
Artificial Intelligence:
Set-based Search
CPSC 433: Artificial Intelligence
Fall 2022

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Thursday, September 29, 2022

2

Set-based Search?

Basic Idea:
1. We have a collection of pieces of information (facts) that is

(mostly) growing during the performance of a search
• a relation between the different pieces is either not known, not of

interest or describing only consequences of facts.

Represent collection as a set, go from one set to successor
by adding/deleting facts according to rules

• taking into account other facts already in the collection.

CPSC 433 - Artificial Intelligence Jörg Denzinger

3

Venn Diagram of Facts and States

CPSC 433 - Artificial Intelligence Jörg Denzinger

s
F

4

Venn Diagram of Facts and States

CPSC 433 - Artificial Intelligence Jörg Denzinger

A

s
F

5

Venn Diagram of Facts and States

CPSC 433 - Artificial Intelligence Jörg Denzinger

A

s
F

A
s

F

B

𝐴𝐴 → 𝐵𝐵
B contains new facts!
B may or may not drop
facts from A.

6

Venn Diagram of Facts and States

CPSC 433 - Artificial Intelligence Jörg Denzinger

A

s
F

A
s’

F

B

New state 𝑠𝑠′ includes B
(would drop any facts B
dropped as well)

7

Definitions

8

Formal Definitions: Model

Set-based Search Model 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
𝐹𝐹 set of facts
𝐸𝐸𝐸𝐸𝐸𝐸 ⊆ 𝐴𝐴 → 𝐵𝐵 𝐴𝐴,𝐵𝐵 ⊆ 𝐹𝐹} extension rules i.e. rules where one set of facts A

lets me create another set of facts B
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ⊆ 2𝐹𝐹 set of possible states, is subset of the power set of Facts

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 ⊆ 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 transitions between states, but more specifically
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠, 𝑠𝑠′ ∃𝐴𝐴 → 𝐵𝐵 ∈ 𝐸𝐸𝐸𝐸𝐸𝐸 with 𝐴𝐴 ⊆ 𝑠𝑠 and 𝑠𝑠′ = 𝑠𝑠 − 𝐴𝐴 ∪ 𝐵𝐵}

Transitions exists where we use extension rule to go from
state with facts in A to facts in B

CPSC 433 - Artificial Intelligence Jörg Denzinger

9

Less formally: Model

• 𝐹𝐹 can consist of solution pieces, solution candidates, parts of a world
description, etc.

• With Ext we try to get more solution pieces, better candidates, more explicit
parts of the description

• Or we eliminate wrong pieces, less good solutions, unnecessary explicit parts
• We construct the new parts using parts we already have
We make implicit knowledge explicit

CPSC 433 - Artificial Intelligence Jörg Denzinger

10

Formal Definitions: Search Process

Set-based Search Process 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐸𝐸𝐸𝐸𝐸𝐸,𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠: 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐸𝐸𝐸𝐸𝐸𝐸 → 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 search control is a function 𝐾𝐾 transitioning from

current state to next state
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠, 𝑒𝑒 = 𝑠𝑠 − 𝐴𝐴 ∪ 𝐵𝐵 where

1. 𝐴𝐴 → 𝐵𝐵 ∈ 𝐸𝐸𝐸𝐸𝐸𝐸
2. 𝐴𝐴 ⊆ 𝑠𝑠
3. ∀𝐴𝐴′ → 𝐵𝐵′ ∈ 𝐸𝐸𝐸𝐸𝐸𝐸 with 𝐴𝐴′ ⊆ 𝑠𝑠 holds: 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 𝐴𝐴,𝐵𝐵, 𝑒𝑒 ≤ 𝑓𝑓𝑊𝑊𝑠𝑠𝑤𝑤𝑠𝑠(𝐴𝐴′,𝐵𝐵′, 𝑒𝑒) [we

selected a best rule (given in 1.) based on minimizing function 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠]
4. 𝐴𝐴 → 𝐵𝐵 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(

)
{
}
𝐴𝐴′ → 𝐵𝐵′|𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 𝐴𝐴′,𝐵𝐵′, 𝑒𝑒 ≤ 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 𝐴𝐴′′,𝐵𝐵′′, 𝑒𝑒 ∀𝐴𝐴′′ → 𝐵𝐵′′ ∈

𝐸𝐸𝐸𝐸𝐸𝐸 with 𝐴𝐴′′ ⊆ 𝑠𝑠 , 𝑒𝑒 [TBD tie break that produces 1 rule out of many]

CPSC 433 - Artificial Intelligence Jörg Denzinger

11

Formal Definitions: Search Process

Set-based Search Process 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐸𝐸𝐸𝐸𝐸𝐸,𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠: 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐸𝐸𝐸𝐸𝐸𝐸 → 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 search control is a function 𝐾𝐾 transitioning from

current state to next state
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠, 𝑒𝑒 = 𝑠𝑠 − 𝐴𝐴 ∪ 𝐵𝐵 where

• Set-based search selects transition (extension rule change) based on 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 and tie
breaks with 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 if there were more than one.

• 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠: 2𝐹𝐹 × 2𝐹𝐹 × 𝐸𝐸𝐸𝐸𝐸𝐸 → ℕ values each choice to a number
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 2𝐹𝐹 × 2𝐹𝐹 × 𝐸𝐸𝐸𝐸𝐸𝐸 → 2𝐹𝐹 × 2𝐹𝐹 if more than one, picks one, could be random!

CPSC 433 - Artificial Intelligence Jörg Denzinger

12

Less formally: Search Process

• The control selects the extension to apply by
• Evaluating each applicable extension into a number (done by fwert)
• Considering only extensions with minimal evaluation
• Use fselect as tiebreaker

• Obviously, there usually are many different fwert and fselect functions
• Sometimes fwert can also produce integers or real numbers

CPSC 433 - Artificial Intelligence Jörg Denzinger

13

Formal Definitions: Search Instance

Search Instance 𝐼𝐼𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑠𝑠0,𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠)
𝑠𝑠0, 𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠 ∈ 2𝐹𝐹

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠: 𝑆𝑆 → {𝑦𝑦𝑒𝑒𝑠𝑠,𝐸𝐸𝑛𝑛} goal condition (function on current state that halts)
𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 = 𝑦𝑦𝑒𝑒𝑠𝑠 if and only if 𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠 ⊆ 𝑠𝑠𝑖𝑖 or there is no extension rule applicable in 𝑠𝑠𝑖𝑖

CPSC 433 - Artificial Intelligence Jörg Denzinger

14

Less formally: Search Instance

• We start with the given solution pieces, some random solutions, or the given
parts of the description (or …)

• We stop, if
• a complete solution 𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠 is part of the actual state or
• a good enough candidate that is really a solution is found or
• the description is good enough or
• a time limit is reached
i.e. if enough knowledge (𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠) is made explicit

CPSC 433 - Artificial Intelligence Jörg Denzinger

15

Visualize

16

Conceptual Example (I):
Set-based Search

+ = + =

+ =

9
3

11

CPSC 433 - Artificial Intelligence Jörg Denzinger

17

Conceptual Example (I):
Set-based Search

Next state:

CPSC 433 - Artificial Intelligence Jörg Denzinger

18

Design

19

Designing set-based search models

1. Identify set of facts F
2. Identify how you create new facts out of known facts (make sure that what

you create are really facts!)
 Ext

3. You have your sets F and Ext that, with our definition earlier, are sufficient to
define a set-based search model

20

Designing set-based search processes

1. Identify possible functions that measure a fact
2. Decide if it is not too computationally expensive to compute the right side of

applicable rules
3. If it is not too expensive, define 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 by measuring A and B using 1.
4. If it is too expensive, define 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 by measuring only A using 1.
5. If you want to rely on random decisions (or include them), set 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 constant
6. Identify rules that have the same 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 -value and design 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as tiebreaker

(random decisions are best expressed using 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

21

Review

22

Review of Logic Definitions

• Propositional logic – zeroth order logic, does not have predicates, just formulas
of singular propositional symbols, often p,q,r,… combined with (or ∨, and ∧, not
¬, implication →, biconditional ↔) Ex. ¬𝑝𝑝 ∨ 𝑞𝑞 → 𝑟𝑟

• First-order logic – formulas use variables, constants, predicates, functions,
quantifiers there is ∃ and for all ∀, equality

• Variable – generally w,x,y,z
• Constant – generally a,b,c,d,…. Or sometimes alice, bob, carol, etc. or similar.

Can replace a variable
• Predicate – a property or relation, P(a) would mean a constant a has property P,

while P(x) would mean the same for indeterminate variable, returns truth value
• Function – constants are a subset of these with no parameters, generally

f,g,h,etc. maps within domain of variables, f(x) -> y where both x,y are in
domain of problem

23

Review of Logic Definitions

• Clause – a single logical formula
• Disjunction – or Conjunction-and
• Conjunctive Normal Form (CNF) – a set of clauses changed to a form where it

becomes a conjunction of clauses where each clause is a disjunction of literals
• Have clauses A, B, C then conjunction of them becomes A and B and C
• Every formula can be written in this form. Note negations and brackets are transformed by

logical rules such that negations apply to predicates and brackets are around clauses
• ¬ 𝐵𝐵 ∨ 𝐶𝐶 becomes (¬𝐵𝐵) ∧ (¬𝐶𝐶) or (A ∧ 𝐵𝐵) ∨ 𝐶𝐶 becomes (𝐴𝐴 ∨ 𝐶𝐶) ∧ (𝐵𝐵 ∨ 𝐶𝐶)

CPSC 433 - Artificial Intelligence Jörg Denzinger

24

Review of Logic Definitions

• Unification – in our case used to attempt to find the most general unifier, which
is a valid mapping of variable/constant/function mapping to make two terms
the same, Ex. if I have f(a) and f(x) mapping x->a makes f(a)=f(a)

• Resolution – theorem proving technique, general process is to
1. Take known clauses and negate the conclusion trying to be proven
2. Then turn this into CNF
3. Attempt to derive empty clause
4. If found this indicates the set of clauses was not satisfiable
5. This then means that the original conclusion was supported by the clauses

CPSC 433 - Artificial Intelligence Jörg Denzinger

25

Review: Quick Resolution Example

• 433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸 𝐸𝐸 → 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶(𝐸𝐸),433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸(𝐽𝐽𝑛𝑛𝐸𝐸) is 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶(𝐽𝐽𝑛𝑛𝐸𝐸)?
• 433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸 𝐸𝐸 → 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐸𝐸 ∧ 433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸 𝐽𝐽𝑛𝑛𝐸𝐸 ∧ ¬ 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐽𝐽𝑛𝑛𝐸𝐸 set of clauses
• (¬433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸 𝐸𝐸 ∨ 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐸𝐸) ∧ (433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸 𝐽𝐽𝑛𝑛𝐸𝐸) ∧ (¬ 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐽𝐽𝑛𝑛𝐸𝐸) in CNF
• (¬433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸 𝐸𝐸 ∨ 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐸𝐸) ∧ (433𝐼𝐼𝐸𝐸𝑠𝑠𝐸𝐸 𝐽𝐽𝑛𝑛𝐸𝐸) resolve to 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐽𝐽𝑛𝑛𝐸𝐸
• 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐽𝐽𝑛𝑛𝐸𝐸 ∧ (¬𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶 𝐽𝐽𝑛𝑛𝐸𝐸) resolve to ∎
• Therefore, the CNF form was unsatisfiable which means the original clauses

agree with 𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶(𝐽𝐽𝑛𝑛𝐸𝐸)

CPSC 433 - Artificial Intelligence Jörg Denzinger

26

Applied to Resolution

27

Concrete Example: Resolution (I)

• We describe our world by a collection of special logical formulas, so-called
clauses:

L1 𝐸𝐸1,1, … , 𝐸𝐸1,𝑛𝑛1 ∨ ⋯∨ 𝐿𝐿𝑚𝑚 𝐸𝐸𝑚𝑚,1, … , 𝐸𝐸𝑚𝑚,𝑛𝑛𝑚𝑚

where 𝐿𝐿𝑖𝑖 predicate symbol or its negation, 𝐸𝐸𝑖𝑖,𝑗𝑗 terms out of function
symbols and variables (x,y…) variables in different clauses are disjunct

• Examples: 𝑝𝑝 ∨ ¬𝑞𝑞,𝑃𝑃 𝑎𝑎, 𝑏𝑏, 𝐸𝐸 ∨ 𝑅𝑅 𝐸𝐸,𝑦𝑦, 𝑐𝑐 ,𝑄𝑄 𝑓𝑓 𝑎𝑎, 𝑏𝑏 ,𝑔𝑔 𝐸𝐸,𝑦𝑦 , ¬𝑄𝑄(𝑎𝑎, 𝑏𝑏)
• A consequence we want to prove is negated, transformed into clauses and

these clauses are added to the world.
• The consequence is proven, if the empty clause (∎) can be deduced.

CPSC 433 - Artificial Intelligence Jörg Denzinger

28

Concrete Example: Resolution (II)

• We derive new clauses by either Resolution or Factorization
Resolution:
𝐶𝐶 ∨ 𝑃𝑃 ,𝐷𝐷 ∨ ¬𝑃𝑃′

σ(𝐶𝐶 ∨ 𝐷𝐷)

Factorization:
𝐶𝐶 ∨ 𝑃𝑃 ∨ 𝑃𝑃′
σ(𝐶𝐶 ∨ 𝑃𝑃)

if σ = mgu(𝑃𝑃,𝑃𝑃′)

CPSC 433 - Artificial Intelligence Jörg Denzinger

if σ = mgu(𝑃𝑃,𝑃𝑃′)

mgu = most general unifier

29

Concrete Example: Resolution: Unification (I)

Needed: Unification to compute mgu
Yet another set-based search problem:
States: set of term equations u ≈ 𝐸𝐸, with ⊥ (symbol for False) indicating failure
Extension rules:
Delete:

𝐸𝐸 ∪ {𝐸𝐸 ≈ 𝐸𝐸}
𝐸𝐸

No longer need to maintain a unifier of something to itself

CPSC 433 - Artificial Intelligence Jörg Denzinger

30

Concrete Example: Resolution: Unification (II)

Needed: Unification to compute mgu
Yet another set-based search problem:
States: set of term equations u ≈ 𝐸𝐸, with ⊥ indicating failure
Extension rules:
Decompose:

𝐸𝐸 ∪ {𝑓𝑓(𝐸𝐸1, … , 𝐸𝐸𝑛𝑛) ≈ 𝑓𝑓(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛)}
𝐸𝐸 ∪ {𝐸𝐸1 ≈ 𝑠𝑠1, … 𝐸𝐸𝑛𝑛 ≈ 𝑠𝑠𝑛𝑛}

If you have function unified to same name function, can recompose unifier to
only be unifying the internals

CPSC 433 - Artificial Intelligence Jörg Denzinger

31

Concrete Example: Resolution: Unification (III)

Needed: Unification to compute mgu
Yet another set-based search problem:
States: set of term equations u ≈ 𝐸𝐸, with ⊥ indicating failure
Extension rules:
Orient:

𝐸𝐸 ∪ {𝐸𝐸 ≈ 𝐸𝐸}
𝐸𝐸 ∪ {𝐸𝐸 ≈ 𝐸𝐸}

Order of unifier can be changed

CPSC 433 - Artificial Intelligence Jörg Denzinger

𝐸𝐸 is not variable

32

Concrete Example: Resolution: Unification (IV)

Needed: Unification to compute mgu
Yet another set-based search problem:
States: set of term equations u ≈ 𝐸𝐸, with ⊥ indicating failure
Extension rules:
Substitute:

𝐸𝐸 ∪ {𝐸𝐸 ≈ 𝐸𝐸, 𝐸𝐸′ ≈ 𝑠𝑠′}
𝐸𝐸 ∪ {𝐸𝐸 ≈ 𝐸𝐸, 𝐸𝐸′[𝐸𝐸 ← 𝐸𝐸] ≈ 𝑠𝑠′[𝐸𝐸 ← 𝐸𝐸]}

Can modify one unifier with another as long as x not in t

CPSC 433 - Artificial Intelligence Jörg Denzinger

33

Concrete Example: Resolution: Unification (V)

Needed: Unification to compute mgu
Yet another set-based search problem:
States: set of term equations u ≈ 𝐸𝐸, with ⊥ indicating failure
Extension rules:
Occurs check:

𝐸𝐸 ∪ {𝐸𝐸 ≈ 𝐸𝐸}
⊥

If 𝐸𝐸 is in 𝐸𝐸 we cannot unify them (think infinite expansion as issue)

CPSC 433 - Artificial Intelligence Jörg Denzinger

34

Concrete Example: Resolution: Unification (VI)

Needed: Unification to compute mgu
Yet another set-based search problem:
States: set of term equations u ≈ 𝐸𝐸, with ⊥ indicating failure
Extension rules:
Clash:

𝐸𝐸 ∪ {𝑓𝑓(𝐸𝐸1, … , 𝐸𝐸𝑛𝑛) ≈ 𝑔𝑔(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛)}
⊥

If 𝑓𝑓 ≠ 𝑔𝑔 we cannot unify them

CPSC 433 - Artificial Intelligence Jörg Denzinger

35

Concrete Example: Resolution: Unification (VII)

Needed: Unification to compute mgu
Yet another set-based search problem:
States: set of term equations u ≈ 𝐸𝐸, with ⊥ indicating failure
Extension rules:
Delete, Decompose, Orient, Substitute, Occurs check, Clash

Goal condition: all equations in the state have form
x ≈ t and Occurcheck and Substitute are not applicable

CPSC 433 - Artificial Intelligence Jörg Denzinger

36

Unification/Resolution: Examples

37

Concrete Example: Resolution (III)

x,y,z are variables, rest are literals, functions, and predicates
Examples for Unification:
(1) 𝑓𝑓(𝑔𝑔(𝐸𝐸,𝑦𝑦), 𝑐𝑐) ≈ 𝑓𝑓(𝑔𝑔(𝑓𝑓(𝑑𝑑, 𝐸𝐸), 𝑧𝑧), 𝑐𝑐)
(2) ℎ(𝑐𝑐,𝑑𝑑,𝑔𝑔(𝐸𝐸,𝑦𝑦)) ≈ ℎ(𝑧𝑧,𝑑𝑑,𝑔𝑔(𝑔𝑔(𝑎𝑎,𝑦𝑦), 𝑧𝑧))
Examples for Resolution:
(1) 𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞
(2) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝐸𝐸 , ¬𝑅𝑅(𝑓𝑓(𝑎𝑎, 𝑏𝑏)),¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏))
(3) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝑦𝑦 , ¬𝑅𝑅(𝑓𝑓(𝑎𝑎, 𝑏𝑏)),¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏))

CPSC 433 - Artificial Intelligence Jörg Denzinger

38

Concrete Example: Resolution (III)

x,y,z are variables, rest are literals, functions, and predicates
Examples for Unification:
{𝒇𝒇 𝑔𝑔 𝐸𝐸,𝑦𝑦 , 𝑐𝑐 ≈ 𝒇𝒇 𝑔𝑔 𝑓𝑓 𝑑𝑑, 𝐸𝐸 , 𝑧𝑧 , 𝑐𝑐 } decompose
{𝑔𝑔 𝐸𝐸,𝑦𝑦 ≈ 𝑔𝑔 𝑓𝑓 𝑑𝑑, 𝐸𝐸 , 𝑧𝑧 , 𝒄𝒄 ≈ 𝒄𝒄} delete
{𝒈𝒈 𝐸𝐸,𝑦𝑦 ≈ 𝒈𝒈 𝑓𝑓 𝑑𝑑, 𝐸𝐸 , 𝑧𝑧 } decompose
{𝒙𝒙 ≈ 𝒇𝒇 𝒅𝒅,𝒙𝒙 , 𝑦𝑦 ≈ 𝑧𝑧} occurs check ⊥

CPSC 433 - Artificial Intelligence Jörg Denzinger

39

Concrete Example: Resolution (III)

x,y,z are variables, rest are literals, functions, and predicates
Examples for Unification:
{𝒉𝒉(𝑐𝑐,𝑑𝑑,𝑔𝑔(𝐸𝐸,𝑦𝑦) ≈ 𝒉𝒉(𝑧𝑧,𝑑𝑑,𝑔𝑔 𝑔𝑔 𝑎𝑎,𝑦𝑦 , 𝑧𝑧)} decompose
{𝑐𝑐 ≈ 𝑧𝑧,𝒅𝒅 ≈ 𝒅𝒅,𝑔𝑔(𝐸𝐸,𝑦𝑦) ≈ 𝑔𝑔(𝑔𝑔(𝑎𝑎,𝑦𝑦), 𝑧𝑧)} delete
{𝒄𝒄 ≈ 𝒛𝒛,𝑔𝑔(𝐸𝐸,𝑦𝑦) ≈ 𝑔𝑔(𝑔𝑔(𝑎𝑎,𝑦𝑦), 𝑧𝑧)} orient
{𝑧𝑧 ≈ 𝑐𝑐,𝒈𝒈(𝐸𝐸,𝑦𝑦) ≈ 𝒈𝒈(𝑔𝑔(𝑎𝑎,𝑦𝑦), 𝑧𝑧)} decompose
{𝑧𝑧 ≈ 𝑐𝑐, 𝐸𝐸 ≈ 𝑔𝑔 𝑎𝑎,𝑦𝑦 ,𝒚𝒚 ≈ 𝒛𝒛} substitute
{𝑧𝑧 ≈ 𝑐𝑐,𝒙𝒙 ≈ 𝒈𝒈 𝒂𝒂,𝒚𝒚 ,𝑦𝑦 ≈ 𝑐𝑐} substitute
{𝑧𝑧 ≈ 𝑐𝑐, 𝐸𝐸 ≈ 𝑔𝑔 𝑎𝑎, 𝑐𝑐 ,𝑦𝑦 ≈ 𝑐𝑐} done

CPSC 433 - Artificial Intelligence Jörg Denzinger

40

Concrete Example: Resolution (III)

x,y,z are variables, rest are literals, functions, and predicates
Examples for Unification:
(1) 𝑓𝑓(𝑔𝑔(𝐸𝐸,𝑦𝑦), 𝑐𝑐) ≈ 𝑓𝑓(𝑔𝑔(𝑓𝑓(𝑑𝑑, 𝐸𝐸), 𝑧𝑧), 𝑐𝑐) occur check ⊥
(2) ℎ(𝑐𝑐,𝑑𝑑,𝑔𝑔(𝐸𝐸,𝑦𝑦)) ≈ ℎ(𝑧𝑧,𝑑𝑑,𝑔𝑔(𝑔𝑔(𝑎𝑎,𝑦𝑦), 𝑧𝑧)) mgu = {𝑧𝑧 ≈ 𝑐𝑐, 𝐸𝐸 ≈ 𝑔𝑔 𝑎𝑎, 𝑐𝑐 ,𝑦𝑦 ≈ 𝑐𝑐}
Examples for Resolution:
(1) 𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞
(2) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝐸𝐸 , ¬𝑅𝑅(𝑓𝑓(𝑎𝑎, 𝑏𝑏)),¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏))
(3) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝑦𝑦 , ¬𝑅𝑅(𝑓𝑓(𝑎𝑎, 𝑏𝑏)),¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏))

CPSC 433 - Artificial Intelligence Jörg Denzinger

41

Concrete Example: Resolution (III)

(1) 𝑝𝑝 ∨ 𝑞𝑞
(2) 𝑝𝑝 ∨ ¬𝑞𝑞
(3) ¬𝑝𝑝 ∨ 𝑞𝑞
(4) ¬𝑝𝑝 ∨ ¬𝑞𝑞
(5) 𝑝𝑝 ∨ 𝑝𝑝 resolve (1) and (2)
(6) 𝑝𝑝 factorize (5)
(7) ¬𝑝𝑝 ∨ ¬𝑝𝑝 resolve (3) and (4)
(8) ¬𝑝𝑝 factorize (7)
(9) ∎ resolving (6) and (8)

CPSC 433 - Artificial Intelligence Jörg Denzinger

42

Concrete Example: Resolution (III)

x,y,z are variables, rest are literals, functions, and predicates
Examples for Resolution:
(1) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝐸𝐸
(2) ¬𝑅𝑅 𝑓𝑓 𝑎𝑎, 𝑏𝑏
(3) ¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏))
(4) 𝑃𝑃 𝑓𝑓 𝑎𝑎, 𝑏𝑏 resolving (1) and (2) with 𝑚𝑚𝑔𝑔𝑚𝑚 = {𝐸𝐸 ≈ 𝑓𝑓(𝑎𝑎, 𝑏𝑏)}
(5) 𝑅𝑅(𝑔𝑔 𝑎𝑎, 𝑏𝑏) resolving (1) and (3) with 𝑚𝑚𝑔𝑔𝑚𝑚 = {𝐸𝐸 ≈ 𝑔𝑔(𝑎𝑎, 𝑏𝑏)}
Can’t reach empty clause

CPSC 433 - Artificial Intelligence Jörg Denzinger

43

Concrete Example: Resolution (III)

x,y,z are variables, rest are literals, functions, and predicates
Examples for Resolution:
(1) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝑦𝑦
(2) ¬𝑅𝑅 𝑓𝑓 𝑎𝑎, 𝑏𝑏
(3) ¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏))
(4) P(𝐸𝐸) resolving (1) and (2) with 𝑚𝑚𝑔𝑔𝑚𝑚 = {𝑦𝑦 ≈ 𝑓𝑓(𝑎𝑎, 𝑏𝑏)}
(5) ∎ resolving (3) and (4) with 𝑚𝑚𝑔𝑔𝑚𝑚 = {𝐸𝐸 ≈ 𝑔𝑔(𝑎𝑎, 𝑏𝑏)}

CPSC 433 - Artificial Intelligence Jörg Denzinger

44

Concrete Example: Resolution (III)

x,y,z are variables, rest are literals, functions, and predicates
Examples for Unification:
(1) 𝑓𝑓(𝑔𝑔(𝐸𝐸,𝑦𝑦), 𝑐𝑐) ≈ 𝑓𝑓(𝑔𝑔(𝑓𝑓(𝑑𝑑, 𝐸𝐸), 𝑧𝑧), 𝑐𝑐) occur check ⊥
(2) ℎ(𝑐𝑐,𝑑𝑑,𝑔𝑔(𝐸𝐸,𝑦𝑦)) ≈ ℎ(𝑧𝑧,𝑑𝑑,𝑔𝑔(𝑔𝑔(𝑎𝑎,𝑦𝑦), 𝑧𝑧)) mgu = {𝑧𝑧 ≈ 𝑐𝑐, 𝐸𝐸 ≈ 𝑔𝑔 𝑎𝑎, 𝑐𝑐 ,𝑦𝑦 ≈ 𝑐𝑐}
Examples for Resolution:
(1) 𝑝𝑝 ∨ 𝑞𝑞,𝑝𝑝 ∨ ¬𝑞𝑞, ¬𝑝𝑝 ∨ 𝑞𝑞, ¬𝑝𝑝 ∨ ¬𝑞𝑞 produced empty clause
(2) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝐸𝐸 , ¬𝑅𝑅(𝑓𝑓(𝑎𝑎, 𝑏𝑏)),¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏)) couldn’t reach empty clause
(3) 𝑃𝑃 𝐸𝐸 ∨ 𝑅𝑅 𝑦𝑦 , ¬𝑅𝑅(𝑓𝑓(𝑎𝑎, 𝑏𝑏)),¬𝑃𝑃(𝑔𝑔(𝑎𝑎, 𝑏𝑏)) produced empty clause

CPSC 433 - Artificial Intelligence Jörg Denzinger

45

Unification/Resolution: Set-Based

46

Concrete Example: Resolution (V)

Tasks:
• Describe Resolution as set-based search model

• 𝐹𝐹,𝐸𝐸𝐸𝐸𝐸𝐸

• Given the following control idea, describe formally a search control for your
model, so that we have a search process:

• 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 , 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
Perform factorization whenever possible; choose the smallest possible clauses for
resolution; if several clause pairs are smallest, use an ordering <Lit on the
predicates and terms

CPSC 433 - Artificial Intelligence Jörg Denzinger

47

Concrete Example: Resolution (VI) Model

𝐹𝐹 = 𝑓𝑓1, … ,𝑓𝑓𝑠𝑠

CPSC 433 - Artificial Intelligence Jörg Denzinger

48

Concrete Example: Resolution (VI) Model

𝐹𝐹 = 𝑓𝑓1, … ,𝑓𝑓𝑠𝑠 | 𝑓𝑓𝑖𝑖 = L1 𝐸𝐸1,1, … , 𝐸𝐸1,𝑛𝑛1 ∨ ⋯∨ 𝐿𝐿𝑚𝑚 𝐸𝐸𝑚𝑚,1, … , 𝐸𝐸𝑚𝑚,𝑛𝑛𝑚𝑚
set of t facts where each fact is formed where 𝐿𝐿𝑖𝑖 predicate symbol or its
negation, 𝐸𝐸𝑖𝑖,𝑗𝑗 terms out of function symbols and variables (x,y…) variables in
different clauses are disjunct}

CPSC 433 - Artificial Intelligence Jörg Denzinger

49

Concrete Example: Resolution (VI) Model

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 → 𝐵𝐵 𝐴𝐴,𝐵𝐵 ⊆ 2𝐹𝐹 𝑎𝑎𝐸𝐸𝑑𝑑 }

CPSC 433 - Artificial Intelligence Jörg Denzinger

50

Concrete Example: Resolution (VI) Model

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 → 𝐵𝐵 𝐴𝐴,𝐵𝐵 ⊆ 2𝐹𝐹 𝑎𝑎𝐸𝐸𝑑𝑑 𝑅𝑅𝑒𝑒𝑠𝑠𝑛𝑛𝐶𝐶𝑚𝑚𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸 𝐴𝐴,𝐵𝐵 ,𝐹𝐹𝑎𝑎𝑐𝑐𝐸𝐸𝑛𝑛𝑟𝑟𝑅𝑅𝑧𝑧𝑎𝑎𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸(𝐴𝐴,𝐵𝐵)}

CPSC 433 - Artificial Intelligence Jörg Denzinger

51

Concrete Example: Resolution (VI) Model

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 → 𝐵𝐵 𝐴𝐴,𝐵𝐵 ⊆ 2𝐹𝐹 𝑎𝑎𝐸𝐸𝑑𝑑 (𝑅𝑅𝑒𝑒𝑠𝑠𝑛𝑛𝐶𝐶𝑚𝑚𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸 𝐴𝐴,𝐵𝐵 𝑛𝑛𝑟𝑟 𝐹𝐹𝑎𝑎𝑐𝑐𝐸𝐸𝑛𝑛𝑟𝑟𝑅𝑅𝑧𝑧𝑎𝑎𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸 𝐴𝐴,𝐵𝐵)}

𝑅𝑅𝑒𝑒𝑠𝑠𝑛𝑛𝐶𝐶𝑚𝑚𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸 𝐴𝐴,𝐵𝐵 =
𝐶𝐶
𝐷𝐷
𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝐴𝐴 = 𝐶𝐶 𝑎𝑎𝐸𝐸𝑑𝑑 𝐵𝐵 = 𝐶𝐶 ∪ 𝐷𝐷

𝐹𝐹𝑎𝑎𝑐𝑐𝐸𝐸𝑛𝑛𝑟𝑟𝑅𝑅𝑧𝑧𝑎𝑎𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸 𝐴𝐴,𝐵𝐵 =
𝐶𝐶
𝐷𝐷
𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝐴𝐴 = 𝐶𝐶 𝑎𝑎𝐸𝐸𝑑𝑑 𝐵𝐵 = 𝐶𝐶 ∪ 𝐷𝐷

CPSC 433 - Artificial Intelligence Jörg Denzinger

52

Concrete Example: Resolution (VI) Process

𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 𝐴𝐴,𝐵𝐵, 𝑒𝑒 = ℕ

CPSC 433 - Artificial Intelligence Jörg Denzinger

53

Concrete Example: Resolution (VI) Process

• 𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 𝐴𝐴,𝐵𝐵, 𝑒𝑒 = ℕ
• If 𝐴𝐴 → 𝐵𝐵 exists that fulfils 𝐹𝐹𝑎𝑎𝑐𝑐𝐸𝐸𝑛𝑛𝑟𝑟𝑅𝑅𝑧𝑧𝑎𝑎𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸 𝐴𝐴,𝐵𝐵 = 𝐶𝐶

𝐷𝐷
with 𝐷𝐷 ∉ 𝑠𝑠 then

𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 𝐴𝐴,𝐵𝐵, 𝑒𝑒 = 0 (always choose factorization)
• if 𝐴𝐴 → 𝐵𝐵 exists that fulfills 𝑅𝑅𝑒𝑒𝑠𝑠𝑛𝑛𝐶𝐶𝑚𝑚𝐸𝐸𝑅𝑅𝑛𝑛𝐸𝐸 𝐴𝐴,𝐵𝐵 = 𝐶𝐶

𝐷𝐷
with 𝐷𝐷 ∉ 𝑠𝑠 then

𝑓𝑓𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠 𝐴𝐴,𝐵𝐵, 𝑒𝑒 = 𝑠𝑠𝑅𝑅𝑧𝑧𝑒𝑒(𝐴𝐴) where 𝑠𝑠𝑅𝑅𝑧𝑧𝑒𝑒(𝐴𝐴) is a summation of size of clauses
in A (next do Resolution based on size)

• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴′ → 𝐵𝐵′ , 𝑒𝑒 = 𝐴𝐴 → 𝐵𝐵
• where 𝐴𝐴 → 𝐵𝐵 is at index 0 after creating a sorted order of 𝐴𝐴′ → 𝐵𝐵′

according to ordering <Lit (use ordering for tie break) [there should exists
no two clauses which cannot be ordered by <Lit as there are no duplicates]

CPSC 433 - Artificial Intelligence Jörg Denzinger

54

Unification/Resolution: Set-Based:
Applied

55

Concrete Example: Resolution (VI)

Tasks (cont.):
• Apply your process to the search instance to the following set of clauses:

¬𝑃𝑃 𝐸𝐸,𝑦𝑦 ∨ 𝑃𝑃 𝑦𝑦, 𝐸𝐸 ,
𝑃𝑃 𝑓𝑓 𝐸𝐸 ,𝑔𝑔 𝑦𝑦 ∨ ¬𝑅𝑅 𝑦𝑦 ,

¬𝑃𝑃 𝑔𝑔 𝐸𝐸 ,𝑓𝑓 𝐸𝐸 ,
𝑅𝑅 𝐸𝐸 ∨ 𝑄𝑄 𝐸𝐸, 𝑏𝑏 ,

¬𝑄𝑄(𝑎𝑎, 𝐸𝐸)

CPSC 433 - Artificial Intelligence Jörg Denzinger

56

Concrete Example: Resolution (VI)

Tasks (cont.):
• Remember its best to think of variables in each clause as independent variables

¬𝑃𝑃 𝐸𝐸1,𝑦𝑦1 ∨ 𝑃𝑃 𝑦𝑦1, 𝐸𝐸1 ,
𝑃𝑃 𝑓𝑓 𝐸𝐸2 ,𝑔𝑔 𝑦𝑦2 ∨ ¬𝑅𝑅 𝑦𝑦2 ,

¬𝑃𝑃 𝑔𝑔 𝐸𝐸3 ,𝑓𝑓 𝐸𝐸3 ,
𝑅𝑅 𝐸𝐸4 ∨ 𝑄𝑄 𝐸𝐸4, 𝑏𝑏 ,

¬𝑄𝑄(𝑎𝑎, 𝐸𝐸5)

CPSC 433 - Artificial Intelligence Jörg Denzinger

57

Concrete Example: Resolution (VI)

Tasks (cont.):
• Last two resolved

¬𝑃𝑃 𝐸𝐸1,𝑦𝑦1 ∨ 𝑃𝑃 𝑦𝑦1, 𝐸𝐸1 ,
𝑃𝑃 𝑓𝑓 𝐸𝐸2 ,𝑔𝑔 𝑦𝑦2 ∨ ¬𝑅𝑅 𝑦𝑦2 ,

¬𝑃𝑃 𝑔𝑔 𝐸𝐸3 ,𝑓𝑓 𝐸𝐸3 ,
𝑹𝑹 𝒙𝒙𝟒𝟒 ∨ 𝑸𝑸 𝒙𝒙𝟒𝟒,𝒃𝒃 ,

¬𝑸𝑸 𝒂𝒂,𝒙𝒙𝟓𝟓 ,
𝑹𝑹(𝒂𝒂)

CPSC 433 - Artificial Intelligence Jörg Denzinger

mgu = {𝐸𝐸4 ≈ 𝑎𝑎, 𝐸𝐸5 ≈ 𝑏𝑏}

58

Concrete Example: Resolution (VI)

Tasks (cont.):
• Resolve newest with 2nd

¬𝑃𝑃 𝐸𝐸1,𝑦𝑦1 ∨ 𝑃𝑃 𝑦𝑦1, 𝐸𝐸1 ,
𝑷𝑷 𝒇𝒇 𝒙𝒙𝟐𝟐 ,𝒈𝒈 𝒚𝒚𝟐𝟐 ∨ ¬𝑹𝑹 𝒚𝒚𝟐𝟐 ,

¬𝑃𝑃 𝑔𝑔 𝐸𝐸3 ,𝑓𝑓 𝐸𝐸3 ,
𝑅𝑅 𝐸𝐸4 ∨ 𝑄𝑄 𝐸𝐸4, 𝑏𝑏 ,

¬𝑄𝑄 𝑎𝑎, 𝐸𝐸5 ,
𝑹𝑹 𝒂𝒂 ,

𝑷𝑷 𝒇𝒇 𝒙𝒙𝟐𝟐 ,𝒈𝒈 𝒂𝒂

CPSC 433 - Artificial Intelligence Jörg Denzinger

mgu = {𝑦𝑦2 ≈ 𝑎𝑎}

59

Concrete Example: Resolution (VI)

Tasks (cont.):
• Resolve newest with first

¬𝑷𝑷 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 ∨ 𝑷𝑷 𝒚𝒚𝟏𝟏,𝒙𝒙𝟏𝟏 ,
𝑃𝑃 𝑓𝑓 𝐸𝐸2 ,𝑔𝑔 𝑦𝑦2 ∨ ¬𝑅𝑅 𝑦𝑦2 ,

¬𝑃𝑃 𝑔𝑔 𝐸𝐸3 ,𝑓𝑓 𝐸𝐸3 ,
𝑅𝑅 𝐸𝐸4 ∨ 𝑄𝑄 𝐸𝐸4, 𝑏𝑏 ,

¬𝑄𝑄 𝑎𝑎, 𝐸𝐸5 ,
𝑅𝑅 𝑎𝑎 ,

𝑷𝑷 𝒇𝒇 𝒙𝒙𝟐𝟐 ,𝒈𝒈 𝒂𝒂
𝑷𝑷 𝒈𝒈(𝒂𝒂),𝒇𝒇(𝒙𝒙𝟐𝟐)

CPSC 433 - Artificial Intelligence Jörg Denzinger

mgu = {𝐸𝐸1 ≈ 𝑓𝑓 𝐸𝐸2 ,𝑦𝑦1 ≈ 𝑔𝑔(𝑎𝑎)}

60

Concrete Example: Resolution (VI)

Tasks (cont.):
• Resolve newest with third

¬𝑃𝑃 𝐸𝐸1,𝑦𝑦1 ∨ 𝑃𝑃 𝑦𝑦1, 𝐸𝐸1 ,
𝑃𝑃 𝑓𝑓 𝐸𝐸2 ,𝑔𝑔 𝑦𝑦2 ∨ ¬𝑅𝑅 𝑦𝑦2 ,

¬𝑷𝑷 𝒈𝒈 𝒙𝒙𝟑𝟑 ,𝒇𝒇 𝒙𝒙𝟑𝟑 ,
𝑅𝑅 𝐸𝐸4 ∨ 𝑄𝑄 𝐸𝐸4, 𝑏𝑏 ,

¬𝑄𝑄 𝑎𝑎, 𝐸𝐸5 ,
𝑅𝑅 𝑎𝑎 ,

𝑃𝑃 𝑓𝑓 𝐸𝐸2 ,𝑔𝑔 𝑎𝑎
𝑷𝑷 𝒈𝒈(𝒂𝒂),𝒇𝒇(𝒙𝒙𝟐𝟐)

∎
CPSC 433 - Artificial Intelligence Jörg Denzinger

mgu = {𝐸𝐸3 ≈ 𝑎𝑎, 𝐸𝐸2 ≈ 𝑎𝑎}

61

Remarks

• Set-based search states can very quickly get very large.
• Usually a lot of extensions are possible
 control is very important

• Almost all evolutionary search approaches are set-based [see later genetic
algorithms]

CPSC 433 - Artificial Intelligence Jörg Denzinger

Onward to …
And-Tree-based Search

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Artificial Intelligence:�Set-based Search
	Set-based Search?
	Venn Diagram of Facts and States
	Venn Diagram of Facts and States
	Venn Diagram of Facts and States
	Venn Diagram of Facts and States
	Definitions
	Formal Definitions: Model
	Less formally: Model
	Formal Definitions: Search Process
	Formal Definitions: Search Process
	Less formally: Search Process
	Formal Definitions: Search Instance
	Less formally: Search Instance
	Visualize
	Conceptual Example (I): �Set-based Search
	Conceptual Example (I): �Set-based Search
	Design
	Designing set-based search models
	Designing set-based search processes
	Review
	Review of Logic Definitions
	Review of Logic Definitions
	Review of Logic Definitions
	Review: Quick Resolution Example
	Applied to Resolution
	Concrete Example: Resolution (I)
	Concrete Example: Resolution (II)
	Concrete Example: Resolution: Unification (I)
	Concrete Example: Resolution: Unification (II)
	Concrete Example: Resolution: Unification (III)
	Concrete Example: Resolution: Unification (IV)
	Concrete Example: Resolution: Unification (V)
	Concrete Example: Resolution: Unification (VI)
	Concrete Example: Resolution: Unification (VII)
	Unification/Resolution: Examples
	Concrete Example: Resolution (III)
	Concrete Example: Resolution (III)
	Concrete Example: Resolution (III)
	Concrete Example: Resolution (III)
	Concrete Example: Resolution (III)
	Concrete Example: Resolution (III)
	Concrete Example: Resolution (III)
	Concrete Example: Resolution (III)
	Unification/Resolution: Set-Based
	Concrete Example: Resolution (V)
	Concrete Example: Resolution (VI) Model
	Concrete Example: Resolution (VI) Model
	Concrete Example: Resolution (VI) Model
	Concrete Example: Resolution (VI) Model
	Concrete Example: Resolution (VI) Model
	Concrete Example: Resolution (VI) Process
	Concrete Example: Resolution (VI) Process
	Unification/Resolution: Set-Based: Applied
	Concrete Example: Resolution (VI)
	Concrete Example: Resolution (VI)
	Concrete Example: Resolution (VI)
	Concrete Example: Resolution (VI)
	Concrete Example: Resolution (VI)
	Concrete Example: Resolution (VI)
	Remarks
	Onward to … �And-Tree-based Search

