
Structures: Lists: Basics
CPSC 231: Introduction to Computer Science for Computer Science
Majors I
Spring 2021

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Friday, 30 April 2021

Copyright © 2021

2

What is a List?

• A collection of values
• Values

• May all have the same type, or
• May have different types

• Each item is referred to as an element
• Each element has an index

• Unique integer identifying its position in the list
• A list is one type of data structure

• A mechanism for organizing related data

3

Creating a List

• Format:
<list name> = [<value 1>, ..., <value n>]

• Examples:
names = []  defines an empty list
nums = [10.0, 9.0, 8.5, 5.0, 7.5]
letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
names = ['Marc', 'Jim', 'Ken’]
mixed = [1.0, 1, ”this”, True]

• By defining the list memory is allocated for it

4

* Works on Lists?

5

Repetition Operator (*)

• Just like strings, you can use asterisk to repeat a list

>list = [0]*5

>newList = list*5

Produces a list of size 5 with all elements = 0

Produces a new list of size 25 with all elements = 0

6

Indices

7

Accessing Elements

• Each list element has two unique indices, a positive one and a negative one:
• Positive indices range from 0 to the length of the list minus one (len(list)-1)
• Negative indices range from -len(list) to –1

A B C D E F G H

0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

8

Accessing Elements - Accessing a Single Element

• To access one element, use the name of the list, followed by the index of that
element in square brackets

• Use this one element just like any other variable

names[index] 
returns the value stored
at location index.

• names refers to the
whole list

• len(names)4
• names.index(‘Ken’)  1

9

Loop on List

10

Accessing Elements - Iterating Over List Items

• A for loop can be used iterates over the list values:

stuff = [1, "ICT", 3.14]
for item in stuff:

print(item)

11

Accessing Elements - Iterating Over List Indices

• Sometimes we need a loop where the control variable varies over the indices
rather than the values

stuff = [1, "ICT", 3.14]
for i in range(0, len(stuff))
print(stuff[i])

List length changes as elements are added/removed.
So, use len() function to determine the length of list.

12

Modifying List

13

Modifying Elements

• Lists are mutable, so their elements can be changed as follows:

names[index] = new_data

names[1] = “Jonathan”

14

Adding Elements

• Lists are mutable, so we can add more elements to them.
• There are three ways to add elements to a list

• append(x): adds a single element to the end of the list
names.append('Daniel')

• insert(i, x): inserts a single element into a list at index i, shifts elements at index 3+ up
names.insert(3, 'Chris')

• extend(L): extends the list by appending the given second list to it
names.extend(['Eric', 'Frank'])

15

Adding Elements

• Example:

names = []

name = input("Enter a name:")
names.append(name)

names_str = [“Joe”,”James”]
names.extend(names_str)

print(names)

16

Printing List

17

Printing List

• There are many ways to print the content of a list.
• Two common ways are:

• using print()
print('names = %s‘ , (names))

• Using a loop  allows us to print the list in a customized format:
for i in range(0, len(names), 1):

print("names[%d] = %s" % (i, names[i]))

18

2D Lists

19

2D Lists

• A list of lists (images,movies,tables,matrices -> all 2D data)
• [does not have to be rectangular]

A matrix

A table

20

2D Lists

• Format:

<list name> = [[<value 1>, <value 2>, ... , <value n>],
[<value 1>, <value 2>, ... , <value n>],

…
[<value 1>, <value 2>, ... , <value n>]]

rows

columns

21

Accessing 2D Lists

matrix1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print(matrix1)

print(matrix1[0])

print(matrix1[1])

print(matrix1[2])

row = matrix1[0]

print(row[0])

print(row[1])

print(row[2])

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

1
2
3

22

Accessing 2D Lists

matrix1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print(matrix1[0][0])

print(matrix1[0][1])

print(matrix1[0][2])

1

2

3

23

2D List: Example

24

Example: Boggle

• Generate a random board for Boggle
• 4x4 board
• Store the board in a 2D list
• Each space on the board contains one randomly selected letter
• Display the board
• Sample Board:

S N K O
V R E R
I D I N
N E G U

25

Example: Boggle
from pprint import pprint
from random import choice

NUM_ROWS = 4
NUM_COLS = 4

board = [] # Create a new, empty board
for row in range(NUM_ROWS): # Add the correct number of rows to the board
board.append([""]* NUM_COLS) # Append a row of size NUM_COLS

pprint(board) #pretty print the board

Set each element in the board to a random letter
for row in range(NUM_ROWS):
for col in range(NUM_COLS):
board[row][col] = choice("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

pprint(board) # Pretty print the board

26

2D-List Creation

• Creating the following matrix programmatically:
matrix1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

27

2D-List Creation

• Creating the following matrix programmatically:
matrix1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

matrix1 = []
for i in range (1, 10, 3):

row = [i , i + 1, i + 2]
matrix1.append(row)

print(matrix1)

matrix2=[]

ROWS=3
COLS=3

for row in range(ROWS):
matrix2.append([])
for col in range(COLS):

matrix2[row].append(counter)

print(matrix2)

28

2D-List Printing

• Using print (matrix)
• Using loops:

for row in matrix:
print(row)

for row in matrix:
output = ''
for num in row:

output += str(num) + ' '
print (output)

Print one row per
iteration

Print one row per
iteration

[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

1 2 3
4 5 6
7 8 9

Onward to … more
complicated lists.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Structures: Lists: Basics
	What is a List?
	Creating a List
	* Works on Lists?
	Repetition Operator (*)
	Indices
	Accessing Elements
	Accessing Elements - Accessing a Single Element
	Loop on List
	Accessing Elements - Iterating Over List Items
	Accessing Elements - Iterating Over List Indices
	Modifying List
	Modifying Elements
	Adding Elements
	Adding Elements
	Printing List
	Printing List
	2D Lists
	2D Lists
	2D Lists
	Accessing 2D Lists
	Accessing 2D Lists
	2D List: Example
	Example: Boggle
	Example: Boggle
	2D-List Creation
	2D-List Creation
	2D-List Printing
	Onward to … more complicated lists.

