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Inheritance

• a fundamental object-oriented design technique used to create and 
organize reusable classes
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The programming inefficiency?
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The programming inefficiency?

Code Repetition
• These 3 classes are really similar in function
• Shared

• Storage variables
• Methods to access (and change) data
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The programming inefficiency?

Code Repetition
• These 3 classes are really similar in function
• Shared

• Storage variables
• Methods to access (and change) data

• If we change what is a valid institutional id
• We’ll have to change code in all 3
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Outline
• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Designing for Inheritance
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The Goal

Code re-use through hierarchies
We’d rather write code to store the common
• State (variables)
• Behaviour (methods)
Once and access this behaviour from all 3 classes that share it
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Solution

Code re-use through hierarchies
We’d rather write code to store the common
• State (variables)
• Behaviour (methods)
Once and access this behaviour from all 3 classes that share it
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Solution

Code re-use through hierarchies

We can inherit this code using keyword -> extends

Ex. <class_1>, <class_2> are two Java classes
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The Goal

Code re-use through hierarchies
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The Goal

Code re-use through hierarchies
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Inheritance – What is it?

Definition: The process by which one class acquires the properties and methods of another.

Terminology
• We call the derived class <class_1> the sub or child class
• We call the base class <class_2> the super or parent class
• IS-A relationship

• sub class is-a super class, child is-a parent
• Boolean operator instanceof - > {True, False}

• student_instance instanceof Person ---> True
• person_instance instanceof Student ---> False
• student_instance instanceof Student ---> True
• person_instance instanceof Person ---> True
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Inheritance – What is it?

• inheritance creates an is-a relationship
• the child is a more specific version of the 

parent

• you can view these as a family of classes
• some variables / methods defined only once 

and yet apply to the whole family

• Software reuse is a major benefit of 
inheritance
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Types of Inheritance

Java does not have multiple inheritance
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Surprise you’ve been using it all along

Every java class is descended from the super class Object
It’s been hidden from you all along

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
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Hierarchy
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The protected Modifier

• private variables/methods can not be referenced by name in a child 
class

• public variables/methods can be – but public variables violate the 
principle of encapsulation

• protected visibility often used for inheritance
• allows a child class to reference a variable or method directly in the child class
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private/protected/public

Private -> only class can see it
Protected -> only class and sub-classes can see it 
Public -> everyone can see it
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The protected Modifier

• Are there any disadvantages?
• The super and sub classes are more tightly coupled (changing super may 

involve rewriting sub)
• also visible to any class in the same package as the parent class (may be a 

problem)

• Recommendations
• leave instance variables private
• Access them through inherited methods
• Protected helper methods may be useful
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The super Reference

• The super reference can be used to reference variables and
methods defined in the parent’s class

• Constructors are not inherited; each class should have its own

• should use super to invoke the parent's constructor to set up the
“parent's part” of the object

• must be the first line of a child’s constructor
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Inheritance and Constructors

• The super reference can be used to reference variables and
methods defined in the parent’s class

• Constructors are not inherited; each class should have its own

• should use super to invoke the parent's constructor to set up the
“parent's part” of the object

• must be the first line of a child’s constructor

• Saves you time re-implementing large constructors with shared code
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Inheritance and Constructors



Onward to … Overriding

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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