Inheritance: Creating

CPSC 233: Introduction to Computer Science for Computer Science
Majors Il
Winter 2022

Jonathan Hudson, Ph.D.
Instructor

Department of Computer Science
University of Calgary

Wednesday, 10 November 2021

Copyright © 2021
=% UNIVERSITY OF

) CALGARY

Inheritance

* a fundamental object-oriented design technique used to create and
organize reusable classes

3l UNIVERSITY OF

¥ CALGARY

The programming inefficiency?

public class Faculty{ public class Student({ public class Staff{
String name; String name; String name;
int id; int id; int id;
ArrayList<Class> lectures; ArrayList<Class> classes; Staff boss;
public String getName () { public String getName () { public String getName () {
return name; return name; return name;
} } }
} }

LN UNIVERSITY OF

& CALGARY

The programming inefficiency?

Code Repetition

* These 3 classes are really similar in function
* Shared

 Storage variables
* Methods to access (and change) data

public class Faculty{

String name;
IRE 143

ArrayList<Class> lectures;
public String getName () {

return name;

}
}
public class Student{

String name;
int id}

ArrayList<Class>» classes;
public String getName () {

return name;

}
}
public class Staff{

int ad}
Staff boss;

public String getName () {
return name;

} RSITY OF

GARY

The programming inefficiency?

Code Repetition
* These 3 classes are really similar in function

e Shared

 Storage variables
* Methods to access (and change) data

* If we change what is a valid institutional id
* We’ll have to change code in all 3

public class Faculty{
String name;
int id;

ArrayList<Class> lectures;

public String getName () {
return name;
}

}
public class Student{

String name;
int id;

Arraylist<Class> classes;
public String getName () {
}

}

public class Staff{

>Lring name;
int ad}

Staff boss;

public String getName () {
return name;
}

}

RSITY OF

GARY

Outline

m) « Creating Subclasses
* Overriding Methods
* (Class Hierarchies

* Designing for Inheritance

LGN UNIVERSITY OF

W) CALGARY

The Goal

Code re-use through hierarchies

We'd rather write code to store the common

 State (variables)

e Behaviour (methods)

Once and access this behaviour from all 3 classes that share it

3l UNIVERSITY OF

¥ CALGARY

Solution

Code re-use through hierarchies

We'd rather write code to store the common

 State (variables)

e Behaviour (methods)

Once and access this behaviour from all 3 classes that share it

public class Person{
String name;
int 1id;
public String getName () {
return name;

}

LGN UNIVERSITY OF

W) CALGARY

Solution

Code re-use through hierarchies
We can inherit this code using keyword -> extends
Ex. <class_1>, <class_2> are two Java classes

public class <class 1> extends <class 2> {
}

LGN UNIVERSITY OF

W) CALGARY

The Goal

Code re-use through hierarchies

public class Person{
String name;
int id;
public String getName () {
return name;

}

10

public class Faculty extends Person({
ArrayList<Class> lectures,

}

public class Student extends Person{
ArrayList<Class> classes,;

}

public class Staff extends Person{
Staff boss;

}

A UNIVERSITY OF

&) CALGARY

The Goal

Code re-use through hierarchies

public class Person{
String name;
int id;
public String getName () {
return name;

}

Faculty f = new Faculty();
String £ name = f.getName() ;
Student s = new Student();
String s name = s.getName () ;

11

public class Faculty
ArrayList<Class>

}
public class Student

ArrayList<Class>
}

extends Person/{
lectures;

extends Person/{
classes;

public class Staff extends Person{

Staff boss;
}

A UNIVERSITY OF

&) CALGARY

12

ltem

title
playingTime
gotlt
comment

setComment
getComment
setOwn
getOwn

print

CD

artist

numberOfTracks

getArtist

getNumberOfTracks

Book

#pages :int

+setPages{numPages : int) : void
+getPages(: int

JAN

Dictionary

~-definitions : int

Video

+computeRatio() : double
+setDefinitions{(numDefinitions : int) : void
+getDefinitions(: int

director

getDirector

AN
W

A UNIVERSITY OF

CALGARY

13

Inheritance — What is it?

Definition: The process by which one class acquires the properties and methods of another.

public class <class 1> extends <class 2> {
}

Terminology
* We call the derived class <class_1> the sub or child class
* We call the base class <class_2> the super or parent class

* IS-A relationship
* sub class is-a super class, child is-a parent

* Boolean operator instanceof - > {True, False}
e student_instance instanceof Person ---> True
e person_instance instanceof Student ---> False
e student_instance instanceof Student ---> True
e person_instance instanceof Person ---> True

LGN UNIVERSITY OF

¥) CALGARY

Inheritance — What is it?

* inheritance creates an is-a relationship

* the child is a more specific version of the
parent

e you can view these as a family of classes

e some variables / methods defined only once
and yet apply to the whole family

* Software reuse is a major benefit of
inheritance

14

Book

#pages : int

+setPages(numPages : int) : void
+getPages(: int

JAN

Dictionary

-definitions : int

+computeRatio{) : double

+setDefinitionsinumDefinitions : int) ; void

+getDefinitions(: int

LGN UNIVERSITY OF

W) CALGARY

15

Types of Inheritance

Single Inheritance

Class A

Class B

Multi Level Inheritance

Class A

Class B

Class C

Hierarchical Inheritance

Class A

oy

Class B

Class C

Multiple Inheritance

Class A

Class B

S

ClassC

public
public

public
public
public

public
public
public

class
class

class
class
class

class
class
class

A{...}
B extends

A{...}
B extends
C extends

A{...}
B extends
C extends

public class A{...}
public class B{...}

public class C extends A, B{...}

A{...

A{...
B{...

A{...
A{...

Java does not have multiple inheritance

A UNIVERSITY OF

&) CALGARY

16

Surprise you’ve been using it all along

Every java class is descended from the super class Object
It’s been hidden from you all along

public class Person {..} =-> public class Person extends Object {..}

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.
Class<?> getClass()

Returns the runtime class of this Object.
int hashCode()

Returns a hash code value for the object.

String tostring()
Returns a string representation of the object.

LGN UNIVERSITY OF

N~/

& CALGARY

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Hierarchy

| Object

The protected Modifier

* private variables/methods can not be referenced by name in a child
class

* public variables/methods can be — but public variables violate the
principle of encapsulation

* protected visibility often used for inheritance
* allows a child class to reference a variable or method directly in the child class

3l UNIVERSITY OF

¥ CALGARY

18

private/protected/public

Private -> only class can see it Access Levels
Protected -> only class and sub-classes can see it Modifier ||Class||Package|jSubclassWorld
publi] public Y Y Y Y
->
ublic -> everyone can see it S———— V7 > Y
public class Person{ no modifier |Y Y N N
private int private id; private ||y N N N

protected 1nt protected 1id;
public int public 1id;
int undeclared 1id;
}
public class Student extends Person({
//1 can get at protected id, public id, undeclared id
}
public class Class({

//1I can get at public id INIVERSITY OF
19 } CALGARY

20

The protected Modifier

* Are there any disadvantages?

* The super and sub classes are more tightly coupled (changing super may
involve rewriting sub)

* also visible to any class in the same package as the parent class (may be a
problem)

* Recommendations
* |leave instance variables private
* Access them through inherited methods
* Protected helper methods may be useful

JEETY UNIVERSITY OF

W) CALGARY

21

public class Person {
protected String name;
private int id;
public int getId() {
return id;

}
}

public class Faculty extends Person {
private ArraylList<Session> lectures;
public String toString() {
return String.format("%s %s %s", name, getId(), lectures);
}
¥

public class Staff extends Person {
private Staff boss;
public String toString() {
return String.format("%s %s %s", name, getId(), boss);

}
}

public class Student extends Person {
private ArraylList<Session> classes;
public String toString() {
return String.format("%s %s %s", name, getId(), classes);

}

A UNIVERSITY OF

[1je3
N\

&% CALGARY

The super Reference

* The super reference can be used to reference variables and
methods defined in the parent’s class

e Constructors are not inherited; each class should have its own

* should use super to invoke the parent's constructor to set up the
“parent'’s part” of the object
* must be the first line of a child’s constructor

3l UNIVERSITY OF

¥ CALGARY

22

Inheritance and Constructors

* The super reference can be used to reference variables and
methods defined in the parent’s class

e Constructors are not inherited; each class should have its own

* should use super to invoke the parent's constructor to set up the
“parent'’s part” of the object
* must be the first line of a child’s constructor

e Saves you time re-implementing large constructors with shared code

3l UNIVERSITY OF

¥ CALGARY

23

Inheritance and Constructors

public class Person {

protected String name;
protected int id;

public Person(String name, int id) {
this.id = id_;
this.name = name;

¥
public class Student extends Person {
private ArraylList<Session> classes;
public Student(String name, int id, ArraylList<Session> classes) {

super(name, id);
this.classes = classes;

A UNIVERSITY OF

&) CALGARY

24

Onward to ... Overriding

Jonathan Hudson

L L1&9]]]
iwhudson@ucalgary.ca '#" UNIVERSITY OF

=
https://pages.cpsc.ucalgary.ca/~jwhudson/ W CALGARY

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Inheritance: Creating
	Inheritance
	The programming inefficiency?
	The programming inefficiency?
	The programming inefficiency?
	Outline
	The Goal
	Solution
	Solution
	The Goal
	The Goal
	Slide Number 12
	Inheritance – What is it?
	Inheritance – What is it?
	Types of Inheritance
	Surprise you’ve been using it all along
	Hierarchy
	The protected Modifier
	private/protected/public
	The protected Modifier
	Slide Number 21
	The super Reference
	Inheritance and Constructors
	Inheritance and Constructors
	Onward to … Overriding

