
Inheritance: Creating
CPSC 233: Introduction to Computer Science for Computer Science 
Majors II
Winter 2022

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 10 November 2021

Copyright © 2021



2

Inheritance

• a fundamental object-oriented design technique used to create and 
organize reusable classes



3

The programming inefficiency?



4

The programming inefficiency?

Code Repetition
• These 3 classes are really similar in function
• Shared

• Storage variables
• Methods to access (and change) data



5

The programming inefficiency?

Code Repetition
• These 3 classes are really similar in function
• Shared

• Storage variables
• Methods to access (and change) data

• If we change what is a valid institutional id
• We’ll have to change code in all 3



6

Outline
• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Designing for Inheritance



7

The Goal

Code re-use through hierarchies
We’d rather write code to store the common
• State (variables)
• Behaviour (methods)
Once and access this behaviour from all 3 classes that share it



8

Solution

Code re-use through hierarchies
We’d rather write code to store the common
• State (variables)
• Behaviour (methods)
Once and access this behaviour from all 3 classes that share it



9

Solution

Code re-use through hierarchies

We can inherit this code using keyword -> extends

Ex. <class_1>, <class_2> are two Java classes



10

The Goal

Code re-use through hierarchies



11

The Goal

Code re-use through hierarchies



12



13

Inheritance – What is it?

Definition: The process by which one class acquires the properties and methods of another.

Terminology
• We call the derived class <class_1> the sub or child class
• We call the base class <class_2> the super or parent class
• IS-A relationship

• sub class is-a super class, child is-a parent
• Boolean operator instanceof - > {True, False}

• student_instance instanceof Person ---> True
• person_instance instanceof Student ---> False
• student_instance instanceof Student ---> True
• person_instance instanceof Person ---> True



14

Inheritance – What is it?

• inheritance creates an is-a relationship
• the child is a more specific version of the 

parent

• you can view these as a family of classes
• some variables / methods defined only once 

and yet apply to the whole family

• Software reuse is a major benefit of 
inheritance



15

Types of Inheritance

Java does not have multiple inheritance



16

Surprise you’ve been using it all along

Every java class is descended from the super class Object
It’s been hidden from you all along

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html


17

Hierarchy



18

The protected Modifier

• private variables/methods can not be referenced by name in a child 
class

• public variables/methods can be – but public variables violate the 
principle of encapsulation

• protected visibility often used for inheritance
• allows a child class to reference a variable or method directly in the child class



19

private/protected/public

Private -> only class can see it
Protected -> only class and sub-classes can see it 
Public -> everyone can see it



20

The protected Modifier

• Are there any disadvantages?
• The super and sub classes are more tightly coupled (changing super may 

involve rewriting sub)
• also visible to any class in the same package as the parent class (may be a 

problem)

• Recommendations
• leave instance variables private
• Access them through inherited methods
• Protected helper methods may be useful



21



22

The super Reference

• The super reference can be used to reference variables and
methods defined in the parent’s class

• Constructors are not inherited; each class should have its own

• should use super to invoke the parent's constructor to set up the
“parent's part” of the object

• must be the first line of a child’s constructor



23

Inheritance and Constructors

• The super reference can be used to reference variables and
methods defined in the parent’s class

• Constructors are not inherited; each class should have its own

• should use super to invoke the parent's constructor to set up the
“parent's part” of the object

• must be the first line of a child’s constructor

• Saves you time re-implementing large constructors with shared code



24

Inheritance and Constructors



Onward to … Overriding

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Inheritance: Creating
	Inheritance
	The programming inefficiency?
	The programming inefficiency?
	The programming inefficiency?
	Outline
	The Goal
	Solution
	Solution
	The Goal
	The Goal
	Slide Number 12
	Inheritance – What is it?
	Inheritance – What is it?
	Types of Inheritance
	Surprise you’ve been using it all along
	Hierarchy
	The protected Modifier
	private/protected/public
	The protected Modifier
	Slide Number 21
	The super Reference
	Inheritance and Constructors
	Inheritance and Constructors
	Onward to … Overriding

