
Repetition: Loop Usage
CPSC 231: Introduction to Computer Science for Computer Science
Majors I
Fall 2021

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 25 August 2021

Copyright © 2021

2

Compare Loop Types
For vs While

3

Loops in Python – Developing for/while

sum = 0

for i in range(0,10,1):
sum = sum + i

print(sum)

sum = 0
i = 0
while i < 10:

sum = sum + i
i = i + 1

print(sum)

The following are equivalent loops:

4

Loops in Python – Developing for/while

sum = 0

for i in range(0,10,1):
sum = sum + i

print(sum)

sum = 0
i = 0
while i < 10:

sum = sum + i
i = i + 1

print(sum)

The following are equivalent loops:

5

Break/Continue

6

Break and Continue

• Allow a loop iteration to end prematurely
• break

• Entire loop ends immediately
• Execution continues at the first statement after the loop body

• continue
• Current iteration ends immediately
• Execution returns to the top of the loop

• In a for loop, the next item in the list is used

7

Break and Continue

i = 0
while i <= 10:

if i == 5:
break

print(i)

0, 1, 2, 3, 4
ends loop at 5 before print

i = 0
while i <= 10:

if i == 5:
continue

print(i)

0, 1, 2, 3, 4, 6, 7, 8, 9, 10
skips rest of body before print at 5

8

Nesting

9

Nested loops

• Loops are powerful components in programming
• A loop can be the body of another loop, and so on
• Different types of loops can be combined together

while (logical expression):
first part of while loop body
for <variable> in <something that can be iterated>:

body of the for loop
remainder of the while loop body

remainder of the program

while (logical expression): #outer loop
first part of while loop body
while (logical expression): #inner loop

body of the inner while loop
remainder of the outer while loop

remainder of the program

10

Nested loops

while (logical expression): # outer while loop
for <variable> in <something that can be iterated>:

while (logical expression): # inner while loop
body of the inner while loop

reminder of the for loop
remainder of the outer while loop

remainder of the program

while (logical expression): # 1st while loop
while (logical expression): # 2nd while loop

while (logical expression): # 3nd while loop
body of the 3rd while loop

remainder of the 2nd while loop
remainder of the 1st while loop

remainder of the program

you do need to make sure your
program is still readable.Indentation is critical

11

Example

for i in range (1, 3, 1):
for j in range (1, 4, 1):

print (“i = %d, j = %d” % (i, j))
print ('---------------------')

12

Example

for i in range (1, 3, 1):
for j in range (1, 4, 1):

print (“i = %d, j = %d” % (i, j))
print ('---------------------')

Outer loop 2
iterations

Inner loop 3
iterations

The remainder of the
outer loop

Runs 2 * 3 times

13

Loop Errors

14

Infinite loop

• When the looping condition is always satisfied Loop never ends
• Caused by logical error:

• The loop control does not get updated (update error)
• The update will always satisfy the loop condition (update error)

• To stop an infinite loop use “Ctrl + C”
• (CMD C on Apple)

i = 1
while (i <= 10):

print ('i = %d' % (i))
i = i + 1

i = 1
while (i <= 10):

print ('i = %d' % (i))
i = i - 1

15

Erroneous loops

• The looping condition is not met before entering the loop.
• A type of initialization error
• Example:

i = 10
while (i < 10):

print ('i = %d' % (i))
i = i + 1

for i in range (5, 0, 2):
print ('i = %d' % (i))

range (1, 4, 1) (1, 2, 3)
range (4, 1, -1) (4, 3, 2)
range (1, 5, 2) (1, 3)
range (5, 0, 2) ???

16

Other Errors

• Off-by-one errors (the loop runs the wrong amount of times)
• Initialization Errors: Incorrect first value for loop control (either doesn’t enter

[erroneous] or enters with wrong value)

17

Testing Loops

18

Testing loops

• Make sure the loop executes the proper number of times.
• Test conditions:

• Loop does not run
• Loop runs exactly once
• Loop runs exactly N times

19

Tracing

• Tracing code:
• Examine each statement in sequence
• Perform whatever tasks the statement requires, recording values of interest

• Usually requires that the value of each variable is recorded
• Result of tracing could be the value of one or more variables, or the output generated

• Very important skill for debugging!
• Can be done by hand, or by using print statements to display intermediate values during

the execution of the loop

20

Loop Practice

21

Practice - Multiplication Table

Produce a multiplication table from 1 to some value inputted by user:

22

Christmas tree

• Write a program that will print a triangle of a height provided by the user. For
example:

• If the height is 3, the triangle will look like:

• If the height is 10, the triangle will look like:

*

*

23

Practice - Christmas Tree Solution 1

24

Practice - Christmas Tree Solution 2

Onward to … functions.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Repetition: Loop Usage
	Compare Loop Types
	Loops in Python – Developing for/while
	Loops in Python – Developing for/while
	Break/Continue
	Break and Continue
	Break and Continue
	Nesting
	Nested loops
	Nested loops
	Example
	Example
	Loop Errors
	Infinite loop
	Erroneous loops
	Other Errors
	Testing Loops
	Testing loops
	Tracing
	Loop Practice
	Practice - Multiplication Table
	Christmas tree
	Practice - Christmas Tree Solution 1
	Practice - Christmas Tree Solution 2
	Onward to … functions.

