Decisions: Boolean Logic

CPSC 231: Introduction to Computer Science for Computer Science Majors I Fall 2021

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 25 August 2021

Copyright © 2021

Review

- What kinds of statements have we seen so far?
 - Assignment statements
 - Input statements
 - Output statements
- These are generally necessary, but not sufficient, to solve "interesting" problems

Decision making

- Decisions are questions with answers that are either true or false (Boolean)
 - e.g., Is it true that the variable 'num' is positive?
- A program can *branch* one way or another depending upon the answer to the question (the result of the Boolean expression).

x = True

y = False

Relational Operators

Relational operators

Allow us to compare other data types to produce booleans

Operator	Meaning	Math. Equivalent	Example
<	~	Less than	3 < 5
>	>	Greater than	5 > 3
==	II	Equal to	3 == 3
<=	Y	Less than or equal to	5 <= 5
>=	2	Greater than or equal to	5 >= 4
!=	≠	Not equal to	5!= 3

Boolean expression

(operand) relational operator (operand)

- The result of the relational operator (comparison) is of type bool (short for boolean)
- Boolean: a binary variable, having two possible values: "True" and "False"
- True \rightarrow 1 or T and False \rightarrow 0 or F

Boolean Operators

Logical (Boolean) operators

- For bool variables a and b
 - a and b (True only when a and b are both True)
 - a or b (False only when a and b are both False)
 - **not a** (True only when **a** is False and vice versa)

Precendence

With relational and boolean operators

Update on precedence

Order	Operations	Precedence
1	()	Highest
2	x ** y	
3	-x, +x	
4	x * y, x / y, x % y, x // y	
5	x + y, x - y	
6	<, <=, >, >=	
7	!=, ==	
8	not	
9	and	
10	or	
11	=	Lowest

Truth Tables

Α	В	A or B

А	В	A or B
T	Т	Т

Α	В	A or B
Т	Т	Т
Т	F	Т

Α	В	A or B
Т	Т	Т
Т	F	Т
F	Т	Т

А	В	A or B
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Logical expression

(boolean expression) logical operator (boolean expression)

Logical operators → and, or, and not (more later)

Α	В	A or B
Т	Т	T
Т	F	Т
F	Т	T
F	F	F

Α	В	A and B
Т	T	Т
Т	F	F
F	Т	F
F	F	F

В	not B
Т	F
F	Т

Truth Tables

Example

- Example:
 - Construct a truth table for A and (B or not C):

- Example:
 - Construct a truth table for A and (B or not C):

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

- Example:
 - Construct a truth table for A and (B or not C):

Α	В	C	not C
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Example:
 - Construct a truth table for A and (B or not C):

Α	В	С	not C	B or not C
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	1

- Example:
 - Construct a truth table for A and (B or not C)

A	В	С	not C	B or not C	A and (B or not C)
0	0	0	1	1	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1

Onward to ... if else statements.

