Information and Data

CPSC 231: Introduction to Computer Science for Computer Science Majors I
 Spring 2021

Jonathan Hudson, Ph.D.

Instructor
Department of Computer Science
University of Calgary
Friday, 30 April 2021
Copyright © 2021

What is Information?

"
 66

Etymology: Latin, "to give form to" or "to form an idea of"

Definition: The state of being of an object or system of interest

Data: raw facts, representation of information, no context

Information Processing

Storing Data

All data in a computer is either a 0 or 1

Called a bit (binary digit)
Electrically, this is a switch that is either open or closed

Encoding schemes translate integers,

 real numbers, letters, pictures, ... into bits
Boolean Data

How do we represent the numbers 5,24 , or 367 using only ones and zeros?

Simplest idea:
$11111=5$
$111111111111111111111111=24$
Not practical for large integers!

Other ideas?

Number Systems

- Decimal (Base 10)
- 10 distinct symbols ($0,1,2,3,4,5,6,7,8,9$)
- Each digit is a factor of 10 larger than the digit to its right
- Examples:
$5=5 \times 1$
$24=2 \times 10+4 \times 1$
$367=3 \times 100+6 \times 10+7 \times 1$

Number Systems

- Decimal (Base 10)
- 10 distinct symbols ($0,1,2,3,4,5,6,7,8,9$)
- Each digit is a factor of 10 larger than the digit to its right
- Examples:
$5=5 \times 10^{0}$
$24=2 \times 10^{1}+4 \times 10^{0}$
$367=3 \times 10^{2}+6 \times 10^{1}+7 \times 10^{0}$

Number Systems

CHOICE OF BASE 10 IS (SOMEWHAT) ARBITRARY CAN USE ANY INTEGER BASE >= 1

NOTE: THERE IS NOTHING SPECIAL ABOUT BASE 10 - IT'S JUST WHAT WE ARE USED TO!

Binary Data

Number

 Systems
Binary (Base 2)

- 2 distinct symbols (0,1)
- Each digit is a factor of 2 larger than the digit to its right

Base 10: hundreds, tens, ones
Base 2: eights, fours, twos, ones

Counting in Binary

0	$==0$
1	$==1$
10	$==2$
11	$==3$
100	$==4$
101	$==5$
110	$==6$
111	$=7$
1000	$=8$

- You can see how when we have a single 1 in a column (ones, two, fours, eights) that it's equivalent to that number in decimal (base 10)

Binary Numbers

- Consider the base 2 number 1001101_{2}

1: ones $\left(2^{0}\right)$
$0: \quad$ twos $\left(2^{1}\right)$
1: fours $\left(2^{2}\right)$
1: eights $\left(2^{3}\right)$
0: sixteens (2^{4})
0 : thirty-twos $\left(2^{5}\right)$
1: sixty-fours $\left(2^{6}\right)$

Binary Numbers

- Consider the base 2 number 1001101_{2}

1: ones (2°)
0 : twos (2^{1})
1: fours (2^{2})
1: eights (2 ${ }^{3}$)
0 : sixteens (2^{4})
0 : thirty-twos (2^{5})
1: sixty-fours $\left(2^{6}\right)$

- $1 \times 2^{0}+1 \times 2^{2}+1 \times 2^{3}+1 \times 2^{6}=1+4+8+64=77_{10}$ (base specified as a subscript)

Binary <-> Decimal

Binary to Decimal

- Convert 1111_{2} to base 10 :
- Convert 100010_{2} to base 10 :
- Convert O_{2} to base 10 :

Binary to Decimal

- Convert 1111_{2} to base 10:

- Convert 100010 to base 10 :
$1 \times 2^{1}+1 \times 2^{5}=2+32=34_{10}$
- Convert O_{2} to base 10 :
0_{10}

The Division Algorithm

- Allows us to convert from Decimal to Binary

```
Let Q represent the number to convert
Repeat
    Divide Q by 2, recording the Quotient, Q, and the remainder, R
Until Q is O
Read the remainders from bottom to top
```

- Divide by the base to which we want to convert (algorithm works for conversion from decimal to any base)

Decimal to Binary

- Convert 191_{10} to Binary:

191 / 2 = 95, remainder 1
95 / 2 = 47, remainder 1
47 / $2=23$, remainder 1
23 / 2 = 11, remainder 1
11 / 2 = 5, remainder 1
$5 / 2=2$, remainder 1
2 / 2 = 1, remainder 0
1 / 2 = 0, remainder 1

Decimal to Binary

- Convert 191_{10} to Binary:

```
191 / 2 = 95, remainder 1
```

$95 / 2=47$, remainder 1
$47 / 2=23$, remainder 1
23 / 2 = 11, remainder 1
$11 / 2=5$, remainder 1
$5 / 2=2$, remainder 1
$2 / 2=1$, remainder 0
$1 / 2=0$, remainder 1

- Reading from bottom to top: 10111111_{2}
- Check: $1+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}+2^{7}=1+2+4+8+16+32+128=191_{10}$

Integer Data

Integer Data

- Base 10 integers can be represented using sequences of bits
- Common sizes:
- 8 bits (referred to as a byte)
- 32 bits (referred to as a word)
- 64 bits (referred to as a double word / long)
- 16 bits (referred to as a half word / short)
- N bits of data, each bit stores 2 things
- 2 * 2 * 2 *... *2 (N times)
- 2^{N} different things can be represented by N bits (generally numbers 0 to $2^{N}-1$)

Integer Data

- Base 10 integers can be represented using sequences of bits
- Byte [8 bits]: $00000000-11111111$ (0 to $2^{8}-1$)
- Word [32 bits]: 0 to $2^{32}-1$
- Double word (long) [64 bits]: 0 to $2^{64}-1$
- Half word (short) [16 bits]; 0 to $2^{16}-1$

Negative Numbers

- Simple idea is called "Signed Magnitude".
- Idea (SM byte): right-most 7 bits represent the magnitude, first $\mathbf{8}^{\text {th }}$ bit represents the sign.
- Example:

```
6510}=1000001
+65 as a byte: 0100 0001
-65 as a SM byte: 1100 0001
```


Negative Numbers

- Simple idea is called "Signed Magnitude".

- Idea (SM byte): right-most 7 bits represent the magnitude, first $\mathbf{8}^{\text {th }}$ bit represents the sign.
- Example:

$65_{10}=1000001_{2}$	Losing $8^{\text {th }}$ bit means we can only represent half as many positive numbers. We gain most back as
negative numbers but...	

Other Bases

Other Bases

- A number system can have any base
- Decimal: Base 10 (0,1,2,3,4,5,6,7,8,9)
- Binary: Base $2(0,1)$
- Octal: Base 8 (0,1,2,3,4,5,6,7)
- Hexadecimal: Base 16 (0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f)
- Vigesimal: Base 20 ($0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f, g, h, l, j)$
- Base 6 (0,1,2,3,4,5)
- Any other number we choose...

Hexadecimal

- Convert 0xA1 to decimal:
- Convert 44 base 16 to decimal:
- Convert CAFE_{16} to base 10 :

Hexadecimal

- Convert 0xA1 to decimal:
$A \times 16^{1}+1 \times 16^{0}=$
$10 \times 16^{1}+1 \times 16^{0}=$
$160+1=$ 161_{10}
- Convert 44 base 16 to decimal:
$4 \times 16^{1}+4 \times 16^{0}=$
$64+4=$
$68{ }_{10}$
- Convert CAFE $_{16}$ to base 10:
$\mathrm{C} \times 16^{\mathbf{3}}+\mathrm{A} \times 16^{\mathbf{2}}+\mathrm{F} \times 16^{1}+\mathrm{E} \times 16^{0}=$ $12 \times 16^{3}+10 \times 16^{2}+15 \times 16^{1}+14 \times 16^{0}=$ $12 \times 4095+10 \times 256+15 \times 16+14 \times 1=$ 51966_{10}

Hexadecimal

- Convert 507_{10} to base 16 :
- Use division method with 16 instead of 2:

Hexadecimal

- Convert 507_{10} to base 16 :
- Use division method with 16 instead of 2 :

507/16 = 31, remainder $11=B$
$31 / 16=1$, remainder $15=\mathrm{F}$
$1 / 16=0$, remainder 1

Hexadecimal

- Convert 507_{10} to base 16 :
- Use division method with 16 instead of 2 :

507/16 = 31, remainder $11=B$
$31 / 16=1$, remainder $15=\mathrm{F}$
1/16 = 0, remainder 1

- Reading from bottom to top: $1 \mathrm{FB}_{16}$
- Check your work:
$1 \times 16^{2}+F \times 16^{1}+B \times 16^{0}=1 \times 16^{2}+15 \times 16^{1}+11 \times 16^{0}=256+240+11=507_{10}$

Utility of Hexadecimal

- Common to have groups of 32 bits
- 32 bits is cumbersome to write
- easy to make mistakes
- Use hexadecimal as a shorthand
- 8 hex digits instead of 32 bits
- Group bits from the right
- Memorize mapping from binary to hex for values between 0 and F

Utility of Hexadecimal

Convert 0xF51A to binary

Convert 1001001010101011010100 from binary to hex

Utility of Hexadecimal

Convert 0xF51A to binary
$F=1111_{2}, 5=0101_{2}, 1=0001_{2}, A=1010_{2}$ 1111010100011010_{2}

Convert 1001001010101011010100 from binary to hex
$10 \quad 01001010101011010100$
$0010=2 \quad 0100=4 \quad 1010=10 \quad 1010=10 \quad 1101=13 \quad 0100=4$
$0010=2 \quad 0100=4 \quad 1010=a \quad 1010=a \quad 1101=\mathrm{d} \quad 0100=4$

0x24aad4

Character Data

Representing Characters

- Standard encoding scheme called ASCII

- American Standard Code for Information Interchange
- 7 bits per character ($2^{7}=128$ possible characters)
- Includes printable characters
- Includes "control characters" that impact formatting (tab, newline), data transmission (mostly obsolete)
- Layout seems arbitrary, but actually contains some interesting patterns

Dec	Bin	Hex	Char													
0	00000000	00	[NUL]	32	00100000	20	space	64	01000000	40	@	96	01100000	60		
1	00000001	01	[SOH]	33	00100001	21	!	65	01000001	41	A	97	01100001	61	a	
2	00000010	02	[STX]	34	00100010	22	"	66	01000010	42	B	98	01100010	62	b	
3	00000011	03	[ETX]	35	00100011	23	\#	67	01000011	43	C	99	01100011	63	c	
4	00000100	04	[EOT]	36	00100100	24	\$	68	01000100	44	D	100	01100100	64	d	
5	00000101	05	[ENQ]	37	00100101	25	\%	69	01000101	45	E	101	01100101	65	e	
6	00000110	06	[ACK]	38	00100110	26	\&	70	01000110	46	F	102	01100110	66	f	
7	00000111	07	[BEL]	39	00100111	27	'	71	01000111	47	G	103	01100111	67	g	
8	00001000	08	[BS]	40	00101000	28	$($	72	01001000	48	H	104	01101000	68	h	
9	00001001	09	[TAB]	41	00101001	29)	73	01001001	49	I	105	01101001	69	i	
10	00001010	0A	[LF]	42	00101010	2A	*	74	01001010	4A	J	106	01101010	6A	j	
11	00001011	OB	[VT]	43	00101011	2B	+	75	01001011	4B	K	107	01101011	6B	k	
12	00001100	OC	[FF]	44	00101100	2C	,	76	01001100	4C	L	108	01101100	6C	1	
13	00001101	OD	[CR]	45	00101101	2D	-	77	01001101	4D	M	109	01101101	6D	m	
14	00001110	OE	[SO]	46	00101110	2E	-	78	01001110	4E	N	110	01101110	6E	n	
15	00001111	OF	[SI]	47	00101111	2F	1	79	01001111	4F	0	111	01101111	6F	\bigcirc	
16	00010000	10	[DLE]	48	00110000	30	0	80	01010000	50	P	112	01110000	70	p	
17	00010001	11	[DC1]	49	00110001	31	1	81	01010001	51	Q	113	01110001	71	q	
18	00010010	12	[DC2]	50	00110010	32	2	82	01010010	52	R	114	01110010	72	r	
19	00010011	13	[DC3]	51	00110011	33	3	83	01010011	53	S	115	01110011	73	s	
20	00010100	14	[DC4]	52	00110100	34	4	84	01010100	54	T	116	01110100	74	t	
21	00010101	15	[NAK]	53	00110101	35	5	85	01010101	55	U	117	01110101	75	u	
22	00010110	16	[SYN]	54	00110110	36	6	86	01010110	56	V	118	01110110	76	v	
23	00010111	17	[ETB]	55	00110111	37	7	87	01010111	57	W	119	01110111	77	w	
24	00011000	18	[CAN]	56	00111000	38	8	88	01011000	58	X	120	01111000	78	x	
25	00011001	19	[EM]	57	00111001	39	9	89	01011001	59	Y	121	01111001	79	y	
26	00011010	1A	[SUB]	58	00111010	3A	:	90	01011010	5A	Z	122	01111010	7A	z	
27	00011011	1B	[ESC]	59	00111011	3B	;	91	01011011	5B	[123	01111011	7B	1	
28	00011100	1C	[FS]	60	00111100	3C	<	92	01011100	5C	\backslash	124	01111100	7C	1	
29	00011101	1D	[GS]	61	00111101	3D	$=$	93	01011101	5D]	125	01111101	7D	\}	190 UNIVERSITY OF
30	00011110	1E	[RS]	62	00111110	3E	>	94	01011110	5E	\wedge	126	01111110	7E	\sim	(4) CALGARY
31	00011111	1F	[US]	63	00111111	3F	?	95	01011111	5F		127	01111111	7F	[DEL]	

Representing More Characters

- Limitation of ASCII?
- Only supports Latin character set
- No support for accents, additional character sets
- Solutions?

Representing More Characters

- UTF-8
- Another encoding scheme for characters
- Variable length - 1, 2, 3 or 4 bytes per character
- Compatible with ASCII
- Consider each byte
- Left most bit is $\mathbf{0}$? Usual ASCII Character
- Left most bits are 110? 2 byte character
- Left most bits are 1110? 3 byte character
- Left most bits are 11110? 4 byte character
- $\backslash x F 0 \backslash x 9 F \backslash x 98 \backslash x 82 \rightarrow$ tears of joy
- (\x indicates hexadecimal bytes here)

UTF-8

Number of bytes	Bits for code point	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	7	U+0000	U+007F	0xxexxxx			
2	11	U+0080	U+07FF	110xxxxx	10 xxxxxx		
3	16	U+0800	U+FFFF	1110 xxxx	10 xxxxxx	10 xxxxxx	
4	21	U+10000	U+10FFFF	11110 xxx	10 xxxxxx	10 xxxxxx	10xxxxxx

Decimal Point Numbers

Representing Real Numbers

- Standard Representation: IEEE 754 Floating Point
- Express the number in scientific notation
- -0.0002589 becomes $-2.589 * 10^{-4}$
- Need to store sign, exponent, and mantissa (the fraction)
- 32-bit floating point representation:
- sign (1 bit), exponent (8 bits), mantissa (23 bits)
- 64-bits:
- \quad sign (1 bit), exponent (11 bits), mantissa (52 bits)

IEEE 754-32 Bit

This Photo by Unknown Author is licensed under CC BY-SA

Problems with Real Numbers

- How many real numbers are there? Infinity
- How many real numbers are there between 0 and 1? Infinity
- How many values can be represented by 32 or 64 bits?
- $2^{32}=4.2$ billion,
- $2^{64}=1.8 \times 10^{19}$
- Largest values: $\mathbf{2}^{32} \mathbf{- 1}$ and $\mathbf{2}^{64} \mathbf{- 1}$
- What's the problem?

Problems with Real Numbers

- Problem: some real numbers exist that cannot be represented exactly in floating point
- (eg. $1 / 3=0.3333333 . . .$, sqrt(2) $=1.414213 \ldots$...).
- Thus floating point numbers only approximate real numbers (and maintaining accuracy is a very important concern!).

Image Data

Encoding Images

- Common Techniques

- Vector Images
- Vector images: "line work" Image is encoded as a collection of geometric primitives such as points, lines, curves.
- Raster Images
- Raster images: constructed from a grid of pixels (picture elements), where each picture is assigned a color

Representing Colors

- How do we represent a color as a sequence of bits?
- Can represent almost any color as a combination of some red, some green, and some blue. Typically use a scale from 0 (no light of that color) to 255 (full on for that color). Yields $256 \times 256 \times 256=16$ million different possible colors.
- $(256=16 * 16$ or two hex symbols $)$
- To represent an image: 3 color components for each pixel (becomes a lot of bytes very quickly!)

Videos

- Raster image storage formats like jpg heavily use 'compression' to reduce storage size
- Basic ideas, reduce quantity of colours stored, and group idea of 'where colours are' to store less information
- Video compression works similar but since video is a sequence of frames where each frame is an image, they also make use of reducing data by grouping idea of 'colours stay the same and where' across multiple frames
- Great example of compression failure \rightarrow confetti
- When confetti is in image, the colour of spot changes every frame and nearby spots are different each frame
- This means more info is needed per frame, as a result at the same data rate, the image quality will go down (boxy artifacts will appear, or even decoding breaks down)
- This is the same reasons sports struggle with compressed video

Onward to ... decisions.

