Software Development:
JUnit

CPSC 233: Introduction to Computer Science for Computer Science
Majors Il

Winter 2022

Jonathan Hudson, Ph.D.
Instructor

Department of Computer Science
University of Calgary

Wednesday, 17 November 2021

Copyright © 2021
+m UNIVERSITY OF

/) CALGARY

Unit Testing

""""""""""""""

7 CALGARY

Unit Testing

* A unit test is a technique for testing the correctness of a module of source code
* You create separate test cases for every nontrivial method in the module
* Unlike most other tests, is done by developers as they code

* |s a form of “bottom-up” testing

LGN UNIVERSITY OF

W) CALGARY

Benefits of Unit Testing

* Benefits of unit testing:

* Reduces the time spent on debugging
Catches bugs early
Eases integration

* Bottom-up testing allows you to build a large system on a reliable
“foundation” of working low-level code

Documents the intent of the code
Encourages refactoring
 Tests are rerun to make sure no new bugs are introduced
* |Is a form of regression testing

LGN UNIVERSITY OF

W) CALGARY

Goal of Unit Testing

* The goal of unit testing is to determine if the code:

1. Does what is intended

2. Works correctly under all conditions

* Including exceptional conditions like bad input, full disks, dropped
network connections, etc., etc.

3. Isdependable

JEETY UNIVERSITY OF

W) CALGARY

Usage of Unit Testing

* Your test code is for internal use only

* |s separate from production code and is not shipped

* Production code must be “unaware” of the test code that exercises it

* However, you may have to refactor poorly structured code to make it
testable

LGN UNIVERSITY OF

N~/

¥ CALGARY

Unit Testing Frameworks

* Unit testing frameworks make it easy to build and run tests

* Open source frameworks include:

* JUnit for Java
* NUnit for C#
* pytest for python

ll:’:;l UNIVERSITY OF

W) CALGARY

JUnit Example

""""""""""""""

7 CALGARY

JUnit Example — Largest Integer Method

* We will test the following method:
* (Note: contains some bugs right now)

Largest {

largest1(int[] list) {
1, max = Integer.
= i< TisE, 1ty
(List[i] > max) {
max = Llist[i]

LGN UNIVERSITY OF

W) CALGARY

JUnit Example — JUnit Test

* Create a test class with an initial test:
' org.junit.jupiter.apil.MethodOrderer
org.junit.jupiter.api.Test
org.junit.jupiter.api.TestMethodOrder

org.junit.jupiter.api.Assertions.*

@TestMethodOrder(MethodOrderer.MethodName.
; LargestTest {

@Test
testLargestllBasic() {
[1 1ist = {8, 9, 7}
expResult =
result = |Largest.largestl(list)
assertEquals(expResult, result

This is our function we are testing

11

JUnit Example - Details

* Your test class can be named anything

* Test methods must be annotated with @Test
* Will be invoked automatically by the test runner

* The assertEquals() will abort if the largest1() method does not returna 9
* 9is the largest elementin thelist 8,9, 7

* Save the file

* Compile using: javac *.java

JEETY UNIVERSITY OF

W) CALGARY

12

JUnit Example - Running

 Run the test

* Use: java org.junit.runner.JUnitCore LargestTest

* The classpath must be set correctly for this to work
* |s a textual Ul
* Most IDEs can run tests within their GUI

JEETY UNIVERSITY OF

W) CALGARY

13

JUnit Example — Failing Test

Expected :9

Actual

largest2([] list) {

i++) 4

(List[i] > max) {

max = Llist[i]

Let’s try max=0 instead

A UNIVERSITY OF

AN
&)

CALGARY

JUnit Example — Multiple Asserts

* Create a new test testOrder():

@Test
testLargest220rder() {

assertEquals(Largest.largest2(

assertEquals(), Largest.largest2(ne

assertEquals(), Largest.largest2(

* Tests for the largest element in all 3 positions

* Recompile and retest

A UNIVERSITY OF

[1je3
N\

&% CALGARY

14

15

JUnit Example — Failing Again

Expected :

Actual

largest3([] 1ist) {

1 < 1isEt. 3##) We had off by one error
(List[i] > max) A

max = list[i]

A UNIVERSITY OF

AN
&)

CALGARY

16

JUnit Example — Fix Bug

 We find another error:

* Is an “off by one” bug:
* Change loop for correct termination

* Recompile and retest
* Should report: OK (2 tests)

LGN UNIVERSITY OF

W) CALGARY

17

JUnit Example — More Tests

* Add methods to test for duplicates and a list of size one:

@Test
1d testLargest33Duplicates() {

assertEquals(Largest.largest3(ne

}

@Test
testLargest340ne() {
assertEquals(9, Largest.largest3(ne

* Recompile and retest
* Should report: OK (4 tests)

A UNIVERSITY OF

AN
&)

CALGARY

18

JUnit Example — Negative Numbers

* Add a method to test negative numbers:
testLargest35Negative() {
assertEquals (= Largest.largest3(

°

Retesting reveals another bug:

Expected :
Actual

Fix by initializing max = Integer.MIN_VALUE;
Retest

LGN UNIVERSITY OF

W) CALGARY

19

JUnit Example — Exceptions?

* What should happen if the list is empty?
* Throw an exception

r

RuntimeException(

ll:’:;l UNIVERSITY OF

W) CALGARY

20

JUnit Example — Exceptions Expected

* Add a test for this

@Test
| testLargest46Empty() 1
RuntimeException e = assertThrows(RuntimeException.

Largest.largest4([1{})
})

assertEquals(e.getMessage()

A UNIVERSITY OF

[1je3
N\

&% CALGARY

JUnit Example — Null?

* What if our function should crash on null input?

LList ==) {
NullPointerException(

@Test
d testLargest47Null() {
NullPointerException e = assertThrows(NullPointerException.
Largest.largest4()
i3]

assertEquals(e.getMessage()

A UNIVERSITY OF

[1je3
N\

&% CALGARY

21

22

Result

* Final Function

1

(i

largest5(int[] 1list)
) 4

NullPointerException(

RuntimeException(

max = Integer.

= i = List,
(list[i] > max) {
max = Llist[i]

r
1

LGN UNIVERSITY OF

% CALGARY

JUnit Versions

""""""""""""""

7 CALGARY

24

JUnit Versions

* There are three main JUnit revisions active

* JUnit 3 (old)

* JUnit 4 (common to find examples, not recommended)
* JUnit 5 (AKA Jupiter, default in most IDEs)

JEETY UNIVERSITY OF

W) CALGARY

25

JUnit Versions

* There are three main JUnit revisions active

* JUnit 3 (offered as step down choice by eclipse)
* JDK 1.2+

* JUnit4
* JDK 1.5+

* JUnit 5
* JDK 1.8+ (Java 8 an higher)
* Has JUnit Vintage for running Junit 3/4 Tests

* Recommend using JUnit5 and an IDE environment like eclipse

LGN UNIVERSITY OF

W) CALGARY

26

JUnit 4

* JUnit 4 (included in eclipse/netbeans)

Was most common (JUnit 5 adds features that are nice but less of a big deal)
@Test to designate tests

@BeforeClass/@AfterClass for methods to run once for test class
@Before/@After for methods to run around each test

Can test for exceptions

Can @Ignore tests

Can test with timeouts @Test(timeout=1000)

@ Category of tests

Can add fail messages to asserts

LGN UNIVERSITY OF

N~/

¥ CALGARY

27

JUnit 5

* JUnit 5 (AKA JUnit Jupiter)

Tag name changes (same functionality)

Messages moved to end of assert (makes copy-paste code trickier b/w versions)
@BeforeAll/@BeforeEach/@AfterAll/@AfterEach (same function, clearer name)
Can create test order

Can @Nested tests to only run if outer passes

AssertThrows better than @Test (expected==Exception.class)

LGN UNIVERSITY OF

¥) CALGARY

JUnit Framework

""""""""""""""

7 CALGARY

29

JUnit Framework

* The JUnit framework does the following:
* Sets up conditions needed for testing

* Creates objects, allocates resources, etc.

* Calls the method
* Verifies the method worked as expected
* Cleans up

* Deallocates resources, etc.

LGN UNIVERSITY OF

W) CALGARY

30

JUnit Framework

* All test methods must be annotated with @Test

* Are invoked automatically by the framework

* Each method uses various assert helper methods
* Aborts the test method if the assertion fails
* Reports failures to the user

LGN UNIVERSITY OF

W) CALGARY

31

JUnit Asserts

* JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)

* assertEquals(expected, actual, [String message])
* message is optional

 assertEquals(expected, actual, tolerance, [String message])
* Useful for imprecise f.p. numbers

 assertNull(Object object, [String message])
* Asserts that the object is null
* Also: assertNotNull()

II‘J:JI UNIVERSITY OF

W) CALGARY

32

JUnit Asserts

* JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)

* assertSame(expected, actual, [String message])
* Asserts that expected and actual point to the same object
* Also: assertNotSame()

* assertTrue(boolean condition, [String message])
* Also: assertFalse()

* fail([String message])
* Fails the test immediately
* Used to mark code that should not be reached

II‘J:JI UNIVERSITY OF

W) CALGARY

JUnit Before/After Examples

""""""""""""""

/) CALGARY

34

JUnit AfterAll/BeforeAll

Use @BeforeAll to mark a method used to initialize the testing environment
before every test in test class

* E.g. Allocate resources, initialize state

Use @AfterAll to mark a method used to clean up after every test in test class
* E.g. Deallocate resources

Are invoked before and after EVERY test method is run

Incredibly useful to make objects re-used across multiple tests

 Tests should be designed to be run independently, and in any order
* (JUnit DOES NOT follow your source code order)

34

LGN UNIVERSITY OF

W) CALGARY

35

JUnit AfterEach/BeforeEach

* Like @BeforeAll/@AfterAll, but once for the whole test class (instead of each
function)

* Good for static setups, like database connections

* Use @BeforeEach to mark a method used to initialize the testing environment
when test class is initialized

* E.g. Allocate resources, initialize state

* Use @AfterEach to mark a method used to clean up after every test in test
class is complete

* E.g. Deallocate resources

LGN UNIVERSITY OF

W) CALGARY

36

Junit: Before and after

* BeforeAll — things you need for multiple
tests (connections to resources,
constants), shouldn’t be changed by tests

 AfterAll — cleanup things related to
BeforeClass

* |ssue here?

@BeforeAll

@AfterAll

setup_class ()1

tl 14 +

teardown_class()1

LGN UNIVERSITY OF

W) CALGARY

Junit: Before and after

* BeforeAll — things you need for multiple
tests (connections to resources,
constants), shouldn’t be changed by tests

 AfterAll — cleanup things related to
BeforeClass

[]

@BeforeAll
setup_class(){

@AfterAll

teardown_class(){

37

@Test
testLargest1() {
expResult =

result = Largest.largest5(

assertEquals(expResult, result

lel =

@Test
testLargest2() {
expResult =
result = Largest.largest5(
assertEquals(expResult, result

[e] =

A UNIVERSITY OF

AN
&)

CALGARY

Junit: Before and after

* BeforeAll — things you need for multiple
tests (connections to resources,
constants), shouldn’t be changed by tests @BeforeAll

| setup_class(){

L=

 AfterAll — cleanup things related to
BeforeClass

@AfterAll
* Best used when you need some sort of !

infrastructure through-out the whole test,
like a connection

teardown_class(){
.disconnect():

LGN UNIVERSITY OF

W) CALGARY

39

Junit: Before and after

* BeforeEach — things used for multiple
tests, often changed by tests

» AfterEach — clean up stuff related to
Before

* Proper usage for setting up an object,
especially if you want to re-use it for
multiple tests

* Great if you have a large amount of
related classes to setup before a test can
begin operating

* Ex. A lecture object connected with a list
of student

L]

@BeforeEach

| setup_test()
[1{8

@AfterEach

teardown_test() {

LGN UNIVERSITY OF

W) CALGARY

Junit: Before and after

* BeforeEach — things used for multiple
tests, often changed by tests

» AfterEach — clean up stuff related to
Before

[]

@BeforeEach
setup_test() {
[14

@AfterEach

teardown_test() {

40

@Test
testLargest1() 1
expResult =

result = Largest.largest5(

assertEquals(expResult, result

o] =

@Test
testLargest2() A
expResult =
result = Largest.largest5(
assertEquals(expResult, result

o] =

A UNIVERSITY OF

[1je3
N\

&% CALGARY

Onward to ... Command Line,
Files, and Exceptions

onathan Hudson mim UNIVERSITY OF
jwhudson@ucal)

: >~
https://pagel;.c?pi?:fl\jccggarv.ca/“iwhudson/ W CALGARY

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Software Development: �JUnit
	Unit Testing
	Unit Testing
	Benefits of Unit Testing
	Goal of Unit Testing
	Usage of Unit Testing
	Unit Testing Frameworks
	JUnit Example
	JUnit Example – Largest Integer Method
	JUnit Example – JUnit Test
	JUnit Example - Details
	JUnit Example - Running
	JUnit Example – Failing Test
	JUnit Example – Multiple Asserts
	JUnit Example – Failing Again
	JUnit Example – Fix Bug
	JUnit Example – More Tests
	JUnit Example – Negative Numbers
	JUnit Example – Exceptions?
	JUnit Example – Exceptions Expected
	JUnit Example – Null?
	Result
	JUnit Versions
	JUnit Versions
	JUnit Versions
	JUnit 4
	JUnit 5
	JUnit Framework
	JUnit Framework
	JUnit Framework
	JUnit Asserts
	JUnit Asserts
	JUnit Before/After Examples
	JUnit AfterAll/BeforeAll
	JUnit AfterEach/BeforeEach
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Onward to … Command Line, Files, and Exceptions

