?)

({𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑞𝑞, ¬𝑞𝑞},𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

({𝑝𝑝, 𝑞𝑞}, ?) ({𝑞𝑞, 𝑝𝑝}, ?)

({}, ?)

({𝑞𝑞, 𝑝𝑝, ¬𝑞𝑞}, 𝑦𝑦𝐴𝐴𝑠𝑠)({𝑞𝑞, 𝑝𝑝, ¬𝑝𝑝}, 𝑦𝑦𝐴𝐴𝑠𝑠)

48

Modelelimination (IV)

• More than one way to solve! Search control matters!
𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞
∅ = 𝐶𝐶

CPSC 433 - Artificial Intelligence Jörg Denzinger

49

Modelelimination (IV)

• Solve the following problem instances:
𝑝𝑝 , 𝑞𝑞, ¬ 𝑞𝑞
∅ = 𝐶𝐶

CPSC 433 - Artificial Intelligence Jörg Denzinger

50

Modelelimination (IV)

• Again more than one way to solve:
𝑝𝑝 , 𝑞𝑞, ¬ 𝑞𝑞
∅ = 𝐶𝐶

CPSC 433 - Artificial Intelligence Jörg Denzinger

51

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

52

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

{𝑃𝑃(𝑥𝑥)}, ? {𝑅𝑅(𝑥𝑥)}, ?

53

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

{𝑃𝑃(𝑥𝑥)}, ? {𝑅𝑅(𝑥𝑥)}, ?

{𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?

54

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

{𝑃𝑃(𝑥𝑥)}, ? {𝑅𝑅(𝑥𝑥)}, ?

{𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)},𝒚𝒚𝒚𝒚𝒚𝒚

𝒎𝒎𝒎𝒎𝒎𝒎 = {𝒙𝒙 ≈ 𝒎𝒎(𝒂𝒂,𝒃𝒃)}

55

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

{𝑃𝑃(𝑥𝑥)}, ? {𝑅𝑅(𝑥𝑥)}, ?

{𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, 𝑦𝑦𝐴𝐴𝑠𝑠

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑔𝑔(𝑙𝑙, 𝑃𝑃)}

{𝑅𝑅 𝑥𝑥 , ¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

56

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

{𝑃𝑃(𝑥𝑥)}, ? {𝑅𝑅(𝑥𝑥)}, ?

{𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, 𝑦𝑦𝐴𝐴𝑠𝑠

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝒙𝒙 ≈ 𝒇𝒇(𝒂𝒂,𝒃𝒃)}

{𝑅𝑅 𝑥𝑥 , ¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

57

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

{𝑃𝑃(𝑥𝑥)}, ? {𝑅𝑅(𝑥𝑥)}, ?

{𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, 𝑦𝑦𝐴𝐴𝑠𝑠

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑔𝑔 𝑙𝑙, 𝑃𝑃 , 𝑥𝑥 ≈ 𝑓𝑓(𝑙𝑙, 𝑃𝑃)}

𝑅𝑅 𝑥𝑥 , ¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 , ?
backtrack

58

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

{𝑃𝑃(𝑥𝑥)}, ? {𝑅𝑅(𝑥𝑥)}, ?

{𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, 𝑦𝑦𝐴𝐴𝑠𝑠

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑔𝑔 𝑙𝑙, 𝑃𝑃 }

backtrack

59

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

60

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

{¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

61

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

{¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)}, ?{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, ?

62

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝒎𝒎𝒎𝒎𝒎𝒎 = {𝒙𝒙 ≈ 𝒇𝒇(𝒂𝒂,𝒃𝒃)}

{¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)},𝒚𝒚𝒚𝒚𝒚𝒚{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, ?

63

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑓𝑓(𝑙𝑙, 𝑃𝑃)}

{¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)},𝑦𝑦𝐴𝐴𝑠𝑠{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, ?

{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?

64

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑓𝑓 𝑙𝑙, 𝑃𝑃 , 𝑥𝑥 ≈ 𝑔𝑔(𝑙𝑙, 𝑃𝑃)}

{¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)},𝑦𝑦𝐴𝐴𝑠𝑠{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, ?

{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃 𝑥𝑥 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?
backtrack

65

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑓𝑓 𝑙𝑙, 𝑃𝑃)}

{¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)},𝑦𝑦𝐴𝐴𝑠𝑠{¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, ?
backtrack

66

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

{¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?
backtrack

67

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

68

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

{¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?

69

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

{¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)}, ?{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, ?

70

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝒎𝒎𝒎𝒎𝒎𝒎 = {𝒙𝒙 ≈ 𝒎𝒎(𝒂𝒂,𝒃𝒃)}

{¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?

¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅 𝑥𝑥 , ?{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)},𝒚𝒚𝒚𝒚𝒚𝒚

71

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑔𝑔 𝑙𝑙, 𝑃𝑃 }

{¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)}, 𝑦𝑦𝐴𝐴𝑠𝑠{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, 𝑦𝑦𝐴𝐴𝑠𝑠

{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅 𝑥𝑥 , ¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?

72

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑥𝑥 ≈ 𝑔𝑔 𝑙𝑙, 𝑃𝑃 , 𝑥𝑥 ≈ 𝑓𝑓 𝑙𝑙, 𝑃𝑃 }

{¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃)}, ?

{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅(𝑥𝑥)}, 𝑦𝑦𝐴𝐴𝑠𝑠{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑃𝑃(𝑥𝑥)}, 𝑦𝑦𝐴𝐴𝑠𝑠

{¬𝑃𝑃 𝑔𝑔 𝑙𝑙, 𝑃𝑃 ,𝑅𝑅 𝑥𝑥 , ¬𝑅𝑅(𝑓𝑓 𝑙𝑙, 𝑃𝑃)}, ?
backtrack

73

Modelelimination (IV)

• Solve the following problem instances:
P(x) ∨ R(x), ¬R(f(a,b)), ¬P(g(a,b))

CPSC 433 - Artificial Intelligence Jörg Denzinger

{}, ?

𝑚𝑚𝑔𝑔𝑚𝑚 = {}

74

Modelelimination (IV)

• Solve the following problem instances:
1) 𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞 success
2) 𝑝𝑝, 𝑞𝑞, ¬𝑞𝑞 success

3) 𝑃𝑃 𝑥𝑥 ∨ 𝑅𝑅 𝑥𝑥 , ¬𝑅𝑅 𝑓𝑓 𝑙𝑙, 𝑃𝑃 , ¬𝑃𝑃(𝑔𝑔 𝑙𝑙, 𝑃𝑃) failure

CPSC 433 - Artificial Intelligence Jörg Denzinger

75

Model-elimination: Tree-Based

76

Model-elimination (IV)

Tasks:
• Describe Model-elimination as and-tree-based search model

• Describe formally a search control for your model that uses backtracking to
avoid generating an infinite branch in the tree representing the state (if the
problem instance is solvable)

CPSC 433 - Artificial Intelligence Jörg Denzinger

77

Model-elimination (IV)

Describe Model-elimination as and-tree-based search model

• We have set of Clauses 𝐶𝐶 = 𝑐𝑐1, … , 𝑐𝑐𝑝𝑝 of 𝑝𝑝 clauses where is clause 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 is
of form 𝑐𝑐𝑖𝑖 = 𝐿𝐿1 ∨ ⋯∨ 𝐿𝐿𝑛𝑛(disjunction of literals) so will define a set all literals
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝑗𝑗 | 𝐿𝐿𝑗𝑗 from 𝑐𝑐𝑖𝑖 ∀𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 (set of all literals present in 𝐶𝐶)

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑝𝑝𝑃𝑃1, … ,𝑝𝑝𝑃𝑃𝑚𝑚 where a 𝑝𝑝𝑃𝑃𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is
• 𝑝𝑝𝑃𝑃𝑖𝑖 ∈ 2𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎
• (a single problem is some subset of 𝐿𝐿𝑗𝑗 parts or 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎)

• 𝐷𝐷𝐷𝐷𝐷𝐷 will be defined by the relationship that if 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is selected to divide
into sub-problems then based a choice of 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 where 𝑐𝑐𝑖𝑖 = 𝐿𝐿1 ∨ ⋯∨ 𝐿𝐿𝑛𝑛
then 𝑏𝑏 sub-problems are created where each sub-problem 𝑝𝑝𝑃𝑃𝑗𝑗 fulfills
• 𝑝𝑝𝑃𝑃𝑗𝑗 = 𝑝𝑝𝑃𝑃 ∪ 𝐿𝐿𝑗𝑗
• (each sub-problem 𝑗𝑗 is a combination of the existing set of literals with

the 𝑗𝑗𝑡𝑡𝑡 literal)

78

Model-elimination (IV)

Describe Model-elimination as and-tree-based search model
• 𝐷𝐷𝐷𝐷𝐷𝐷 will be defined by the relationship that if 𝑝𝑝𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is selected to divide

into sub-problems then based a choice of 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 where 𝑐𝑐𝑖𝑖 = 𝐿𝐿1 ∨ ⋯∨ 𝐿𝐿𝑛𝑛
then 𝑏𝑏 sub-problems are created where each sub-problem 𝑝𝑝𝑃𝑃𝑗𝑗 fulfills
• 𝑝𝑝𝑃𝑃𝑗𝑗 = 𝑝𝑝𝑃𝑃 ∪ 𝐿𝐿𝑗𝑗
• (each sub-problem 𝑗𝑗 is a combination of the existing set of literals with

the 𝑗𝑗𝑡𝑡𝑡 literal)
• If we want to avoid infinite divisions me might also add that one 𝑝𝑝𝑃𝑃𝑗𝑗 must

be created such that the 𝐿𝐿𝑗𝑗 being added is such that ¬𝐿𝐿𝑗𝑗 ∈ 𝑝𝑝𝑃𝑃 . We are
eliminating one model sub-branch already (unless pr = {} at root)

79

Model-elimination (IV)

Describe formally a search control for your model
𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1. 0 if (pr,?) contains P and ¬Pʹ such that there is a σ with σ(P) ≡ σ(Pʹ)

(𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝐴𝐴𝑙𝑙𝑏𝑏 𝑃𝑃𝑦𝑦 <𝐿𝐿𝑖𝑖𝑡𝑡)
2. 𝑝𝑝𝑃𝑃 otherwise (𝐴𝐴𝐷𝐷𝐴𝐴 𝑃𝑃𝑃𝑃𝐴𝐴𝑙𝑙𝑏𝑏 𝑃𝑃𝑦𝑦 <𝐿𝐿𝑖𝑖𝑡𝑡)
𝑓𝑓𝑡𝑡𝑡𝑡𝑙𝑙𝑛𝑛𝑡𝑡 =
1. pr, yes if (pr,?) contains P and ¬Pʹ such that there is a σ with σ(P) ≡ σ(Pʹ)
2. if out of unique ci ∈ C for more 𝐷𝐷𝐷𝐷𝐷𝐷 or fail unfication then backtrack (and

remove backtracked 𝑐𝑐𝑗𝑗 ∈ 𝐶𝐶 from future consideration for 𝐷𝐷𝐷𝐷𝐷𝐷 at that leaf)
3. select ci ∈ C that has most negations tie break by <Lit for Div

CPSC 433 - Artificial Intelligence Jörg Denzinger

80

Remarks

• There are many optimization problems that can be solved by an and-tree-
based search without backtracking!

• Backtracking is often used to reduce the memory needs for a search (it allows
to store only one path of the tree).

• Backtracking can always be avoided by using and-or-tree-based search.
• Branch-and-bound, dynamic programming and a lot of other algorithm

schemes are and-tree-based search! (Think about how standard
code/functions work using a stack frame to store history!)

CPSC 433 - Artificial Intelligence Jörg Denzinger

Onward to …
Or-Tree-based Search

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Artificial Intelligence:�And-Tree-based Search
	And-tree-based Search
	Tree Search
	Tree Search
	Search Example: Romania
	Searching with a Search Tree
	General Tree Search
	Example: Tree Search
	Example: Tree Search
	Definitions
	Formal Definitions: Model
	Less formally: Model
	Less formally: Model (II)
	Formal Definitions: Erw (Extension function)
	Less formally: Erw (Extension function)
	Backtracking Search
	Less formally: Erw* (Extension function)
	Formal Definitions: Search Process
	Less formally: Search Process
	Formal Definitions: Search Instance (IV)
	Visualize
	Conceptual Example (II):�And-tree-based Search
	Conceptual Example (II):�And-tree-based Search
	Conceptual Example (II):�And-tree-based Search
	Conceptual Example (II):�And-tree-based Search
	Design
	Designing and-tree-based search models
	Designing and-tree-based search processes
	Applied to Model-elimination
	Concrete Example: Model-elimination
	Modelelimination (II)
	Modelelimination (III)
	Model-elimination: Examples
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Modelelimination (IV)
	Model-elimination: Tree-Based
	Model-elimination (IV)
	Model-elimination (IV)
	Model-elimination (IV)
	Model-elimination (IV)
	Remarks
	Onward to … �Or-Tree-based Search

