Structures: Sets and Tuples

CPSC 231: Introduction to Computer Science for Computer Science

 Majors IFall 2021

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary
Wednesday, August 252021
Copyright © 2021

Tuples?

What is a Tuple?

- A collection of values
- Values
- May all have the same type, or
- May have different types
- Each item is referred to as an element
- Each element has an index (ORDERED)
- Unique integer identifying its position in the tuple
- A tuple is one type of data structure
- A mechanism for organizing related data

Main thing to remember!

- Similar to lists, but
- length cannot be changed
- Items cannot be modified (immutable)
- () empty tuple, (3,) length one tuple

$$
\text { aTuple }=(1, " I C T ", 3.14)
$$

Tuples

- Like a list, a tuple is a sequence type that its elements can be of any other type
- Support many of the same operations as lists
- Unlike lists, tuples are used to store data that should not be changed.
- Format
- <tuple name> = (<value 1>, <value 2>, ... , <value n>)
- Example

```
student = ('Marc', 123456789, 9.5)
```

print (student)
print (student[1])

Tuple

- Format:
<list name> = (<value 1>, <value 2>, ... , <value n>)

Examples:

```
nums = (10.0, 9.0, 8.5, 5.0, 7.5)
letters = ('a', 'b', 'c', 'd', 'e', 'f', 'g')
names = ('Marc', 'Jim', 'Ken')
mixed = (1.0,1,"this",True)
```

By defining the tuple memory is allocated for it names $=(x,) \rightarrow$ Singleton tuple of one time
Regular brackets () without comma are interpreted as empty tuple

Tuple operations

Operations	Example	Description
Indexing	name[i]	Access item by index
Slicing	name[start:end:step]	Get sub-tuple
Concatenation	names1+names2	Join two tuples into larger tuple
Updateture	Immutable	Use slicing to get sub-tuple Use concatenation to get larger tuple
Length	len(name)	Get length of tuple
Repetition	name*x	Multiply to get tuple with int x copies of its contents in order
Membership	n in name	Boolean if item is in tuple at base level
Loop	Iterate through each item in tuple	
Index	name.index("Carl")	Returns first index of item "Carl" in tuple name

Tuple

- In effect when we return multiple values from a function we are using tuples
- The same
def foo():
return x, y
deffoo():
return (x, y)
- A number of common languages don't have tuples a structure like tuples, and are limited to returning a single pointer of data.

Packing/Unpacking

- You can define a tuple without brackets. Python will interpret variables/expressions separated by commas.

```
\[
x=1,2
\]
\[
\operatorname{print}(x)->(1,2)
\]
\[
\operatorname{print}(x[0])->1
\]
\[
\operatorname{print}(x[1])->2
\]
```

$a, b=x$
print(a) -> 1
print(b) -> 2

The process seen here is generally called packing, and unpacking

What is a Set?

- A collection of values
- Values
- May all have the same type, or
- May have different types
- Each item is referred to as an element
- Each element has an index UNORDERED
- Unique integer identifying its position in the list
- A set is one type of data structure
- A mechanism for organizing related data

What is a Set?

- A set contains only immutable types
- A set only contains unique!!! elements
- A collection of values
- Values
- May all have the same type, or
- May have different types
- Each item is referred to as an element
- Each element has an index UNORDERED
- Unique integer identifying its position in the list
- A set is one type of data structure
- A mechanism for organizing related data

Set

- Unlike a list/tuple, a set is unordered
- The functions for a set are very different (we can't index/slice)
- Unlike tuples, sets can change.
- Format
- <set name> = \{<value>, <value>, ... , <value>\}
- Example
- names $=\{$ "Albert", Brian", "Carl"\}

Set

- Format:
<set name> = \{<value $1>$, <value $2>, \ldots$, <value $n>\}$

Examples:

```
nums = {10.0, 9.0, 8.5, 5.0, 7.5}
letters = {'a', 'b', 'c', 'd', 'e', 'f', 'g'}
    names = {'Marc', 'Jim', 'Ken’}
    mixed = {1.0,1,"this",True}
```

By defining the set memory is allocated for it
names $=\operatorname{set}() \rightarrow$ Only way to declare an empty set
$\}->$ is interpreted as a empty dictionary

Set operations

$\left.\begin{array}{|lll|}\hline \text { Operations } & \text { Example } & \text { Description } \\ \hline \text { Unique } & \mathrm{x}=\{1,1,1,2,2,2,2\} & \mathrm{x}=\{1,2\} \\ \hline \text { Membership } & \mathrm{n} \text { in name } & \text { Boolean if item is in set at base level } \\ \hline \text { Goncatenation } & \text { names1+namesz } & \text { toin two sets into larger set } \\ \hline \text { Update set } & \begin{array}{l}\text { add(item) } \\ \text { update(set) } \\ \text { remove(item) } \\ \text { discard(item) } \\ \text { pop() }\end{array} & \begin{array}{l}\text { no change if duplicate } \\ \text { add all items from other set } \\ \text { error if no item } \\ \text { no error } \\ \text { random remove }\end{array} \\ \hline \text { Length } & \text { len(name) } & \text { Get length of tuple } \\ \hline \text { Repetition } & \text { name** } & \text { Aultiply to get set with int xcopies of its contents in order }\end{array}\right\}$

Sets

- Why do we use sets?
- Natural uniqueness can make some things quick (we can skip membership checks)
- Sets are rather common in many pure mathematics, logic, philosophy, and computer science (especially AI)
- Where have you seen sets visualized (Venn Diagrams!)

Intersection (and)

Set Notation

$A \cap B$

Python
$A \& B$

Union (or)

Set Notation
 $A \cup B$

Python
A | B

Symmetric Difference (not and)

Set Notation
$A \triangle B$

Python
$A^{\wedge} B$

Complement Difference

Set Notation
$B \backslash A$
$A^{C} \cap \mathrm{~B}$

Python
B - A

Set questions

Operations	Example	Description
Is disjoint	x. isdisjoint (y)	True if neither x, y share an element
Is subset	x .issubset(y$) \quad$ OR $\mathrm{x}<=\mathrm{y}$	True if all elements in x are in y
Is superset	x. issuperset $(\mathrm{y}) \quad$ OR $\mathrm{x}>=\mathrm{y}$	True if all in elements in y are in x
Equal	$\mathrm{x}==\mathrm{y}$	True if all elements in x are in y , all elements in y are in x
Not equal	$\mathrm{x}!=\mathrm{y}$	True if at least one element is not in both x and y
Proper subset	$\mathrm{x}<\mathrm{y}$	$\mathrm{x}<=\mathrm{y}$ and $\mathrm{x}!=\mathrm{y}$
Proper superset	$\mathrm{x}>\mathrm{y}$	$\mathrm{x}>=\mathrm{y}$ and $\mathrm{x}!=\mathrm{y}$

Onward to ... dictionaries.

