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Class and Objects

Class
• A template that describes: 

• Fields (variables)
• Methods (functions) operating on the 

data in the fields

Objects
• Instances of that class which take 

on different forms
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Construction
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Constructing an Object from a Class

• Variables of a class store pointers to objects (instances) of that class
• The process of creating an instance of an object is called 

instantiation/construction. 
• Format:

• Example:

• The instantiation allocates memory space for the data fields and then 
associates the address with the object name

<object name> = <name of the class> ()

student1 = Student()
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Fields
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Classes

• A class is an abstract type that consists of fields and functions (methods) that 
operate on the data in the fields. 

• There are two types of fields
1. Class fields (every object shares them)
2. Instance fields (specific to one object)
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Accessing fields

• Format:

• Example:

<object name>.<field name>   # access an instance field 
<object name>.<field name> = <value>  # change the value

<object type>.<field name>   # access a Class field 
<object type>.<field name> = <value>  # change the value

student1.name = 'Alice’

Student.MIN_ID = 1
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Accessing fields

• Format:

• Example:

<object name>.<field name>   # access an instance field 
<object name>.<field name> = <value>  # change the value

<object type>.<field name>   # access a Class field 
<object type>.<field name> = <value>  # change the value

student1.name = 'Alice’

Student.MIN_ID = 1

student1
name = ‘Alice’

Student
MIN_ID = 1

student2
name = ‘Bob’

student3
name = ‘Carol’

Each of the 3 instances has its own unique instance field values
All 3 share the Student class field values
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Initializing the fields 

• Class fields are initialized at as variables declared in the class itself
• Instance fields are initialized as variables within the constructor

class <name of the class>:    
<class field name>= <default value>         

def __init__(self, <param1>, …):
self.<instance field name> = <param1>
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Initialization
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Initializing the attributes 

• The constructor, a special method __init__(), is automatically called whenever 
an object is created and initializes instance fields. 

• We can increase the complexity of this method based on how much we want to 
configure when an object is instantiated

• Format:
class Student:    

def __init__(self, first, last, address, phone, id):        
self.firstName = first        
self.lastName = last        
self.address = address        
self.phone = phone        
self.studentID = id        
self.courses = {}
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Methods
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Classes

• A class is an abstract that consists of fields and functions (methods) that 
operate on the data in the fields. 

• Methods act on the data from a class to transform it, update it, or retrieve it

• Format:

class <name of the class>:    
<class field name>= <default value>         

def __init__(self, <param1>, …):
self.<instance field name> = <param1>

def <method name> (self, <param1>, ...):         
method body
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Simple Example
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Classes

• Making a simple Student class
• Class fields MIN_ID, MAX_ID
• Instance fields name, id
• One method -> prints out (name-id)

class Student:    
MAX_ID = 99999999
MIN_ID = 0

def __init__(self, new_name, new_id):
self.name = new_name
self.id = new_id

def print(self):         
print(f”({self.name}-{self.id}”)
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Objects

• Instance of a class (remember list(), set(), tuple())

#Construct a student, automatically uses __init__(self, name, id) 
student = Student(“Jonathan”, 999)
other = Student(“Dr.J”, 1)

#Print student info (Jonathan-999)
student.print()
#Print student info (Dr.J-1)
other.print()

#Access class field
print(Student.MIN_ID)

#Access instance field
print(student.name)
print(other.id)
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Larger Example
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Example

class Student:    

def __init__(self):
self.lastName = ''   
self.firstName = ''  
self.studentID = 0      
self.address = ''    
self.phone = ''    
self.courses = {}      

# print the address of a student    
def printAddress (self):        

print(self.address)   

def addCourse (self, courseID):        
self.courses[courseID] = ""   

def assignGrade (self, courseID, grade):        
self.courses[courseID] = grade

This code does nothing!
It is just a blueprint.
A class description.

The self parameter is automatically set to reference the 
newly-created object that needs to be initialized.
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Self?



20

What is self?

• The “self” reference allows an object to 
access its attributes inside its methods. 

• It is needed to distinguish the attributes of 
different objects of the same class.

• Object scope: As long as the object 
is referenced by a name that is still 
active (valid), all of the attributes will 
be valid as well. 

class Student:    
def __init__ (self,...):

:    

def printInfo (self):        
: 

# Main body 
alice = Student(...) 
jane = Student(...) 
alice.printInfo() 
jane.printInfo()
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Motivating Complex Class Design
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class Student:    

def __init__(self):
self.lastName = ‘’ 
self.firstName = ''
self.studentID = 0 
self.address = ''  
self.phone = ''    
self.courses = {}  

#Creating Alice the student
alice = Student() 
alice.lastName = 'Smith' 
alice.firstName = 'Alice' 
alice.studentID = 12345678 
alice.address = '55 Main Street' 
alice.phone = '403-123-4567' 
alice.courses[231] = 'A' 
alice.courses[233] = 'B+' 

print ('Name: %s %s' % (alice.firstName, alice.lastName)) 
print ('Student #: %d' % (alice.studentID)) 
print ('Address: %s' % (alice.address)) 
print ('Phone: %s' % (alice.phone)) 
print ('GPA: %s' % (alice.courses))

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}
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class Student:    

def __init__(self, lname=‘’, fname=‘’, id=0, add=‘’, ph=‘’):
self.lastName =  lname
self. firstName = fname
self. studentID = id
self. address = add
self. phone = ph
self. courses = {}  

#Creating Alice the student
alice = Student(‘Smith’,’Alice’,12345678,’55 Main Street’,’403-123-4567’) 
alice.courses[231] = 'A' 
alice.courses[233] = 'B+' 

print ('Name: %s %s' % (alice.firstName, alice.lastName)) 
print ('Student #: %d' % (alice.studentID)) 
print ('Address: %s' % (alice.address)) 
print ('Phone: %s' % (alice.phone)) 
print ('GPA: %s' % (alice.courses))

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}
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class Student:    

def __init__(self, lname=‘’, fname=‘’, id=0, add=‘’, ph=‘’):
self.lastName =  lname
self. firstName = fname
self. studentID = id
self. address = add
self. phone = ph
self. courses = {}  

def print(self):
print ('Name: %s %s' % (self.firstName, self.lastName)) 
print ('Student #: %d' % (self.studentID)) 
print ('Address: %s' % (self.address)) 
print ('Phone: %s' % (self.phone)) 
print ('GPA: %s' % (self.courses))

#Creating Alice the student
alice = Student(‘Smith’,’Alice’,12345678,’55 Main Street’,’403-123-4567’) 
alice.courses[231] = 'A' 
alice.courses[233] = 'B+’ 
alice.print()

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}
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Changing Data: Methods
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Methods in Class

• Class methods are used to 
• hide the implementation detail 

• e.g., addCourse() and assignGrade() allows to change course information without knowing its 
implementation 

• Provide common methods to be used by the objects 
• e.g., printAddress(), printInfo()) 

• A class method is just like a regular function 
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class Student:
def__init__(self):

self.lastName = ‘’ 
self.firstName = ‘’
self.studentID = 0 
self.address = ''  
self.phone = ''    
self.courses = {}  

def printInfo (self):        
print ('Name: %s %s' % (self.firstName, self.lastName))        
print ('Student #: %d' % (self.studentID))        
print ('Address: %s' % (self.address))        
print ('Phone: %s' % (self.phone))        
print ('GPA: %s' % (self.courses))        
print ()    

def addCourse (self, courseID):        
self.courses[courseID] = ''    

def assignGrade (self, courseID, grade):        
self.courses[courseID] = grade 

Name: Alice Smith
Student #: 12345678
Address: 55 Main Street
Phone: 403-123-4567
GPA: {231: 'A', 233: 'B+'}

# The main body of the program 
alice = Student() 
alice.lastName = 'Smith'   
#... 
alice.addCourse(231)        # add 231 to the course list 
alice.addCourse(233)        # add 233 to the course list 
alice.assignGrade(231, 'A')  # assign grade for 231 
alice.assignGrade(233, 'B+')  # assign grade for 233 
alice.printInfo() 

# Create another student 
jane = Student()   
#...
jane.printInfo() 
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Why classes?
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Why classes?

• Using classes allows new types of variables to be declared 
• The new type can model information about any arbitrary entity (e.g., car, movie, pet, you 

name it) 

• A predetermined number of fields can be specified in the class definition and 
those fields can be named 

• Hiding information and creating interface (through methods) so that changes 
inside a class has minimal impact on the rest of the program

• Organizing the code makes it scalable and easier to maintain



30

Try!
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Practice

• Create a class for a pet!
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Accessing
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Accessing attributes and methods

• A function may have a local variable with the same name as a instance field 
variable or a class field variable, the keyword “self” or <class name> is used to 
distinguish the variables 

class Student:    
gpa = 4.0
def __init__ (...):           

self.gpa = 0
:       

def printInfo (self):           
:        

def computeGPA (self):        
gpa = 0        
for id, grade in self.courses.items():            

gpa += courses[grade]        
gpa = gpa / len(self.courses)        
print (gpa, self.gpa, Student.gpa)
return gpa

Instance field 
variable

Local variables

Class field 
variable
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Lists of Objects
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Lists of objects

• Each element in the list is a reference to an object

students = []
: 

students.append(student)



36

Design
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Class design

• So far we decomposed problems into small tasks and implemented each using 
a function. 

• To incorporate classes into the design of your solution:

• We look at the data and their logical relationships
• We then decide on the methods needed for each data set
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Class design

• The class design is like a black box, which has a known input and output, but 
how it works is a mystery. 

• A class should maintains certain information and performs a known set of operations. 
• The actual implementation is irrelevant to the rest of the program as long as the 

parameter lists of each class method remains unchanged. 

• Such separation of the class implementation from the rest of the program is 
called encapsulation.
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Module System
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Modules 

• A large program may contain tens (if not hundreds or thousands) of classes. 
Instead of managing the entire program in a single file, Python allows us to 
divide the program into parts 

• Each part is a module contained in a separate file where the file name is the same as the 
module name.

• In order to access a module, we must “import” it. 
• Format: 

from <file name> import <function or class name> 
OR 
import <file name>
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Modules

• A large program contains thousands of lines of code
• Python allows to divide the program into parts 
• Each part is a module contained in a separate file named the same as the 

module name. 
• In order to access a module, we must “import” it.

def helloFunc():
print ("Hello World!")

Hello.py

def goodbyeFunc(name):
print("Goodbye", name )

Goodbye.py

import Hello
from Goodbye import *
def main():

Hello.helloFunc()
goodbyeFunc(“Classmate")

main()

Main.py
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Packages

• In Python, packages use the structure of the directories to make many files in 
the same directory accessible like a single module 

• To create and use a package: 
• Create a directory with the name of the package (e.g., people) 
• In the directory, have each class in a separate *.py file (e.g., Student.py and Staff.py), 

where the file names match the class names. 
• In the same directory, create a file called __init__.py 
• This file tells Python that this is a package directory, and not just a directory with Python 

files in it. 
• In this file, import each module within this package 
• In the main program, import the package (e.g., import People)
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Example
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Identity/Equality
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Classes and identity

• Every class (data structure you make has an internal python identity)
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Classes and identity

• You’ll have noticed that python knows how to sort strings, print the data 
structure, or compare contents on existing data structures
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Classes and identity 

• But you’ll notice yours operate differently at first!!!!
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Classes and identity 

• But you’ll notice yours operate differently at first!!!!
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Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)?
• How to print?
• How to order?
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Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)?  __eq__(self, other) __hash__(self)
• How to print?  __str__(self)
• How to order?  __lt__(self)
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Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)?  __eq__(self, other) __hash__(self)
• How to print?  __str__(self)
• How to order?  __lt__(self)
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Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)? __eq__(self, other) __hash__(self)
• How to print?  __str__(self)
• How to order?  __lt__(self)
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Classes and identity

• Three key concepts that exist
• How to compare (how to hash/equality)?  __eq__(self, other) __hash__(self)
• How to print?  __str__(self)
• How to order?  __lt__(self)
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Ordering/Hashing
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What about ordering and hashing? Student Example
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What about ordering and hashing? Student Example
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What about ordering and hashing? Student Example
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Inheritance
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Inheritance

• You can make classes that gain 
properties of other classes

• Here Dog is a sub-class of Pet
• Pet is the super-class of Dog
• Dogs can be registered with the city
• Both can use the string method 

from Pet to print them using their 
name
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Inheritance

We can also extend python class, here I made a version of the list class that 
also stores a name for every list, I get for free everything the list did before



Onward to … recursion.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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