
Object Tools
CPSC 233: Introduction to Computer Science for Computer Science 
Majors II
Winter 2022

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 10 November 2021

Copyright © 2021



2

Objects

• Every class is extended from the Object class

• What do we inherit?
• protected void finalize()

• public final Class getClass()

• public String toString()

• protected Object clone()

• public Boolean equals(Object obj)

• public int hashCode()



3

public void finalize()

Lets you cleanup when an object is garbage collected (deallocating 
memory happens for free unlike C, but sometimes you have other 
attachments to cleanup)

Doesn’t do anything in Object as there is nothing to clean-up



4

public void finalize()

We can override this if we think we have special things to clean-up

However, garbage collection is not under our control

You can attempt to trigger it sooner with System.gc() but still no guarantees

Being phased out with Java 9 and better ways to cleanup after 
ourselves like AutoCloseable interface



5

public final Class getClass()

Returns the runtime class of this Object.



6

public final Class getClass()

Similar to instanceof except it is a strict comparison

i.e. if B extends A, then

A instanceof A is true and A.getClass() == A.class is true 

B instanceof A is true but B.getClass() == A.class is false



7

public String toString()

getClass().getName() is the String version of the class name

• This String includes the package path of the Object

• Returns “java.lang.Object”



8

public String toString()

getClass().getName() is the String version of the class name

• But, what is hashCode() as a hexString(), for now it is just a hexadecimal
[0-9a-f] string of internal integer id given to each object as it is created in Java



9

public String toString()

• We have already had many cases where we used our ability to 
override this method



10

public String toString()

• java.lang.Object@15db9742
• java.lang.Object@6d06d69c
• java.lang.Object@7852e922
• java.lang.Object@4e25154f
• java.lang.Object@70dea4e
• java.lang.Object@5c647e05
• java.lang.Object@33909752
• java.lang.Object@55f96302
• java.lang.Object@3d4eac69
• java.lang.Object@42a57993



11

public Object clone()

Clone (Copy) an object (unclear what type it has to be!)

Two types of copying exist

Shallow copy

Deep copy



12

public Object clone()

Shallow copy

• all instance primitive type variables have the same 
number

• all instance object pointers point to the same object



13

public Object clone()

Deep copy

• all instance primitive type variables have the same number

• all instance object pointer point to a new deep copy of those
objects



14

public Object clone()

Shallow copy

• all instance base type variables have the same number

•all instance object pointer point to the same object 

Deep copy (PREFERRED)

• all instance base type variables have the same number

• all instance object pointer point to a new deep copy of the object



15

public Object clone()

Shallow copy

• all instance base type variables have the same number

• all instance object pointer point to the same object

•(WHY NOT? -> unintended consequences) 

•Deep copy (PREFERRED)

• all instance base type variables have the same number

• all instance object pointer point to a new deep copy of the object



16

public Object clone()

To start clone can make our life easier with a simple list of Java 
primitives like String

Nice easy copy



17

public Object clone()

To start clone can make our life easier with a simple list of Java 
primitives like String

But the ArrayList clone is shallow



18

public Object clone()

How do we implement a Cloneable class

• In Java 8

• Implement Cloneable

• Override clone()

• Have to try-catch wrap exception that is thrown

• If we just have primitive types we can use Java’s

super.clone() to handle things for us



19

public Object clone()

Alternative is to create a new object

Easier to do



20

public Object clone()

Shallow vs deep



21

public Object clone()

Shallow vs Deep



22

public Object clone()

Shallow vs Deep



23

public Object clone()

Simple Shallow vs Deep



24

This was introduced before (use for storing objects in some Collections)

By default this is the object’s creation internal integer id

These are unique for each object created 

A hashCode should be

The same every time it is used (unless object contents have changed) 

Two equal objects should produce the same hashCode

Desirable but required to guarantee that

If two objects are not equal that their hashCode is different

public int hashCode()



25

Is one object equal to another.

Where have we seen it before? 

String usage

You’ve been recommended to use

“string content”.equals(“string content”)

But why?

public boolean equals(Object obj)



26

Because == is only guaranteed to compare if two object variables point at the same 
object (not if the contents of the object are the same)

a == b may return false

public boolean equals(Object obj)



27

Because == is only guaranteed to compare if two object variables point at the same 
object (not if the contents of the object are the same)

a == b may return false (Why is this may?)

Java actually does something called interning for String since they are immutable. If 
it sees a String already used it will try to re-use the same object again. But no 
guarantees.

public boolean equals(Object obj)



28

Example, it is more likely a==b is false because the String read in will not get 
chance for intern

In summary, for String equals is a safe String comparison while == is not safe to 
guarantee the content of two strings are equal

public boolean equals(Object obj)



29

Default equals

It is generally accepted that if you plan to use java.util.Collections and you override 
equals that you also override hashCode

Also it is generally accepted that if this.equals(other) then this.compare(other) == 0

public boolean equals(Object obj)



30

It is reflexive: for any non-null reference value x, x.equals(x) should return true.

It is symmetric: for any non-null reference values x and y, x.equals(y) should return
true if and only if y.equals(x) returns true.

It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns 
true and y.equals(z) returns true, then x.equals(z) should return true.

It is consistent: for any non-null reference values x and y, multiple invocations of 
x.equals(y) consistently return true or consistently return false, provided no 
information used in equals comparisons on the objects is modified.

For any non-null reference value x, x.equals(null) should return false.

public boolean equals(Object obj)



31

We can make our own

The keys to external definition

1. public

2. boolean

3. equals

4. Must be Object -> if you have a different class here such as the name of the
class the equals function is in you haven’t overridden equals you’ve created an
equals with a different signature

public boolean equals(Object obj)



32

We can make our own

The keys to external definition

1. public

2. boolean

3. equals

4. Must be Object (Most Common Error) -> if you have a different class here such 
as the name of the class the equals function is in you haven’t overridden equals 
you’ve created an equals with a different signature

public boolean equals(Object obj)



33

We can make our own

The keys to internal definition

1. Check if obj == this -> not necessary but efficient

2. Check if obj != null -> should always be false if null

3. Check if obj has same class as this class

4. Cast Object to our class type

5. Check if internals of object are the same

public boolean equals(Object obj)



34

Two examples of class B equals

public boolean equals(Object obj)



35

There is a debate of

obj instanceof B

Vs

getClass() == obj.getClass()

Strong exact class comparison, or should inheritance be allowed? Usually it doesn’t 
matter, but since eclipse/Netbeans/etc. auto-generate it is considered important 
what they choose to do.

public boolean equals(Object obj)



36

This Person class considers to people 
the same if their id is the same, 
regardless of their name

public boolean equals(Object obj)



37

This Person class considers to people 
the same if their id is the same, 
regardless of their name

public boolean equals(Object obj)



Onward to … Interfaces

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Object Tools
	Objects
	public void finalize()
	public void finalize()
	public final Class getClass()
	public final Class getClass()
	public String toString()
	public String toString()
	public String toString()
	public String toString()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public Object clone()
	public int hashCode()
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	public boolean equals(Object obj)
	Onward to … Interfaces

