
Classes and Objects
CPSC 231: Introduction to Computer Science for Computer Science
Majors I
Fall 2021

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Tuesday, 31 August 2021

Copyright © 2021

2

Class and Objects

Class
• A template that describes:

• Fields (variables)
• Methods (functions) operating on the

data in the fields

Objects
• Instances of that class which take

on different forms

3

Construction

4

Constructing an Object from a Class

• Variables of a class store pointers to objects (instances) of that class
• The process of creating an instance of an object is called

instantiation/construction.
• Format:

• Example:

• The instantiation allocates memory space for the data fields and then
associates the address with the object name

<object name> = <name of the class> ()

student1 = Student()

5

Fields

6

Classes

• A class is an abstract type that consists of fields and functions (methods) that
operate on the data in the fields.

• There are two types of fields
1. Class fields (every object shares them)
2. Instance fields (specific to one object)

7

Accessing fields

• Format:

• Example:

<object name>.<field name> # access an instance field
<object name>.<field name> = <value> # change the value

<object type>.<field name> # access a Class field
<object type>.<field name> = <value> # change the value

student1.name = 'Alice’

Student.MIN_ID = 1

8

Accessing fields

• Format:

• Example:

<object name>.<field name> # access an instance field
<object name>.<field name> = <value> # change the value

<object type>.<field name> # access a Class field
<object type>.<field name> = <value> # change the value

student1.name = 'Alice’

Student.MIN_ID = 1

student1
name = ‘Alice’

Student
MIN_ID = 1

student2
name = ‘Bob’

student3
name = ‘Carol’

Each of the 3 instances has its own unique instance field values
All 3 share the Student class field values

9

Initializing the fields

• Class fields are initialized at as variables declared in the class itself
• Instance fields are initialized as variables within the constructor

class <name of the class>:
<class field name>= <default value>

def __init__(self, <param1>, …):
self.<instance field name> = <param1>

10

Initialization

11

Initializing the attributes

• The constructor, a special method __init__(), is automatically called whenever
an object is created and initializes instance fields.

• We can increase the complexity of this method based on how much we want to
configure when an object is instantiated

• Format:
class Student:

def __init__(self, first, last, address, phone, id):
self.firstName = first
self.lastName = last
self.address = address
self.phone = phone
self.studentID = id
self.courses = {}

12

Methods

13

Classes

• A class is an abstract that consists of fields and functions (methods) that
operate on the data in the fields.

• Methods act on the data from a class to transform it, update it, or retrieve it

• Format:

class <name of the class>:
<class field name>= <default value>

def __init__(self, <param1>, …):
self.<instance field name> = <param1>

def <method name> (self, <param1>, ...):
method body

14

Simple Example

15

Classes

• Making a simple Student class
• Class fields MIN_ID, MAX_ID
• Instance fields name, id
• One method -> prints out (name-id)

class Student:
MAX_ID = 99999999
MIN_ID = 0

def __init__(self, new_name, new_id):
self.name = new_name
self.id = new_id

def print(self):
print(f”({self.name}-{self.id}”)

16

Objects

• Instance of a class (remember list(), set(), tuple())

#Construct a student, automatically uses __init__(self, name, id)
student = Student(“Jonathan”, 999)
other = Student(“Dr.J”, 1)

#Print student info (Jonathan-999)
student.print()
#Print student info (Dr.J-1)
other.print()

#Access class field
print(Student.MIN_ID)

#Access instance field
print(student.name)
print(other.id)

17

Larger Example

18

Example

class Student:

def __init__(self):
self.lastName = ''
self.firstName = ''
self.studentID = 0
self.address = ''
self.phone = ''
self.courses = {}

print the address of a student
def printAddress (self):

print(self.address)

def addCourse (self, courseID):
self.courses[courseID] = ""

def assignGrade (self, courseID, grade):
self.courses[courseID] = grade

This code does nothing!
It is just a blueprint.
A class description.

The self parameter is automatically set to reference the
newly-created object that needs to be initialized.

19

Self?

20

What is self?

• The “self” reference allows an object to
access its attributes inside its methods.

• It is needed to distinguish the attributes of
different objects of the same class.

• Object scope: As long as the object
is referenced by a name that is still
active (valid), all of the attributes will
be valid as well.

class Student:
def __init__ (self,...):

:

def printInfo (self):
:

Main body
alice = Student(...)
jane = Student(...)
alice.printInfo()
jane.printInfo()

21

Motivating Complex Class Design

22

class Student:

def __init__(self):
self.lastName = ‘’
self.firstName = ''
self.studentID = 0
self.address = ''
self.phone = ''
self.courses = {}

#Creating Alice the student
alice = Student()
alice.lastName = 'Smith'
alice.firstName = 'Alice'
alice.studentID = 12345678
alice.address = '55 Main Street'
alice.phone = '403-123-4567'
alice.courses[231] = 'A'
alice.courses[233] = 'B+'

print ('Name: %s %s' % (alice.firstName, alice.lastName))
print ('Student #: %d' % (alice.studentID))
print ('Address: %s' % (alice.address))
print ('Phone: %s' % (alice.phone))
print ('GPA: %s' % (alice.courses))

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}

23

class Student:

def __init__(self, lname=‘’, fname=‘’, id=0, add=‘’, ph=‘’):
self.lastName = lname
self. firstName = fname
self. studentID = id
self. address = add
self. phone = ph
self. courses = {}

#Creating Alice the student
alice = Student(‘Smith’,’Alice’,12345678,’55 Main Street’,’403-123-4567’)
alice.courses[231] = 'A'
alice.courses[233] = 'B+'

print ('Name: %s %s' % (alice.firstName, alice.lastName))
print ('Student #: %d' % (alice.studentID))
print ('Address: %s' % (alice.address))
print ('Phone: %s' % (alice.phone))
print ('GPA: %s' % (alice.courses))

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}

24

class Student:

def __init__(self, lname=‘’, fname=‘’, id=0, add=‘’, ph=‘’):
self.lastName = lname
self. firstName = fname
self. studentID = id
self. address = add
self. phone = ph
self. courses = {}

def print(self):
print ('Name: %s %s' % (self.firstName, self.lastName))
print ('Student #: %d' % (self.studentID))
print ('Address: %s' % (self.address))
print ('Phone: %s' % (self.phone))
print ('GPA: %s' % (self.courses))

#Creating Alice the student
alice = Student(‘Smith’,’Alice’,12345678,’55 Main Street’,’403-123-4567’)
alice.courses[231] = 'A'
alice.courses[233] = 'B+’
alice.print()

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}

25

Changing Data: Methods

26

Methods in Class

• Class methods are used to
• hide the implementation detail

• e.g., addCourse() and assignGrade() allows to change course information without knowing its
implementation

• Provide common methods to be used by the objects
• e.g., printAddress(), printInfo())

• A class method is just like a regular function

27

class Student:
def__init__(self):

self.lastName = ‘’
self.firstName = ‘’
self.studentID = 0
self.address = ''
self.phone = ''
self.courses = {}

def printInfo (self):
print ('Name: %s %s' % (self.firstName, self.lastName))
print ('Student #: %d' % (self.studentID))
print ('Address: %s' % (self.address))
print ('Phone: %s' % (self.phone))
print ('GPA: %s' % (self.courses))
print ()

def addCourse (self, courseID):
self.courses[courseID] = ''

def assignGrade (self, courseID, grade):
self.courses[courseID] = grade

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}

The main body of the program
alice = Student()
alice.lastName = 'Smith'
#...
alice.addCourse(231) # add 231 to the course list
alice.addCourse(233) # add 233 to the course list
alice.assignGrade(231, 'A') # assign grade for 231
alice.assignGrade(233, 'B+') # assign grade for 233
alice.printInfo()

Create another student
jane = Student()
#...
jane.printInfo()

28

Why classes?

29

Why classes?

• Using classes allows new types of variables to be declared
• The new type can model information about any arbitrary entity (e.g., car, movie, pet, you

name it)

• A predetermined number of fields can be specified in the class definition and
those fields can be named

• Hiding information and creating interface (through methods) so that changes
inside a class has minimal impact on the rest of the program

• Organizing the code makes it scalable and easier to maintain

30

Try!

31

Practice

• Create a class for a pet!

32

Accessing

33

Accessing attributes and methods

• A function may have a local variable with the same name as a instance field
variable or a class field variable, the keyword “self” or <class name> is used to
distinguish the variables

class Student:
gpa = 4.0
def __init__ (...):

self.gpa = 0
:

def printInfo (self):
:

def computeGPA (self):
gpa = 0
for id, grade in self.courses.items():

gpa += courses[grade]
gpa = gpa / len(self.courses)
print (gpa, self.gpa, Student.gpa)
return gpa

Instance field
variable

Local variables

Class field
variable

34

Lists of Objects

35

Lists of objects

• Each element in the list is a reference to an object

students = []
:

students.append(student)

36

Design

37

Class design

• So far we decomposed problems into small tasks and implemented each using
a function.

• To incorporate classes into the design of your solution:

• We look at the data and their logical relationships
• We then decide on the methods needed for each data set

38

Class design

• The class design is like a black box, which has a known input and output, but
how it works is a mystery.

• A class should maintains certain information and performs a known set of operations.
• The actual implementation is irrelevant to the rest of the program as long as the

parameter lists of each class method remains unchanged.

• Such separation of the class implementation from the rest of the program is
called encapsulation.

39

Module System

40

Modules

• A large program may contain tens (if not hundreds or thousands) of classes.
Instead of managing the entire program in a single file, Python allows us to
divide the program into parts

• Each part is a module contained in a separate file where the file name is the same as the
module name.

• In order to access a module, we must “import” it.
• Format:

from <file name> import <function or class name>
OR
import <file name>

41

Modules

• A large program contains thousands of lines of code
• Python allows to divide the program into parts
• Each part is a module contained in a separate file named the same as the

module name.
• In order to access a module, we must “import” it.

def helloFunc():
print ("Hello World!")

Hello.py

def goodbyeFunc(name):
print("Goodbye", name)

Goodbye.py

import Hello
from Goodbye import *
def main():

Hello.helloFunc()
goodbyeFunc(“Classmate")

main()

Main.py

42

Packages

• In Python, packages use the structure of the directories to make many files in
the same directory accessible like a single module

• To create and use a package:
• Create a directory with the name of the package (e.g., people)
• In the directory, have each class in a separate *.py file (e.g., Student.py and Staff.py),

where the file names match the class names.
• In the same directory, create a file called __init__.py
• This file tells Python that this is a package directory, and not just a directory with Python

files in it.
• In this file, import each module within this package
• In the main program, import the package (e.g., import People)

43

Example

44

Identity/Equality

45

Classes and identity

• Every class (data structure you make has an internal python identity)

46

Classes and identity

• You’ll have noticed that python knows how to sort strings, print the data
structure, or compare contents on existing data structures

47

Classes and identity

• But you’ll notice yours operate differently at first!!!!

48

Classes and identity

• But you’ll notice yours operate differently at first!!!!

49

Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)?
• How to print?
• How to order?

50

Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)? __eq__(self, other) __hash__(self)
• How to print? __str__(self)
• How to order? __lt__(self)

51

Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)? __eq__(self, other) __hash__(self)
• How to print? __str__(self)
• How to order? __lt__(self)

52

Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)? __eq__(self, other) __hash__(self)
• How to print? __str__(self)
• How to order? __lt__(self)

53

Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)? __eq__(self, other) __hash__(self)
• How to print? __str__(self)
• How to order? __lt__(self)

54

Ordering/Hashing

55

What about ordering and hashing? Student Example

56

What about ordering and hashing? Student Example

57

What about ordering and hashing? Student Example

58

Inheritance

59

Inheritance

• You can make classes that gain
properties of other classes

• Here Dog is a sub-class of Pet
• Pet is the super-class of Dog
• Dogs can be registered with the city
• Both can use the string method

from Pet to print them using their
name

60

Inheritance

We can also extend python class, here I made a version of the list class that
also stores a name for every list, I get for free everything the list did before

Onward to … recursion.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Classes and Objects
	Class and Objects
	Construction
	Constructing an Object from a Class
	Fields
	Classes
	Accessing fields
	Accessing fields
	Initializing the fields
	Initialization
	Initializing the attributes
	Methods
	Classes
	Simple Example
	Classes
	Objects
	Larger Example
	Example
	Self?
	What is self?
	Motivating Complex Class Design
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Changing Data: Methods
	Methods in Class
	Slide Number 27
	Why classes?
	Why classes?
	Try!
	Practice
	Accessing
	Accessing attributes and methods
	Lists of Objects
	Lists of objects
	Design
	Class design
	Class design
	Module System
	Modules
	Modules
	Packages
	Example
	Identity/Equality
	Classes and identity
	Classes and identity
	Classes and identity
	Classes and identity
	Classes and identity
	Classes and identity
	Classes and identity
	Classes and identity
	Classes and identity
	Ordering/Hashing
	What about ordering and hashing? Student Example
	What about ordering and hashing? Student Example
	What about ordering and hashing? Student Example
	Inheritance
	Inheritance
	Inheritance
	Onward to … recursion.

