
Software Development:
JUnit
CPSC 233: Introduction to Computer Science for Computer Science
Majors II
Winter 2022

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 17 November 2021

Copyright © 2021

2

Unit Testing

3

Unit Testing

• A unit test is a technique for testing the correctness of a module of source code

• You create separate test cases for every nontrivial method in the module

• Unlike most other tests, is done by developers as they code

• Is a form of “bottom-up” testing

4

Benefits of Unit Testing

• Benefits of unit testing:
• Reduces the time spent on debugging
• Catches bugs early
• Eases integration

• Bottom-up testing allows you to build a large system on a reliable
“foundation” of working low-level code

• Documents the intent of the code
• Encourages refactoring

• Tests are rerun to make sure no new bugs are introduced
• Is a form of regression testing

5

Goal of Unit Testing

• The goal of unit testing is to determine if the code:

1. Does what is intended

2. Works correctly under all conditions
• Including exceptional conditions like bad input, full disks, dropped

network connections, etc., etc.

3. Is dependable

6

Usage of Unit Testing

• Your test code is for internal use only

• Is separate from production code and is not shipped

• Production code must be “unaware” of the test code that exercises it
• However, you may have to refactor poorly structured code to make it

testable

7

Unit Testing Frameworks

• Unit testing frameworks make it easy to build and run tests

• Open source frameworks include:

• JUnit for Java
• NUnit for C#
• pytest for python

8

JUnit Example

9

JUnit Example – Largest Integer Method

• We will test the following method:
• (Note: contains some bugs right now)

10

JUnit Example – JUnit Test

• Create a test class with an initial test:

This is our function we are testing

11

JUnit Example - Details

• Your test class can be named anything
• Test methods must be annotated with @Test

• Will be invoked automatically by the test runner
• The assertEquals() will abort if the largest1() method does not return a 9

• 9 is the largest element in the list 8, 9, 7
• Save the file
• Compile using: javac *.java

12

JUnit Example - Running

• Run the test
• Use: java org.junit.runner.JUnitCore LargestTest

• The classpath must be set correctly for this to work
• Is a textual UI
• Most IDEs can run tests within their GUI

13

JUnit Example – Failing Test

Let’s try max=0 instead

14

JUnit Example – Multiple Asserts

• Create a new test testOrder():

• Tests for the largest element in all 3 positions

• Recompile and retest

15

JUnit Example – Failing Again

We had off by one error

16

JUnit Example – Fix Bug

• We find another error:
• Is an “off by one” bug:

• Change loop for correct termination

• Recompile and retest
• Should report: OK (2 tests)

17

JUnit Example – More Tests

• Add methods to test for duplicates and a list of size one:

• Recompile and retest
• Should report: OK (4 tests)

18

JUnit Example – Negative Numbers

• Add a method to test negative numbers:

• Retesting reveals another bug:

• Fix by initializing max = Integer.MIN_VALUE;
• Retest

19

JUnit Example – Exceptions?

• What should happen if the list is empty?
• Throw an exception

20

JUnit Example – Exceptions Expected

• Add a test for this

21

JUnit Example – Null?

• What if our function should crash on null input?

22

Result

• Final Function

23

JUnit Versions

24

JUnit Versions

• There are three main JUnit revisions active
• JUnit 3 (old)
• JUnit 4 (common to find examples, not recommended)
• JUnit 5 (AKA Jupiter, default in most IDEs)

25

JUnit Versions

• There are three main JUnit revisions active
• JUnit 3 (offered as step down choice by eclipse)

• JDK 1.2+

• JUnit 4
• JDK 1.5+

• JUnit 5
• JDK 1.8+ (Java 8 an higher)
• Has JUnit Vintage for running Junit 3/4 Tests

• Recommend using JUnit5 and an IDE environment like eclipse

26

JUnit 4

• JUnit 4 (included in eclipse/netbeans)
• Was most common (JUnit 5 adds features that are nice but less of a big deal)
• @Test to designate tests
• @BeforeClass/@AfterClass for methods to run once for test class
• @Before/@After for methods to run around each test
• Can test for exceptions
• Can @Ignore tests
• Can test with timeouts @Test(timeout=1000)
• @Category of tests
• Can add fail messages to asserts

27

JUnit 5

• JUnit 5 (AKA JUnit Jupiter)
• Tag name changes (same functionality)
• Messages moved to end of assert (makes copy-paste code trickier b/w versions)
• @BeforeAll/@BeforeEach/@AfterAll/@AfterEach (same function, clearer name)
• Can create test order
• Can @Nested tests to only run if outer passes
• AssertThrows better than @Test (expected==Exception.class)

28

JUnit Framework

29

JUnit Framework

• The JUnit framework does the following:
• Sets up conditions needed for testing

• Creates objects, allocates resources, etc.
• Calls the method
• Verifies the method worked as expected
• Cleans up

• Deallocates resources, etc.

30

JUnit Framework

• All test methods must be annotated with @Test
• Are invoked automatically by the framework

• Each method uses various assert helper methods
• Aborts the test method if the assertion fails
• Reports failures to the user

31

JUnit Asserts

• JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)

• assertEquals(expected, actual, [String message])
• message is optional

• assertEquals(expected, actual, tolerance, [String message])
• Useful for imprecise f.p. numbers

• assertNull(Object object, [String message])
• Asserts that the object is null
• Also: assertNotNull()

32

JUnit Asserts

• JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)

• assertSame(expected, actual, [String message])
• Asserts that expected and actual point to the same object
• Also: assertNotSame()

• assertTrue(boolean condition, [String message])
• Also: assertFalse()

• fail([String message])
• Fails the test immediately
• Used to mark code that should not be reached

33

JUnit Before/After Examples

34

JUnit AfterAll/BeforeAll

• Use @BeforeAll to mark a method used to initialize the testing environment
before every test in test class

• E.g. Allocate resources, initialize state

• Use @AfterAll to mark a method used to clean up after every test in test class
• E.g. Deallocate resources

• Are invoked before and after EVERY test method is run
• Incredibly useful to make objects re-used across multiple tests
• Tests should be designed to be run independently, and in any order

• (JUnit DOES NOT follow your source code order)

34

35

JUnit AfterEach/BeforeEach

• Like @BeforeAll/@AfterAll, but once for the whole test class (instead of each
function)

• Good for static setups, like database connections

• Use @BeforeEach to mark a method used to initialize the testing environment
when test class is initialized

• E.g. Allocate resources, initialize state

• Use @AfterEach to mark a method used to clean up after every test in test
class is complete

• E.g. Deallocate resources

36

Junit: Before and after

• BeforeAll – things you need for multiple
tests (connections to resources,
constants), shouldn’t be changed by tests

• AfterAll – cleanup things related to
BeforeClass

• Issue here?

37

Junit: Before and after

• BeforeAll – things you need for multiple
tests (connections to resources,
constants), shouldn’t be changed by tests

• AfterAll – cleanup things related to
BeforeClass

38

Junit: Before and after

• BeforeAll – things you need for multiple
tests (connections to resources,
constants), shouldn’t be changed by tests

• AfterAll – cleanup things related to
BeforeClass

• Best used when you need some sort of
infrastructure through-out the whole test,
like a connection

39

Junit: Before and after

• BeforeEach – things used for multiple
tests, often changed by tests

• AfterEach – clean up stuff related to
Before

• Proper usage for setting up an object,
especially if you want to re-use it for
multiple tests

• Great if you have a large amount of
related classes to setup before a test can
begin operating

• Ex. A lecture object connected with a list
of student

40

Junit: Before and after

• BeforeEach – things used for multiple
tests, often changed by tests

• AfterEach – clean up stuff related to
Before

Onward to … Command Line,
Files, and Exceptions

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Software Development: �JUnit
	Unit Testing
	Unit Testing
	Benefits of Unit Testing
	Goal of Unit Testing
	Usage of Unit Testing
	Unit Testing Frameworks
	JUnit Example
	JUnit Example – Largest Integer Method
	JUnit Example – JUnit Test
	JUnit Example - Details
	JUnit Example - Running
	JUnit Example – Failing Test
	JUnit Example – Multiple Asserts
	JUnit Example – Failing Again
	JUnit Example – Fix Bug
	JUnit Example – More Tests
	JUnit Example – Negative Numbers
	JUnit Example – Exceptions?
	JUnit Example – Exceptions Expected
	JUnit Example – Null?
	Result
	JUnit Versions
	JUnit Versions
	JUnit Versions
	JUnit 4
	JUnit 5
	JUnit Framework
	JUnit Framework
	JUnit Framework
	JUnit Asserts
	JUnit Asserts
	JUnit Before/After Examples
	JUnit AfterAll/BeforeAll
	JUnit AfterEach/BeforeEach
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Onward to … Command Line, Files, and Exceptions

