Information and Data

CPSC 231: Introduction to Computer Science for Computer Science Majors I Spring 2021

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Friday, 30 April 2021

Copyright © 2021

What is Information?



Definition: The state of being of an object or system of interest

Data: raw facts, representation of information, no context

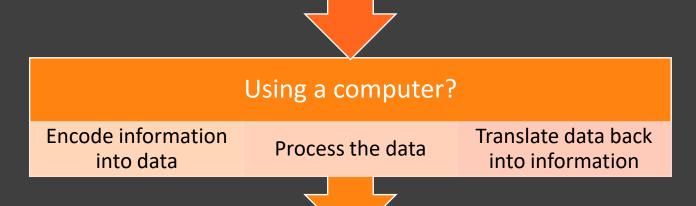
Encoding: The translation of information into data

(Decoding the other direction

Data represents information

Information Processing

A change of information in any manner detectable by an observer



Moral: computers process data, not information – it is our responsibility to interpret the data correctly.

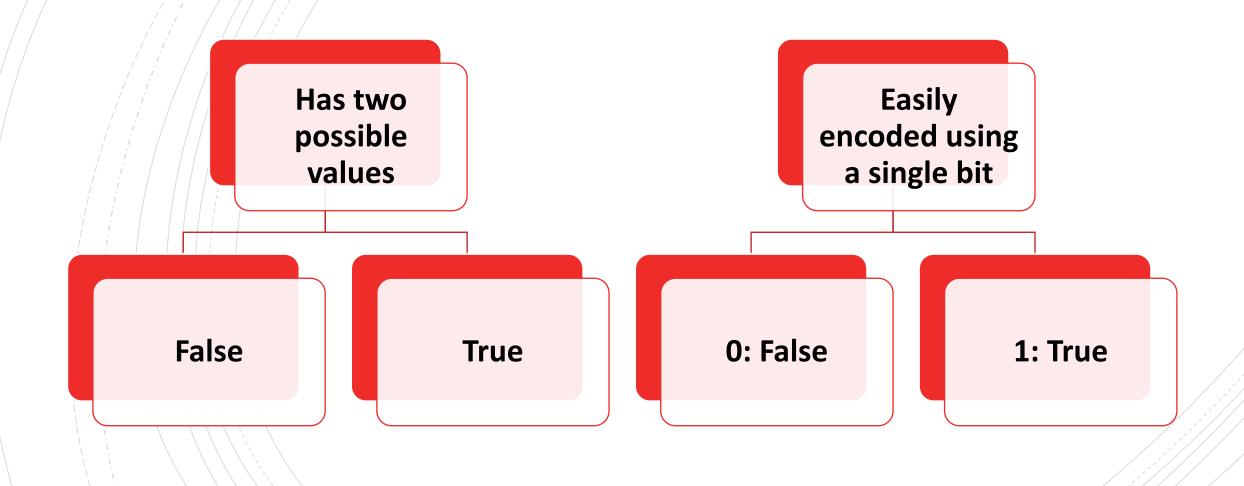
Storing Data

All data in a computer is either a 0 or 1

Called a bit (binary digit)

Electrically, this is a switch that is either open or closed

Boolean Data



Integer Data

How do we represent the numbers 5, 24, or 367 using only ones and zeros?

Simplest idea:

```
11111 = 5
11111 11111 11111 1111 = 24
```

Not practical for large integers!

Other ideas?



Number Systems

- Decimal (Base 10)
 - 10 distinct symbols (0,1,2,3,4,5,6,7,8,9)
 - Each digit is a factor of 10 larger than the digit to its right
- Examples:

$$5 = 5 \times 1$$

 $24 = 2 \times 10 + 4 \times 1$
 $367 = 3 \times 100 + 6 \times 10 + 7 \times 1$



Number Systems

- Decimal (Base 10)
 - 10 distinct symbols (0,1,2,3,4,5,6,7,8,9)
 - Each digit is a factor of 10 larger than the digit to its right
- Examples:

$$5 = 5 \times 10^{0}$$

 $24 = 2 \times 10^{1} + 4 \times 10^{0}$
 $367 = 3 \times 10^{2} + 6 \times 10^{1} + 7 \times 10^{0}$

Number Systems

THIS IS A POSITIONAL SYSTEM – THE POSITION WITHIN THE NUMBER IMPACTS THE FACTOR BY WHICH THE DIGIT IS MULTIPLIED.

CHOICE OF BASE 10 IS (SOMEWHAT) ARBITRARY – CAN USE ANY INTEGER BASE >= 1

NOTE: THERE IS NOTHING SPECIAL ABOUT BASE 10 – IT'S JUST WHAT WE ARE USED TO!

Binary Data

Number Systems

Binary (Base 2)

- 2 distinct symbols (0,1)
- Each digit is a factor of 2 larger than the digit to its right

Base 10: hundreds, tens, ones

Base 2: eights, fours, twos, ones

Counting in Binary

```
0 == 0

1 == 1

10 == 2

11 == 3

100 == 4

101 == 5

110 == 6

111 == 7

1000 == 8
```

 You can see how when we have a single 1 in a column (ones, two, fours, eights) that it's equivalent to that number in decimal (base 10)

Binary Numbers

Consider the base 2 number 1001101₂

```
1: ones (2°)
0: twos (2¹)
1: fours (2²)
1: eights (2³)
0: sixteens (2⁴)
0: thirty-twos (2⁵)
1: sixty-fours (2⁶)
```


Binary Numbers

Consider the base 2 number 1001101₂

```
1: ones (2°)
0: twos (2¹)
1: fours (2²)
1: eights (2³)
0: sixteens (2⁴)
0: thirty-twos (2⁵)
1: sixty-fours (2⁶)
```

• $1 \times 2^{0} + 1 \times 2^{2} + 1 \times 2^{3} + 1 \times 2^{6} = 1 + 4 + 8 + 64 = 77_{10}$ (base specified as a subscript)

Binary <-> Decimal

Binary to Decimal

• Convert 1111₂ to base 10:

• Convert 100010₂ to base 10:

• Convert 0₂ to base 10:

Binary to Decimal

• Convert 1111₂ to base 10:

$$1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} = 1 + 2 + 4 + 8 = 15_{10}$$

• Convert 100010₂ to base 10:

$$1 \times 2^{1} + 1 \times 2^{5} = 2 + 32 = 34_{10}$$

• Convert 0₂ to base 10:

0₁₀

The Division Algorithm

Allows us to convert from Decimal to Binary

```
Let Q represent the number to convert
Repeat
    Divide Q by 2, recording the Quotient, Q, and the remainder, R
Until Q is 0
Read the remainders from bottom to top
```

 Divide by the base to which we want to convert (algorithm works for conversion from decimal to any base)

Decimal to Binary

Convert 191₁₀ to Binary:

```
191 / 2 = 95, remainder 1
95 / 2 = 47, remainder 1
47 / 2 = 23, remainder 1
23 / 2 = 11, remainder 1
11 / 2 = 5, remainder 1
5 / 2 = 2, remainder 1
2 / 2 = 1, remainder 0
1 / 2 = 0, remainder 1
```


Decimal to Binary

Convert 191₁₀ to Binary:

```
191 / 2 = 95, remainder 1
95 / 2 = 47, remainder 1
47 / 2 = 23, remainder 1
23 / 2 = 11, remainder 1
11 / 2 = 5, remainder 1
5 / 2 = 2, remainder 1
2 / 2 = 1, remainder 0
1 / 2 = 0, remainder 1
```

- Reading from bottom to top: 1011 1111₂
- Check: $1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^7 = 1 + 2 + 4 + 8 + 16 + 32 + 128 = 191_{10}$

Integer Data

Integer Data

- Base 10 integers can be represented using sequences of bits
 - Common sizes:
 - 8 bits (referred to as a byte)
 - 32 bits (referred to as a word)
 - 64 bits (referred to as a double word / long)
 - 16 bits (referred to as a half word / short)

- N bits of data, each bit stores 2 things
- 2 * 2 * 2 * ... * 2 (N times)
- 2^N different things can be represented by N bits (generally numbers 0 to $2^N 1$)

Integer Data

- Base 10 integers can be represented using sequences of bits
- **Byte** [8 bits]: 0000 0000 1111 1111 (0 to 2⁸ 1)
- Word [32 bits]: $0 \text{ to } 2^{32} 1$
- **Double word (long)** [64 bits]: $0 \text{ to } 2^{64} 1$
- Half word (short) [16 bits]; 0 to 2¹⁶ 1

Negative Numbers

- Simple idea is called "Signed Magnitude".
- Idea (SM byte): right-most 7 bits represent the magnitude, first 8th bit represents the sign.

• Example:

```
65_{10} = 100 \ 0001_2
```

```
+65 as a byte: 0100 0001
-65 as a SM byte: 1100 0001
```


Negative Numbers

- Simple idea is called "Signed Magnitude".
- Idea (SM byte): right-most 7 bits represent the magnitude, first 8th bit represents the sign.
- Example:

$$65_{10} = 100 \ 0001_2$$

+65 as a byte: 0100 0001

-65 as a SM byte: 1100 0001

Losing 8th bit means we can only represent half as many positive numbers. We gain most back as negative numbers but...

what is 1000 0000? -0?

Other Bases

Other Bases

- A number system can have any base
 - Decimal: Base 10 (0,1,2,3,4,5,6,7,8,9)
 - Binary: Base 2 (0,1)
 - Octal: Base 8 (0,1,2,3,4,5,6,7)
 - Hexadecimal: Base 16 (0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f)
 - Vigesimal: Base 20 (0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,g,h,l,j)
 - Base 6 (0,1,2,3,4,5)
 - Any other number we choose...

Convert 0xA1 to decimal:

Convert 44 base 16 to decimal:

Convert CAFE₁₆ to base 10:

Convert 0xA1 to decimal:

```
A x 16<sup>1</sup> + 1 x 16<sup>0</sup> = 10 \times 16^{1} + 1 \times 16^{0} = 160 + 1 = 161_{10}
```

Convert 44 base 16 to decimal:

$$4 \times 16^{1} + 4 \times 16^{0} =$$
 $64 + 4 =$
 68_{10}

Convert CAFE₁₆ to base 10:

$$\mathbf{C} \times \mathbf{16^3} + \mathbf{A} \times \mathbf{16^2} + \mathbf{F} \times \mathbf{16^1} + \mathbf{E} \times \mathbf{16^0} =$$
 $12 \times 16^3 + 10 \times 16^2 + 15 \times 16^1 + 14 \times 16^0 =$
 $12 \times 4095 + 10 \times 256 + 15 \times 16 + 14 \times 1 =$
 51966_{10}

- Convert 507₁₀ to base 16:
- Use division method with 16 instead of 2:

- Convert 507₁₀ to base 16:
- Use division method with 16 instead of 2:

```
507/16 = 31, remainder 11 = B 31/16 = 1, remainder 15 = F 1/16 = 0, remainder 1
```


- Convert 507₁₀ to base 16:
- Use division method with 16 instead of 2:

$$507/16 = 31$$
, remainder $11 = B$ $31/16 = 1$, remainder $15 = F$ $1/16 = 0$, remainder 1

- Reading from bottom to top: 1FB₁₆
- Check your work:

$$1 \times 16^{2} + F \times 16^{1} + B \times 16^{0} = 1 \times 16^{2} + 15 \times 16^{1} + 11 \times 16^{0} = 256 + 240 + 11 = 507_{10}$$

Utility of Hexadecimal

- Common to have groups of 32 bits
 - 32 bits is cumbersome to write
 - easy to make mistakes
- Use hexadecimal as a shorthand
 - 8 hex digits instead of 32 bits
 - Group bits from the right
 - Memorize mapping from binary to hex for values between 0 and F

Utility of Hexadecimal

Convert 0xF51A to binary

Convert 100100101010101010100 from binary to hex

Utility of Hexadecimal

Convert 0xF51A to binary

 $F=1111_2$, $5 = 0101_2$, $1 = 0001_2$, $A=1010_2$ **1111 0101 0001 1010₂**

Convert 100100101010101010100 from binary to hex

10 0100 1010 1010 1101 0100

0010=2 0100=4 1010=10 1010=10 1101=13 0100=4

0010=2 0100=4 1010=a 1010=a 1101=d 0100=4

0x24aad4

Character Data

Representing Characters

- Standard encoding scheme called ASCII
 - American Standard Code for Information Interchange
 - **7 bits per character** (2⁷ = 128 possible characters)
 - Includes printable characters
 - Includes "control characters" that impact formatting (tab, newline), data transmission (mostly obsolete)
 - Layout seems arbitrary, but actually contains some interesting patterns

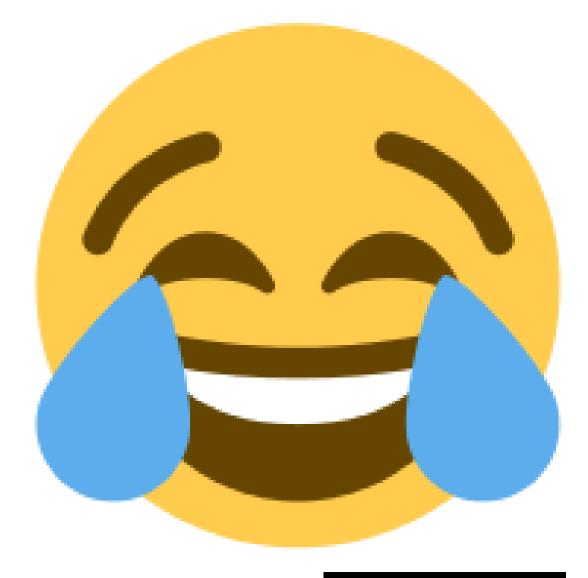
Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char
0	0000 0000	00	[NUL]	32	0010 0000	20	space	64	0100 0000	40	0	96	0110 0000	60	`
1	0000 0001	01	[SOH]	33	0010 0001	21	!	65	0100 0001	41	A	97	0110 0001	61	a
2	0000 0010	02	[STX]	34	0010 0010	22	π	66	0100 0010	42	В	98	0110 0010	62	b
3	0000 0011	03	[ETX]	35	0010 0011	23	#	67	0100 0011	43	C	99	0110 0011	63	C
4	0000 0100	04	[EOT]	36	0010 0100	24	\$	68	0100 0100	44	D	100	0110 0100	64	d
5	0000 0101	05	[ENQ]	37	0010 0101	25	%	69	0100 0101	45	E	101	0110 0101	65	е
6	0000 0110	06	[ACK]	38	0010 0110	26	£	70	0100 0110	46	F	102	0110 0110	66	f
7	0000 0111	07	[BEL]	39	0010 0111	27		71	0100 0111	47	G	103	0110 0111	67	g
8	0000 1000	80	[BS]	40	0010 1000	28	(72	0100 1000	48	н	104	0110 1000	68	h
9	0000 1001	09	[TAB]	41	0010 1001	29)	73	0100 1001	49	I	105	0110 1001	69	i
10	0000 1010	A0	[LF]	42	0010 1010	2 A	*	74	0100 1010	4A	J	106	0110 1010	6 A	j
11	0000 1011	0B	[VT]	43	0010 1011	2B	+	75	0100 1011	4B	K	107	0110 1011	6B	k
12	0000 1100	0C	[FF]	44	0010 1100	2C	,	76	0100 1100	4C	L	108	0110 1100	6C	1
13	0000 1101	0D	[CR]	45	0010 1101	2D	-	77	0100 1101	4 D	M	109	0110 1101	6D	m
14	0000 1110	0E	[SO]	46	0010 1110	2E	•	78	0100 1110	4E	N	110	0110 1110	6E	n
15	0000 1111	0F	[SI]	47	0010 1111	2 F	/	79	0100 1111	4F	0	111	0110 1111	6 F	0
16	0001 0000	10	[DLE]	48	0011 0000	30	0	80	0101 0000	50	P	112	0111 0000	70	p
17	0001 0001	11	[DC1]	49	0011 0001	31	1	81	0101 0001	51	Q	113	0111 0001	71	q
18	0001 0010	12	[DC2]	50	0011 0010	32	2	82	0101 0010	52	R	114	0111 0010	72	r
19	0001 0011	13	[DC3]	51	0011 0011	33	3	83	0101 0011	53	S	115	0111 0011	73	s
20	0001 0100	14	[DC4]	52	0011 0100	34	4	84	0101 0100	54	T	116	0111 0100	74	t
21	0001 0101	15	[NAK]	53	0011 0101	35	5	85	0101 0101	55	U	117	0111 0101	75	u
22	0001 0110	16	[SYN]	54	0011 0110	36	6	86	0101 0110	56	v	118	0111 0110	76	v
23	0001 0111	17	[ETB]	55	0011 0111	37	7	87	0101 0111	57	W	119	0111 0111	77	w
24	0001 1000	18	[CAN]	56	0011 1000	38	8	88	0101 1000	58	X	120	0111 1000	78	x
25	0001 1001	19	[EM]	57	0011 1001	39	9	89	0101 1001	59	Y	121	0111 1001	79	У
26	0001 1010	1 A	[SUB]	58	0011 1010	3 A	:	90	0101 1010	5 A	Z	122	0111 1010	7 A	z
27	0001 1011	1B	[ESC]	59	0011 1011	3B	;	91	0101 1011	5B]	123	0111 1011	7в	{
28	0001 1100	1C	[FS]	60	0011 1100	3C	<	92	0101 1100	5C	\	124	0111 1100	7C	1
29	0001 1101	1 D	[GS]	61	0011 1101	3D	=	93	0101 1101	5D]	125	0111 1101	7 D	}
30	0001 1110	1E	[RS]	62	0011 1110	3 E	>	94	0101 1110	5E	^	126	0111 1110	7E	~
31	0001 1111	1F	[US]	63	0011 1111	3 F	?	95	0101 1111	5 F	_	127	0111 1111	7 F	[DEL]

Representing More Characters

- Limitation of ASCII?
 - Only supports Latin character set
 - No support for accents, additional character sets
 - Solutions?

Representing More Characters

- UTF-8
 - Another encoding scheme for characters
 - Variable length 1, 2, 3 or 4 bytes per character
 - Compatible with ASCII
 - Consider each byte
 - Left most bit is 0? Usual ASCII Character
 - Left most bits are 110? 2 byte character
 - Left most bits are 1110? 3 byte character
 - Left most bits are 11110? 4 byte character
 - $xF0\x9F\x98\x82 \rightarrow tears of joy$
 - (\x indicates hexadecimal bytes here)



Number	Bits for	First	Last	Purto 1	Purto 2	Purto 2	Byte 4	
of bytes	code point	code point	code point	Byte 1	Byte 2	Byte 3		
1	7	U+0000	U+007F	0xxxxxxx				
2	11	U+0080	U+07FF	110xxxxx	10xxxxxx			
3	16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx		
4	21	U+10000	U+10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx	

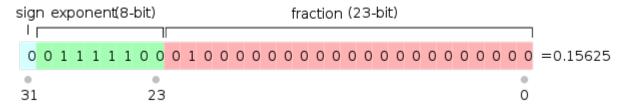
This Photo by Unknown Author is licensed under CC BY-SA

Decimal Point Numbers

Representing Real Numbers

- Standard Representation: IEEE 754 Floating Point
 - Express the number in scientific notation
 - -0.0002589 becomes -2.589 * 10-4
- Need to store sign, exponent, and mantissa (the fraction)
- 32-bit floating point representation:
- sign (1 bit), exponent (8 bits), mantissa (23 bits)
- 64-bits:
- sign (1 bit), exponent (11 bits), mantissa (52 bits)

IEEE 754 – 32 Bit



This Photo by Unknown Author is licensed under CC BY-SA

Problems with Real Numbers

- How many real numbers are there? Infinity
- How many real numbers are there between 0 and 1? Infinity
- How many values can be represented by 32 or 64 bits?
- $2^{32} = 4.2$ billion,
- $2^{64} = 1.8 \times 10^{19}$
- Largest values: 2³² 1 and 2⁶⁴ 1
- What's the problem?

Problems with Real Numbers

- Problem: some real numbers exist that cannot be represented exactly in floating point
- (eg. 1/3 = 0.3333333...., sqrt(2) = 1.414213...).
- Thus floating point numbers only **approximate** real numbers (and maintaining accuracy is a very important concern!).

Image Data

Encoding Images

- Common Techniques
 - Vector Images
 - Vector images: "line work" Image is encoded as a collection of geometric primitives such as points, lines, curves.
 - Raster Images
 - Raster images: constructed from a grid of pixels (picture elements), where each picture is assigned a color

Representing Colors

- How do we represent a color as a sequence of bits?
- Can represent almost any color as a combination of some red, some green, and some blue. Typically use a scale from 0 (no light of that color) to 255 (full on for that color). Yields 256x256x256 = 16 million different possible colors.
 - (256 = 16*16 or two hex symbols)
- To represent an image: 3 color components for each pixel (becomes a lot of bytes very quickly!)

Videos

- Raster image storage formats like jpg heavily use 'compression' to reduce storage size
 - Basic ideas, reduce quantity of colours stored, and group idea of 'where colours are' to store less information
- Video compression works similar but since video is a sequence of frames where each frame is an image, they also make use of reducing data by grouping idea of 'colours stay the same and where' across multiple frames
 - Great example of compression failure → confetti
 - When confetti is in image, the colour of spot changes every frame and nearby spots are different each frame
 - This means more info is needed per frame, as a result at the same data rate, the image quality will go down (boxy artifacts will appear, or even decoding breaks down)
 - This is the same reasons sports struggle with compressed video

Onward to ... decisions.

